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Abstract: The current popular one-shot multi-object tracking (MOT) algorithms are dominated by
the joint detection and embedding paradigm, which have high inference speeds and accuracy, but
their tracking performance is unstable in crowded scenes. Not only does the detection branch
have difficulty in obtaining the accurate object position, but the ambiguous appearance of features
extracted by the re-identification (re-ID) branch also leads to identity switches. Focusing on the above
problems, this paper proposes a more robust MOT algorithm, named CSMOT, based on FairMOT.
First, on the basis of the encoder–decoder network, a coordinate attention module is designed to
enhance the information interaction between channels (horizontal and vertical coordinates), which
improves its object-detection abilities. Then, an angle-center loss that effectively maximizes intra-class
similarity is proposed to optimize the re-ID branch, and the extracted re-ID features are made more
discriminative. We further redesign the re-ID feature dimension to balance the detection and re-ID
tasks. Finally, a simple and effective data association mechanism is introduced, which associates each
detection instead of just the high-score detections during the tracking process. The experimental
results show that our one-shot MOT algorithm achieves excellent tracking performance on multiple
public datasets and can be effectively applied to crowded scenes. In particular, CSMOT decreases
the number of ID switches by 11.8% and 33.8% on the MOT16 and MOT17 test datasets, respectively,
compared to the baseline.

Keywords: one-shot; multi-object tracking; re-ID; coordinate attention; angle-center loss; data association

1. Introduction

As one of the most popular high-level computer vision tasks, multi-object tracking
(MOT) is widely used in the fields of autonomous driving, video surveillance, and even
epidemic prevention. The objective of MOT is to locate multiple objects and obtain trajec-
tories in a video while assigning a unique and long-term valid ID number to each object.
In crowded scenes, it is highly challenging to solve the tracking problems caused by the
changing appearance of the object itself and by frequent occlusions between objects.

Most of the current advanced MOT algorithms adopt a strategy based on the separating
detection and embedding (SDE) paradigm. First, a detector module is used to localize
objects of interest for each frame. Second, the detection results are cut out according to the
bounding box and input to the embedding module to estimate the re-ID features. Finally,
using the motion information and re-ID features, the detection and one of the existing tracks
are matched, or a new track is created if it fails. The progress of the two abovementioned
independent modules can effectively improve the overall tracking accuracy. However,
since the extracted features cannot be shared between the two modules, it leads to the
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consumption of storage and computing resources. In crowded scenes with huge numbers
of objects, in particular, the real-time performance of MOT drops sharply.

In response to the complex tracking model and slow inference speed, one-shot MOT
algorithms based on the joint detection and embedding (JDE) paradigm have achieved
good results recently. By adding an embedding branch to the object detection network
for extracting the re-ID features of objects, multi-task learning can be accomplished in a
single neural network. JDE achieves end-to-end training and inferencing with real-time
speed. The detection branch directly determines the tracking performance. Most JDE
tracking algorithms are based on anchor-based detection networks, which are similar to
Track-RCNN [1] and JDE [2]. Track-RCNN adds a fully connected layer at the head of the
Mask-RCNN [3] network to extract re-ID for subsequent tracking association, enabling
object tracking at the pixel level. It is still slow because Track-RCNN is an extension of the
two-stage object detection algorithm. To solve this problem, Wang et al. proposed the JDE
algorithm. By extending the one-stage object detection network named YOLOv3 [4], the
two tasks of object detection and re-ID are completed in parallel. It is the first real-time
algorithm; however, one issue is that the re-ID feature cannot be aligned with the object
center, resulting in a large number of identity switches (IDs). Yifu Zhang et al. proposed
FairMOT [5], based on the anchor-free object detection network CenterNet [6] and the JDE
paradigm. The algorithm verifies that the anchors are not suitable for extracting re-ID
features when dealing with the MOT task. FairMOT extracts high-resolution features to
more effectively localize center points. The conflict between detection and re-ID is alleviated
by fusing deep and shallow features. Tracking accuracy is improved, and the real-time
requirement is achieved. The overview of MOT algorithms with the SDE paradigm and the
JDE paradigm are shown in Figure 1.
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Figure 1. Overview of MOT algorithms with the separate detection and embedding (SDE) paradigm
and the joint detection and embedding (JDE) paradigm.

