
Citation: Choi, K.; Wi, S.M.; Jung,

H.G.; Suhr, J.K. Simplification of

Deep Neural Network-Based Object

Detector for Real-Time Edge

Computing. Sensors 2023, 23, 3777.

https://doi.org/10.3390/s23073777

Academic Editors: Javier Prieto and

Ramón J. Durán Barroso

Received: 3 February 2023

Revised: 28 March 2023

Accepted: 3 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simplification of Deep Neural Network-Based Object Detector
for Real-Time Edge Computing
Kyoungtaek Choi 1 , Seong Min Wi 2, Ho Gi Jung 3 and Jae Kyu Suhr 4,*

1 Department of AI Automation Robot, Daegu Catholic University,
13-13 Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Gyeongsangbuk-do, Republic of Korea

2 Driving Image Recognition Logic Cell, Hyundai Mobis,
17-2 Mabuk-ro 240beon-gil, Giheung-gu, Yongin-si 16891, Gyeonggi-do, Republic of Korea

3 Department of Electronic Engineering, Korea National University of Transportation,
50 Daehak-ro, Chungju-si 27469, Chungbuk-do, Republic of Korea

4 Department of Intelligent Mechatronics Engineering, Sejong University,
209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

* Correspondence: jksuhr@sejong.ac.kr; Tel.: +82-2-3408-3481

Abstract: This paper presents a method for simplifying and quantizing a deep neural network
(DNN)-based object detector to embed it into a real-time edge device. For network simplification, this
paper compares five methods for applying channel pruning to a residual block because special care
must be taken regarding the number of channels when summing two feature maps. Based on the
comparison in terms of detection performance, parameter number, computational complexity, and
processing time, this paper discovers the most satisfying method on the edge device. For network
quantization, this paper compares post-training quantization (PTQ) and quantization-aware training
(QAT) using two datasets with different detection difficulties. This comparison shows that both
approaches are recommended in the case of the easy-to-detect dataset, but QAT is preferable in the
case of the difficult-to-detect dataset. Through experiments, this paper shows that the proposed
method can effectively embed the DNN-based object detector into an edge device equipped with
Qualcomm’s QCS605 System-on-Chip (SoC), while achieving a real-time operation with more than
10 frames per second.

Keywords: object detector; network simplification; channel pruning; edge computing

1. Introduction

Object visual detection, which estimates the position and type of an object, is an essen-
tial computer vision technology and has been used in various fields such as surveillance
systems, autonomous driving, robots, and smart factories. Because object detection has a
wide range of applications, it must operate on a variety of devices, from high-performance
servers to edge computing devices such as surveillance cameras, mobile phones, self-
driving cars, and micro-drones. Currently, most object detectors are based on deep neural
networks (DNNs), and although they show excellent detection performance, they require a
large amount of computation. Achieving both high detection performance and real-time
processing is a very important issue in time-critical applications such as autonomous driv-
ing, missiles, and smart factories. Moreover, these time-critical applications should often
operate on an edge device whose computing power is limited. To port these applications
on an edge device, the network compression that optimizes the neural network to satisfy
both the time constraints and the performance requirements is essential [1–5]. Network
compression consists of network simplification, which simplifies the network architecture,
and parameter quantization, which compresses the bit width of parameters to lower than
floating point. For network simplification, there are tensor decomposition [6], knowledge
distillation [7], neural architecture search (NAS) [8], and network pruning [9]. Among them,

Sensors 2023, 23, 3777. https://doi.org/10.3390/s23073777 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3104-1860
https://orcid.org/0000-0002-4169-4358
https://orcid.org/0000-0003-4844-851X
https://doi.org/10.3390/s23073777
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073777?type=check_update&version=1

Sensors 2023, 23, 3777 2 of 20

network pruning is very popular because it is effective in easily reducing the computa-
tional load and memory while maintaining detection performance [3]. The combination
of network pruning and parameter quantization is the most popular method for network
compression [10]. Network pruning, like other network simplification methods except NAS,
requires the original neural network to have the qualified performance. Fortunately, object
detection, an application field covered in this paper, has been studied for a long time and
there are many open-source detectors with excellent performance [11,12]. Therefore, we
selected one of the most popular DNN-based detectors, YOLOv4 [13]. YOLOv4 has been
proven for a considerable period in various applications [14,15] and shows a compromise
between computational cost and detection accuracy in various frameworks [16,17]. We have
ported this detector onto Qualcomm’s QCS605 [18] using pruning and parameter quan-
tization. In this paper, we analyze commonly used pruning methods and representative
quantization methods through experiments and provide guidelines for porting deep neural
networks to edge devices based on the results. The contributions of this paper are as
follows. This paper presents a method for embedding a DNN-based object detector onto
an edge device using network pruning and parameter quantization. It also demonstrates
the real-time performance of this method in a traffic surveillance camera equipped with the
QCS605. In particular, this paper proposes the best method for pruning neural networks
that include residual blocks [19] through comparative studies. Additionally, the paper finds
that there can be a significant performance gap between two representative quantization
methods, post-training quantization (PTQ) [20] and quantization-aware training (QAT) [21],
depending on the difficulty of the dataset. Some issues to consider for porting DNNs in
edge devices are also covered, and these issues are analyzed through various experiments.

The rest of this paper is organized as follows. Section 2 introduces the work related to
network compression. Section 3 explains the methods used in the comparative studies of
network compression. Section 4 presents the experimental results and analyses. Finally,
this paper concludes in Section 5.

2. Related Research

To reduce the computations and memory of a DNN, various network simplification
methods have been studied [1–5]. Network simplification methods can be categorized
into tensor decomposition, network pruning, knowledge distillation, and NAS. Tensor
decomposition and network pruning focus on simplifying highly accurate, but complex
networks. Knowledge distillations focus on transferring the knowledge from a complex
network to its simplified version to mimic the complex one. NAS focuses on automatically
generating an optimal network by combining network primitives in the search space.