In crowded scenes, FairMOT still suffers from a noticeable degradation of tracking
performance; not only is the object detection accuracy insufficient, but the extracted re-ID
features are also not discriminative enough. In this paper, we identify four factors behind
this unstable performance. The first issue is caused by the complicated encoder–decoder
network. Deep layer aggregation (DLA) [7] architecture can extract high-resolution features
well, but densely interleaved and interconnected characteristics can also lead to information
redundancy. While obtaining a larger global view, the high-frequency fusion inside the
component block and across different scale layers weakens the perception of focal features
and affects the accuracy of the object detection. The second issue is caused by the loss
function for the re-ID branch. The re-ID branch uses the Softmax Loss function, which can
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better distinguish different categories of objects with significant appearance differences.
However, the MOT task often needs to distinguish different objects of the same category,
which are largely similar. Training with the Softmax Loss function results in the extracted
re-ID features of the same object not being compact enough. The third issue is caused by re-
ID features. There is a strong coupling between two different subtasks that extract features
using the same encoder–decoder network. After enhancing the re-ID branch, changes in
the feature dimension significantly affect the object detection performance, which in turn
interferes with the overall performance of the MOT algorithm. The fourth issue is caused
by data association. Regarding the prediction and matching process, previous works have
only considered detection boxes with high scores. It is unreasonable to roughly filter out
the low-score detection boxes output by the detection branch. On the one hand, it causes
information loss and interrupts the trajectory. On the other hand, it means that the object
tracking performance is heavily dependent on the detection task.

In this work, we present a simple approach, referred to as CSMOT, which elegantly
addresses the four issues described above. CSMOT is built on top of CenterNet, using
Fair-MOT as a baseline. Similarly, detection and re-ID tasks are integrated into one neural
network. We argue that it is critical for anchor-free detection networks to extract more
accurate keypoint features. The attention mechanism enables CNNs to focus on local
features of interest. In this paper, we design a coordinate attention module (CAM) with
very low computational and storage consumption. This module computes attention masks
for high-resolution features on channels, for horizontal and vertical coordinates, enhancing
its ability to locate the centers of objects. In addition, discriminative re-ID features help
to solve the problem of high IDs in crowded scenes. We normalize re-ID features and
corresponding fully connected layer weights so that the learning of the re-ID branch is
transformed from a Euclidean space to an angular space. This transformation is inherently
consistent with the mechanism for trajectory association using cosine similarity. In the
angular space, we propose the angle-center loss (ACL) to increase the compactness of
intra-class objects. Features from the same classes are clustered together on the surface of
the hypersphere. To balance the detection and re-ID tasks, CSMOT learns relatively low-
dimensional re-ID features. Our experiment demonstrates that low-dimensional features
can effectively alleviate the conflict between two tasks and help to improve tracking
performance. Finally, we form the effective tracking pipeline in CSMOT. Using detection
boxes from high scores to low ones raises the upper bound of data association. We predict
the positions of objects in the next frame with motion information and simultaneously
compute the similarity of detections and tracks jointly with the IoU and re-ID features.

The main contributions of this work are three-fold: (1) an anchor-free joint detection
and embedding MOT algorithm is presented, combined with the coordinate attention
module. The algorithm referred to as CSMOT achieves a higher detection performance
compared to the baseline method. (2) Angle-center loss optimization in angular space is
proposed to supervise the re-ID branch. By setting a cosine distance penalty, maximizing
intra-class similarity produces higher-quality extracted re-ID features. In addition, the
feature dimension is adjusted to better balance the detection task and the re-ID task.
(3) A high-performance MOT tracker is further developed by incorporating the proposed
algorithm into an efficient data association strategy, which associates each detection box to
avoid fragmented trajectories.

Extensive experimental evaluations and analyses of the MOT benchmark demonstrate
the effectiveness of CSMOT, as shown in Figure 2.
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2. Related Work

As we know from previous works, object detection, re-ID, and data association are
the three key components of multi-object tracking. We systematically optimize these three
components.

2.1. Attention Mechanisms for Object Detection

The application of the attention mechanism in computer vision tasks enables the
model to focus more on valuable information and helps to extract the features of interest.
Hu et al. [8] proposed SENet, which can learn the weights of feature channels and allows
important channels to obtain higher weights while suppressing the effect of less important
channels. Wang et al. [9] proposed ECA-Net by using one-dimensional convolution with
an adaptive kernel size to replace the fully connected layer in SENet; they obtained high-
performance improvement while increasing only a very small number of parameters.
However, SE and ECA attention only considers encoding inter-channel information and
neglects the importance of positional information. Improved works, such as BAM [10] and
CBAM [11], compress and reweight features in both the channel dimension and the spatial
dimension, obtaining excellent results in multiple computer vision tasks. However, the
convolutions taken by BAM or CBAM attention can only capture local relations and fail in
modeling long-range dependencies.

2.2. Loss Function from Deep Face Recognition to re-ID

It is interesting to migrate the loss function from the field of face recognition to a
re-ID subtask in MOT. Essentially, these are all fine-grained classification tasks. It is worth
noting that, in our work, this is not a simple combination but a new loss function with
targeted improvements. The traditional Softmax Loss (SL) continuously improves the
probability of accurate classification by optimizing the error between the prediction and
label. However, the features learned under SL supervision are not discriminative enough.
Improvements for SL are mainly divided into two approaches: one concerns variants of
SL, such as Normface [12], CosFace [13], and ArcFace [14], which make training more
focused on optimizing feature mappings and feature vectors, but it is difficult to tune
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the parameters, and the convergence is slow during training. The other approach adds
constraint items to supervise together with SL, such as Center Loss [15] and Island Loss [16].
These works are based on reducing the intra-class distance and increasing the inter-class
distance to improve feature discrimination, which is highly beneficial for the MOT task.

2.3. Data Association

Data association is the final step of MOT, which establishes the correspondence be-
tween trajectories and detection boxes. Sort [17] first uses the Kalman Filter [18] to predict
the future positions of the trajectories and then calculates their overlap with the predicted
boxes and uses the Hungarian algorithm [19] to assign detection boxes to trajectories.
The IOU-Tracker [20] directly calculates the overlap of object detection boxes between
two adjacent frames, without using the Kalman filter to predict future positions. However,
they may fail when faced with the challenges of crowded scenes and fast motion. To
perform data association more accurately, DeepSort [21] proposes cutting out object boxes
and feeding them to the re-ID network [22] to extract appearance features. Then, it combines
the location, motion, and appearance to compute the similarity between trajectories and
detection boxes and uses the Hungarian algorithm to complete the optimal assignment.
The method is effective in long-range matching. The above methods only select object
detection boxes with high scores in the association process, which causes information loss
by discarding trajectories or boxes with low scores.

3. CSMOT

In this section, we present the technical details of CSMOT, including the encoder–
decoder network, the re-ID branch, and multi-task training, as well as data association. An
overview of our one-shot tracker CSMOT is shown in Figure 3.
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3.1. Encoder–Decoder Network

Inspired by FairMOT, our encoder–decoder network adopts ResNet-34 as the backbone
and a modified deep layer aggregation (DLA) [7] for feature fusion, as shown in Figure 4a.
The network has more frequent skip connections between low-level and high-level features
to expand the receptive field. In addition, the deformable convolution is introduced in the
up-sampling stage to dynamically adapt to changes in object scales and to enhance the
generalization ability of the network in crowded scenes. Notably, the output feature map
has a resolution of 1/4 as high as the original image, which facilitates the identification of
small objects.
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Figure 4. Overview of our one-shot tracker CSMOT. (a) Architecture of the encoder–decoder network.
(b) Structure of the proposed coordinate attention module (CAM). (c) Flow of coordinate attention.

Coordinate Attention Module (CAM). Coordinate attention [23] is lightweight, has
a high efficiency, and achieves excellent results in the fields of image classification and
segmentation. Focusing on the information redundancy problem caused by dense con-
nections in the encoder–decoder network, we designed the coordinate attention module
(CAM), the structure of which is shown in Figure 4b, to extract local features of interest and
improve the localization ability of object centers. During the 1/8 and 1/16 resolution stages,
CAM encodes channel relationships and spatial locations, respectively. It can suppress
background noise while increasing the weights of salient regions.

The CAM embeds coordinate information for the feature map. Specifically, the input
feature map X has the shape of C × H ×W. We encode each channel along the horizontal
and vertical directions using average pooling. The coordinate information embedding
process is shown in Equations (1) and (2):

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)

where zc is the output feature map in the c-th channel. The above two transformations can
integrate features along two spatial directions and generate a pair of direction-aware feature
maps. The CAM captures long-range interactions spatially by incorporating information in
the horizontal and vertical directions.

The features in two spatial directions are concatenated to ensure that the outputs have
a consistent dimension, and they are next fed into a shared 1 × 1 convolution, as shown in
Equation (3):

f = F1×1(cat(zh, zw)) (3)

where F1×1 is a convolutional transformation function, cat is the concatenation operation,
and zh and zw denote the features extracted by Equations (1) and (2), respectively. Then,
we split the feature map f into two separate tensors, fh and fw, in the spatial dimension.
Finally, two other convolutions, F1×1

h and F1×1
w , are used to transform fh and fw to tensors

with the same channel number as the input X, which are shown in Equations (4) and (5):

gh = F1×1
h (fh) (4)

gw = F1×1
w (fw) (5)

The outputs gh and gw represent the attention weights of the coordinates in the X and
Y directions, respectively, and the final output of CAM is shown in Equation (6):

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)



Sensors 2023, 23, 3782 7 of 17

where xc(i, j) and yc(i, j) denote feature values with the coordinates (i, j) and the c-th
channel in the input and output feature maps. The whole flow is shown in Figure 4c.

3.2. Re-ID Branch

The role of the re-ID branch is to generate features that can recognize different ob-
jects. For multi-object tracking tasks, object similarity matching is a fine-grained process.
Different objects of the same category have high similarity. In crowded scenes, frequent
inter-object interactions and non-object occlusions create higher requirements for the dis-
criminativeness of re-ID features [24].

Angle-Center Loss (ACL). In this paper, we propose the angle-center loss (ACL) for
supervising the re-ID branch. This comprises two main parts. Our approach normalizes the
feature vector and the weight vector, thus projecting features from the original Euclidean
space into the angular space. Based on the concept of central clustering, we set an angle-
center penalty term to reduce the cosine distance within the class.

The Softmax Loss (SL), which is widely used in coarse-grained classification tasks, is
defined in Equation (7):

LS = − 1
N

N

∑
i=1

log
eWT

yi
xi+byi

∑n
j=1 eWT

j xi+bj
(7)

where N is the batch size of training and n is the number of classes. xi denotes a feature
vector of the i− th sample belonging to class yj. W and b denote the weight and bias
in the last fully connected layer of the network, respectively. For the simplicity of the
implementation and optimization, we set the bias b = 0. Thus, the exponential term in
Equation (7) can be transformed from the vector inner to the angular cosine, as shown in
Equation (8):

WTx = ‖W‖‖x‖ cos θ (8)

where θ denotes the angle between the weight vectors W and feature vectors x. Furthermore,
we regularize the weight vectors and feature vectors with L2 normalization. We fix ‖W‖ = 1
and ‖x‖ = 1. This allows the training to be more focused on optimizing the angle θ. During
the MOT data association process, the similarity between two re-ID features is computed,
using the cosine distance as a metric. This suggests that the norm is more firmly in line
with object discrimination. The normalized SL is shown in Equation (9):

LNS = − 1
N

N

∑
i=1

log
er cos(θyi,i)

∑n
j=1 er cosθ(θj,i)

(9)

where r is a hyperparameter. We constrain the feature vectors to a hypersphere of the
radius r by normalization.

However, the learned features driven by the LNS are divided only by the number of
categories, ensuring that the classes are separable but not requiring intra-class compactness.
This is not suitable for fine-grained classification. To improve the discriminability of the
features, we propose the angle-center loss. The loss penalty term is set by calculating the
cosine distance between a sample and its category center. The definition of ACL is shown
in Equation (10):

LAC =
1
N

N

∑
i=1

(1− cos(θci,i))

nci

(10)

where ci denotes the category feature center to which the i− th sample belongs. θci,i is the
angle between feature center and the sample feature. nci is the number of samples belonging
to ci in the batch. When calculating the sum of the cosine distances for each class, we divide
by the number of samples in that class to obtain the mean value. This is to avoid the
problem of unsynchronized gradient updates in different classes due to sample imbalance.
ACL can pull all of the features of each category toward the corresponding category center.
We further tighten the intra-class space while reducing the classification error by joint LNS
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and LAC training. The re-ID features learned are made to have the stronger representational
ability. The loss function for the re-ID branch is shown in Equation (11):

Lre−ID = (1− α)LNS + αLAC = − (1− α)

N

N

∑
i=1

log
er cos(θyi,i)

∑n
j=1 er cos(θj,i)

+
α

N

N

∑
i=1

(1− cos(θci,i))

nci

(11)

where α is used as a hyperparameter to balance the two loss functions. When α = 0, Lre−ID
degenerates to LNS.

Re-ID Feature Dimension. In previous re-ID works, high-dimensional features
achieved good results. However, the re-ID feature dimension cannot be considered inde-
pendently in MOT tasks when adopting the JDE paradigm algorithm. There is a strong
coupling between the detection task and the re-ID task that share most features. Re-ID fea-
tures that are too high dimensional have a negative impact on the detection task. Inaccurate
detection further affects the extraction of re-ID features, eventually leading to an over-
all decrease in comprehensive tracking performance. More importantly, the re-ID branch
should re-adapt the feature dimension to the proposed encoder–decoder network under the
supervised learning of ACL. Our experiment demonstrates that learning low-dimensional
re-ID features is more beneficial to both subtasks.

3.3. Multi-Task Training

The proposed CSMOT adopts joint-loss training for the supervised learning of both
the detection and re-ID branches. For the detection branch, the heatmap head uses focal
loss [25] to estimate the locations of the object centers, which can effectively deal with
the problem of unbalanced samples between the center point and the surrounding points.
Then, we enforce L1 loss for the box size and offset heads. Moreover, the re-ID branch
uses the proposed loss as Equation (11). We dynamically balance the two branches by an
uncertainty loss in Equations (12) and (13):

Ldetection = Lheatmap + Lbox_size + Lbox_offset (12)

Ltotal =
1
2
(

1
eβ1

Ldetection +
1

eβ2
Lre−ID + β1 + β2) (13)

where β1 and β2 are learnable parameters that balance the two branches during training.
We set the initial values as −1.85 and −1.05, following FairMOT.

3.4. Data Association

We follow a simple and effective data association strategy in ByteTrack [26] and form
the online tracking pipeline in CSMOT. Unlike the original ByteTrack, we not only use IoU
but also add re-ID features in the similarity computation process.

In crowded scenes, object detection scores tend to decrease slowly with increasing
occlusion. We track each detection box, not only high-score detection boxes. The similarity
of low-score detection boxes and unmatched tracks can recover true objects, and false-
positives are ignored. The specific association process is as follows.

(1) Step 1. Input a new frame to CSMOT and obtain the detection boxes and correspond-
ing scores through the detection branch. Assign detection boxes with scores above
threshold Thigh to group Ghigh, and assign those with scores between Tlow and Thigh
to Glow;

(2) For all tracks in the existing trajectories T, we use the Kalman Filter to predict the new
position for the next frame;

(3) The high-score detection box Ghigh is associated with the predicted boxes of trajectories
T. We compute the similarity using IoU and re-ID features and use the Hungarian
algorithm to finish the matching. Unmatched detections and tracks are separately
assigned to Gcache and Tcache;

(4) The low-score detection box Glow is associated with unmatched tracks of trajectories
Tcache. The unmatched detection boxes are treated as the background and deleted
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directly. For unmatched tracks, we mark them as Tre−cache. Because low-score detec-
tions mean that the appearance features are not credible, we only use IoU to compute
the similarity in this association.

(5) To implement the long-range association, we put Tre−cache into Tlost. When unmatched
tracks appear in Tlost for more than 30 frames, we delete these tracks completely.
Otherwise, we keep the lost tracks Tlost in T.

(6) For each high-score detection in unmatched Gcache, we initialize a new track if the
score exceeds the threshold τ and appears in two consecutive frames.

4. Experiments
4.1. Experimental Settings

Datasets. The JDE-based CSMOT proposed in this paper consists of three tasks to be
learned: object detection, re-ID, and MOT. Therefore, we build a large-scale hybrid dataset
for different tasks to jointly train the model following FairMOT. The joint dataset contains
rich scenes and a large number of object annotations, which is conducive to improving
the generalization and robustness of the MOT algorithm. Regardless of whether or not
we add identity annotations during training, we divide the dataset into two categories.
The first category includes CrowdHuman (CH) [27], ETH [28], and CityPersons (CP) [29].
We only use the bounding box annotations of these datasets to train the detection branch
of our CSMOT. The CH contains many dense pedestrian annotations in crowded scenes,
which can significantly improve the tracking ability. The second category includes CalTech
(CT) [30], CUHK-SYSU (CS) [31], PRW [32], and MOT17 [33]. Bounding boxes and identity
annotations provided by the category are used to train both the detection and re-ID branches.
Specifically, we remove video frames in ETH that overlap with the MOT17 test set for
fairness. We present ablation experiments on the validation set of MOT17 and compare
the tracking ability with that of other MOT algorithms on the MOT Challenge server. The
statistics of the hybrid dataset are shown in Table 1.

Table 1. Statistics of the hybrid dataset.

Dataset CH ETH CP CT CS PRW MOT17 Total

#Img 20 K 2 K 3 K 27 K 11 K 6 K 5 K 74 K
#Box 470 K 17 K 21 K 46 K 55 K 18 K 112 K 740 K
#ID - - - 0.6 K 7 K 0.5 K 0.5 K 8.7 K

Metrics. In order to make the evaluation results more accurate and objective, we use
the general MOT Challenge Benchmark metrics [32]. The metrics in this paper include
false-positive (FP ↓), false-negative (FN ↓), the number of identity switches (IDs ↓), multiple-
object tracking accuracy (MOTA ↑), identification F1 score (IDF1 ↑), and higher-order
tracking accuracy (HOTA ↑). Here, ↑ means higher is better, and↓ means lower is better.
MOTA equally considers FP, FN, and IDs in the trajectory. Since the number of FPs and
FNs is much larger than that of IDs, MOTA is more inclined to measure the detection
performance. IDF1 focuses on whether the ID of the track remains the same throughout the
tracking process. IDF1 is more sensitive to the performance of data association. HOTA is a
very recently proposed metric, which computes the geometric mean of detection accuracy
and association accuracy.

Implementation Details. The experimental environment is a deep learning server
with an Intel Xeon CPU Gold 6130 processor and two RTX 2080 Ti GPUs. We evaluate
the tracking performance using a single GPU. For CSMOT, we employ DLA-34 [10] as the
backbone network and initialize the algorithm model by adopting CenterNet [6] detection
model parameters that have been pre-trained on the COCO [34] dataset. The input image
is resized to 1088 × 608. During data preprocessing, we introduce standard data augmenta-
tion methods including rotation, scaling, and color jittering. We train our CSMOT with the
Adam optimizer for 40 epochs, with an initial learning rate of 10-4. At the 20th epoch and
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35th epoch, the learning rate decreases to 10-5 and 10-6, respectively. The model is trained
with a batch size of 12. The total training time is about 40 h.

4.2. Ablation Studies

In this section, we present rigorous studies of the four critical factors mentioned in
Section 1, including the encoder–decoder network, re-ID branch loss, feature dimensions,
and data association. We train CSMOT on a combination of CrowdHuman and the MOT17
half-training set, if not specified. The remaining half of the MOT17 training set is used
for validation. Additionally, we perform a fair comparison with advanced one-shot MOT
algorithms and a training data ablation study.

Encoder–Decoder Network. This section presents the tracking performance between
the unmodified DLA-34 network and those with CAMs, which are inserted at the head,
neck, and backbone locations. The results are shown in Table 2.

Table 2. Comparison of the coordinate attention module (CAM) at different locations for the encoder–
decoder network. Here, ↑ means higher is better, and ↓ means lower is better.The best results are
shown in bold.

Location MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDs ↓ FPS ↑
None 71.2 74.7 3516 11,635 413 14.5
Head 70.6 73.4 3523 11,583 389 13.6
Neck 70.8 73.2 3720 11,667 407 13.8

Backbone 71.9 75.1 3012 11,718 383 14.1

Notably, the head represents the detection and re-ID branch in Figure 3. The neck
and backbone, respectively, represent the “blue” basic blocks and the “green” aggregation
blocks in Figure 4. Our experiments show that CAM is sensitive to location. The tracking
performance degrades when the CAMs are inserted into the head and neck locations of
the encoder–decoder network. On the one hand, because the resolution of feature maps at
the head is too low, the additional spatial masks instead introduce a large proportion of
non-pixel information. On the other hand, the number of channels at the neck is large, and
the frequent adjustment of the relationship between channels can easily lead to overfitting.
When we combine CAMs with the basic blocks in the backbone, which is responsible for
feature extraction, it improves the MOTA from 71.2 to 71.9 and the IDF1 from 74.7 to 75.1
and decreases the IDs from 413 to 383. At the same time, it leads to only a small decrease in
the inference speed. Therefore, CAMs are more suitable for the middle layers of the encoder–
decoder network with a moderate spatial resolution and number of channels. Increasing
the weight on the object center improves the tracking accuracy in crowded scenes.

Re-ID Branch Loss. In this section, the tracking performance is presented under
the supervision of two loss functions and the proposed angle-center loss. We set the
hyperparameter α in Equation (11) to 0.001. The results are shown in Table 3.

Table 3. Comparison of two loss functions and proposed angle-center loss (ACL) for the re-ID branch
in CSMOT. The best results are shown in bold.

Methods MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDs ↓
Softmax 70.0 70.3 3661 12,335 495

Normed-Softmax 71.2 74.7 3516 11,635 413
Angle-Center Loss 71.6 75.6 3498 11,465 365

The re-ID subtask in multi-object tracking is a fine-grained classification process.
Classifying objects with high similarity necessitates more stringent requirements for the re-
ID features. We can see that Normed-Softmax achieves a better performance than Softmax
for all metrics, which indicates that optimizing the angle θ in Equation (8) rather than the
inner product can make re-ID features more discriminative. This is fully consistent with the
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method of using the cosine distance to compute the similarity of re-ID features. In addition,
the proposed angle-center loss improves the MOTA of Normed-Softmax from 71.2 to 71.6
and the IDF1 from 74.7 to 75.6 and decreases the IDs from 413 to 365. The numbers of FPs
and FNs are also minimized. The cosine distance constraint term based on the angular
center can make the intra-class distance more compact. In crowded scenes, high-quality
re-ID features can re-associate objects after severe occlusion.

Re-ID Feature Dimensions. Previous two-step MOT algorithms usually learn 512-
dimensional re-ID features. High-dimensional features are effective for algorithms that
use an independent network to extract re-ID features. Our experiments show that one-
shot algorithms based on the joint detection and re-ID paradigm are better adapted to
lower-dimensional features. The subtasks in multitask learning are coupled with each
other, and the feature dimension plays an important role in balanced learning. We evaluate
two choices for the re-ID feature dimensions of JDE, FairMOT, and CSMOT in Table 4.

Table 4. Evaluation of the re-ID feature dimensions of JDE, FairMOT, and CSMOT. The best results of
the same method are shown in bold.

Methods Dim MOTA ↑ IDF1 ↑ IDs ↓
JDE 512 59.9 64.1 536
JDE 64 60.3 65.0 474

FairMOT 512 68.5 73.7 312
FairMOT 64 69.2 73.3 283

CSMOT 512 71.9 75.4 330
CSMOT 64 72.5 73.7 323

For JDE, the 64-dimensional feature performs better than the 512-dimensional feature
for all metrics. For FairMOT and CSMOT, the performance of the two algorithms is similar.
We can see that 512 achieves higher IDF1 scores, which indicates that the high-dimensional
re-ID features have stronger discriminability. However, 64 performs better on the MOTA
and ID metrics. Lower feature dimensions can reduce the constraints on the detection
branch, and more accurate detections further ensure the continuity of the trajectory. For
one-shot MOT algorithms, the re-ID features can be adaptively adjusted to low dimensions
to balance the two subtasks of detection and re-ID.

Data Association Methods. This section evaluates two ingredients, the bounding box
IoU and re-ID features, in different data association methods including MOTDT [35] and
ByteTrack. MOTDT integrates motion-guided box propagation results and detection results
to associate unreliable detection results with tracklets. The results are shown in Table 5.

Table 5. Evaluation of the two ingredients in MOTDT and ByteTrack. The best results are shown
in bold.

Methods Box IoU Re-ID MOTA ↑ IDF1 ↑ IDs ↓

MOTDT
X 71.6 72.3 378
X X 71.8 75.6 348

ByteTrack X 71.7 74.7 698
X X 72.6 76.1 289

Box IoU and re-ID features are used to compute the similarity between detections and
tracks. We can see that relying solely on box IoU leads to a poor tracking performance
for both methods. IoU cannot cope with re-identification after severe occlusion between
objects. This is particularly true for crowded scenes. Adding re-ID features significantly
increases IDF1 and decreases the number of ID switches, which also improves MOTA.
Accordingly, the importance of high-quality re-ID features for tracking is also confirmed.
ByteTrack improves the MOTA of MOTDT from 71.8 to 72.6 and the IDF1 from 75.6 to 76.1
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and decreases IDs from 348 to 289. By making full use of low-score detections to associate
trajectories, it can improve tracking accuracy and reduce the rate of fragmented trajectories.

Comparison of Advanced One-Shot MOT Algorithms. Advanced works based on
joint detection and embedding include JDE, TrackRCNN, and FairMOT. For fairness, we
use the same training data to compare all of these methods, as described in the relevant
papers. The test set is derived from six videos of 2DMOT15. JDE, FairMOT, and CSMOT all
use the large-scale dataset described in Datasets. Since TrackRCNN requires segmentation
labels for training, only four videos with segmentation labels from MOT17 were used as
the training set. The results are shown in Table 6.

Table 6. Comparison of the advanced one-shot algorithms on the 2DMOT15 validation set. “HYBRID”
represents the large-scale training dataset. “MOT17Seg” stands for the four videos with segmentation
labels in the MOT17 dataset. The best results of the same training data are shown in bold.

Training Data Methods MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

HYBRID
JDE 67.5 66.7 1881 2086 218

FairMOT 77.2 79.8 757 2094 80
CSMOT 77.1 80.5 812 2140 51

MOT17Seg
TrackRCNN 69.2 49.4 1328 2349 294
FairMOT 70.2 64.0 1209 2537 96
CSMOT 72.9 75.9 1132 2276 69

When the training set is the large-scale HYBRID, we achieve a significant improvement
in the performance of CSMOT compared to that of JDE. The IDF1 score increases from 66.7
to 80.5, and the number of ID switches decreases from 218 to 51. This is because the anchor-
free method can better solve the problem of the ambiguous expression of anchor boxes
in the MOT task. Without loading pre-trained weights, CSMOT has an advantage over
FairMOT in the IDF1 and IDs metrics, which proves its better performance in maintaining
trajectory continuity. When the training set is the small-scale MOT17Seg, CSMOT has an
overwhelming advantage over TrackRCNN and FairMOT. CSMOT achieves a much higher
IDF1 score (75.9 vs. 49.4, 64.0), a higher MOTA (72.9 vs. 69.2, 70.2), and fewer ID switches
(69 vs. 294, 96). This proves that the proposed CSMOT has stronger generalization and
robustness on the small-scale dataset.

Comparison of Different Training data. We evaluated the performance of CSMOT
using different combinations of training data, and the results are shown in Table 7.

Table 7. Comparison of different training data on the MOT17 validation set. “MOT17” is short for
the MOT17 half-training set. “CH” is short for the CrowdHuman dataset. “HYBRID” represents the
large-scale training dataset described in Datasets. The best results are shown in bold.

Training Data Images MOTA ↑ IDF1 ↑ IDs ↓
MOT17 2.7 K 67.6 69.9 378

CH + MOT17 22.7 K 72.6 76.1 289
CH + MOT17 +

HYBRID 71.7 K 72.7 76.8 258

When only the first half of MOT17 is used for training, a MOTA of 67.6 and an IDF1 of
69.9 are achieved. This already constitutes an outperformance of most MOT algorithms,
which shows the superiority of our CSMOT. When further adding CrowdHuman, the
MOTA and IDF1 metrics improve significantly. On the one hand, CrowdHuman boosts
the detection branch, enabling it to recognize occluded objects. On the other hand, more
accurate detection boxes can improve the performance of data association. In addition,
when we add large-scale training datasets, MOTA and IDF1 achieved improvements of
only 0.1 and 0.7, respectively, because the network model has already achieved good fitting
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under the training of the CrowdHuman and MOT17 datasets. The experimental results
prove that CSMOT is not data-hungry, which is an advantage in many applications.

4.3. MOT Challenge Results

We compare our CSMOT to the previous state-of-the-art MOT algorithms on the test
sets of MOT16 and MOT17, including the two-step methods shown in Table 8.

Table 8. Comparison of the state-of-the-art algorithms under the “private detector” protocol on the
MOT16 and MOT17 test sets. The best results of each dataset are shown in bold.

Methods Published MOTA ↑ IDF1 ↑ HOTA ↑ FP ↓ FN ↓ IDs ↓
MOT16

TubeTK [36] CVPR20 66.9 62.2 50.8 11,544 47,502 1236

FairMOT [5] IJCV21 69.3 72.3 58.3 13,501 41,653 815

QDense [37] CVPR21 69.8 67.1 54.5 9861 44,050 1097

TraDeS [38] CVPR21 70.1 64.7 53.2 8091 45,210 1144

PatchTrack [39] CVPR22 73.3 65.8 56.9 16,092 31,891 1179

OUTrack [40] NCom22 74.2 71.1 59.2 13,207 32,584 1328

GSDT-v2 [41] ICRA21 74.5 68.1 56.6 8913 36,428 1229

Semi-TCL [42] CVPR21 74.8 73.9 60.3 8334 36,685 925

CSMOT Ours 75.6 74.4 60.6 9196 34,552 719

MOT17

TransCenter [43] CVPR21 73.2 62.2 54.5 23,112 123,738 4614

GSDT-v2 [41] ICRA21 73.2 66.5 55.2 26,397 120,666 3891

Semi-TCL [42] CVPR21 73.3 73.2 59.8 22,944 124,980 2790

OUTrack [40] NCom22 73.5 70.2 58.7 34,731 110,586 4122

PatchTrack [39] CVPR22 73.6 65.2 53.9 23,976 121,230 3795

FairMOT [5] IJCV21 73.7 72.3 59.3 27,507 117,477 3303

PeTrack [44] ICCV21 73.8 68.9 55.5 28,998 115,104 3699

TrackFormer [45] CVPR22 74.1 68.0 57.3 34,602 108,777 2829

CSMOT Ours 74.1 73.5 60.1 25,530 118,476 2187

It is worth noting that all the results come directly from the MOT Challenge server.
In particular, MOT16 and MOT17 contain rich crowded scenes. We can see that CSMOT
significantly outperforms other algorithms in terms of the MOTA, IDF1, HOTA, and ID
metrics. For the results obtained for the MOT17 test set, we achieved the same MOTA as the
second performance algorithm, TrackFormer. However, CSMOT outperforms the second
one by a large margin in terms of the other metrics (i.e., +5.5 IDF1, +2.8 HOTA, −26.2% FP,
and −22.7% IDs). In addition, CSMOT outperforms FairMOT in terms of almost all metrics
and decreases the number of ID switches by 33.8%. All of these findings indicate that our
approach achieves a very good tracking performance.

4.4. Qualitative Results

The visualized tracking results of CSMOT compared to FairMOT on the test sets of
MOT17-Seq-04 and MOT17-Seq-11 are shown in Figure 5.
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the identity of the tracked object is switched and the object is not recognized. The checkmark indicates
that the identity of the object is not switched.

We use the models with the same training datasets, CrowdHuman and the first half set
of MOT17, to generate the visualization results. The difficult cases include severe occlusion
(i.e., MOT17-Seq-04) and screen shake with camera motion (i.e., MOT17-Seq-11). From the
results of MOT17-Sep-04, we can see that CSMOT can assign correct identities with the help
of high-quality re-ID features when the objects are mostly covered up. In particular, small
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objects with large information loss can be detected correctly. The results of MOT17-Seq-11
show that our approach can deal with large-scale variations in crowded scenes. As we
can see from the abovementioned difficult cases, our one-shot MOT algorithm achieves
a significantly better tracking performance and does not lead to any identity switches in
crowded scenes.

5. Conclusions

In this paper, we propose an enhanced one-shot MOT algorithm named CSMOT,
which adopts the joint detection and embedding paradigm. A novel coordinate attention
module (CAM) and angle-center loss (ACL) are proposed to improve the performance of
the encoder–decoder network and the re-ID branch. Furthermore, we redesign the re-ID
feature dimension to mitigate the competition between the detection and ReID subtasks.
During the data association, we associate low-score detection boxes with unmatched tracks,
which reduces the dependence of tracking on detection results. The experiments show that
CSMOT outperforms other advanced MOT algorithms in terms of almost all metrics. In
particular, our approach can significantly decrease the number of ID switches to ensure
the continuity of the tracking trajectory, which is more adaptable to crowded scenes with
severe occlusion. However, the current MOT algorithm has poor real-time performance
and is difficult to deploy in scenarios with insufficient computing power. In the future,
we will consider designing a more lightweight model to reduce storage and computing
consumption.
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