Tensor decomposition can be divided into low rank matrix decomposition methods
and tensorized decomposition methods [1]. Low rank matrix decomposition methods are
mainly based on singular value decomposition (SVD) and decompose a weight matrix into
the product of multiple low rank matrices [22]. Yang et al. proposed SVD training that adds
the regularized term of weight matrices to the original loss to decrease the ranks of the
weight matrices [23]. Chen et al. proposed joint matrix decomposition that simplifies multi-
ple layers with the same structure simultaneously [24]. Tensorized decomposition methods
substitute a high-dimensional tensor with the product of multiple low-dimensional tensors.
These are Tucker decomposition (TD), canonical polyadic decomposition (CPD), tensor
train (TT), and tensor ring (TR) in the tensor decomposition [25–28]. In tensor decompo-
sition, the lower the rank of decomposed tensors, the lower the amount of computation,
but the lower the accuracy of the network. Therefore, how to reduce the rank of tensors
as much as possible while maintaining network accuracy and how to train the decom-
posed network to avoid accuracy degradation are important issues. Kim et al. suggested
a tensor decomposition method that selects the rank of tensors to be decomposed based
on the variational Bayesian matrix factorization and decomposes a tensor using TD [25].
Phan et al. suggested a method to avoid the degeneracy problem caused by tensor decom-
position, and their method is based on CPD [26]. Yin et al. proposed a tensor decomposition

Sensors 2023, 23, 3777 3 of 20

framework that consists of a regularized training procedure, tensor decomposition, and fine
tuning [27]. The regularized training procedure trains the uncompressed network to increase
its accuracy while gradually reducing the tensor rank of the network. This is similar to the
sparsity training of network pruning. Tensor decomposition can considerably reduce the
amount of computation and memory, but it may not significantly reduce the inference time.
Tensor decomposition substitutes a high-order tensor with the product of multiple low rank
tensors, which means that a single layer is converted to a sequence of layers. This makes
the parallel processing of a network more difficult, because in a sequence of layers, a layer
should wait for the output tensor of its previous layer.

Network pruning can be categorized into an unstructured method and a structured
method, or categorized into a static method and a dynamic method [29]. Unstructured prun-
ing means to remove each weight of a filter in a network individually [30–32]. Because of
the individual removal of the weights, a dedicated operation library or hardware is required
in order not to perform operations on the removed weights. There is also no change in
the capacity of the feature map before and after pruning, so there is little memory com-
pression of the network. Structured pruning does not remove each weight of a filter, but
rather a structured element of a network, such as a channel or a layer [33–37], and it can
reduce both memory consumption and computation without any specific hardware or
software. In the beginning, there was a method of removing neurons whose activation
output was very close to 0 regardless of their input [37] or removing a channel with low
importance estimated by LASSO regression [33,34]. Following this, Liu et al. proposed
a network slimming method that estimates channel importance with a scaling factor in
batch normalization [35]. Yu et al. proposed a neuron importance score propagation (NISP)
method that estimates the contribution of each channel to the final outputs of a network [38].
Zhuang et al. proposed a discrimination-aware channel pruning (DCP) method to estimate
channel importance by adding a discrimination-aware loss into the intermediate layers of
a network [36]. Structured pruning, unlike unstructured pruning, requires no dedicated
software or hardware. However, since it removes all weights belonging to the same element,
it can degrade the performance compared to unstructured pruning.

Knowledge distillation (KD) involves training the simplified network to make its
output similar to the output of the original network [7,39]. In general, teacher networks
and student networks have the same final output structure, but the internal structure of the
networks is different, so knowledge is only transferred through the final output. Li et al.
proposed a method that makes the internal output structure the same between the student
network and the teacher network by attaching a 1*1 ad hoc convolution layer to the output
of the layers or blocks [40]. Yang et al. proposed a knowledge distillation-based method to
train the student network to work well in the target domain with unlabeled data alone [41].
This method creates a similar final output distribution in the target domain between a
teacher network and a student network by adding the Kullback–Leibler (KL) divergence to
the conventional knowledge distillation loss. Duong et al. proposed a method to minimize
angular distillation loss instead of KL divergence to make the final output distributions
similar [42]. This loss is similar to the cosine distance widely used in face recognition. The
structures between a teacher network and a student network are generally different. However,
in order to solve the network overfitting, Yun et al. proposed the self-knowledge distillation
method, whose teacher and student network are the same [43]. This method trains a network
to have a similar output distribution for two different input vectors with the same labels.
As mentioned, the main purpose of knowledge distillation is not to simplify the network,
but to increase the performance of the student network by utilizing the teacher network.
In knowledge distillation, the student network can be generated independently from the
teacher network, but is mainly generated from the teacher network by tensor decomposition
or network pruning.

Neural architecture search (NAS) is used to generate the network architecture by
searching the predefined space, evaluating the architecture, and repeating these procedures
until the optimal network is found [8,44]. NAS, unlike tensor decomposition and network

Sensors 2023, 23, 3777 4 of 20

pruning, has the advantage of finding the optimal network that is not bounded by the
original network. However, NAS generally takes too much time to find the optimal network
because of the huge searching space. Therefore, how to define the searching space, how
quickly to find a network candidate in that space, and how to evaluate the candidate are
key issues for NAS. Generally, DNN consists of the repetition of subgraphs. Therefore, NAS
defines the primitives of the searching space as small subgraphs such as convolutional layer
or residual block, and designs the whole network by combining these subgraphs [45–47].
NASNet finds the best convolutional layer with a small database and evaluates all network
candidates consisting of the identified layers with a large database [45]. MnasNet presents
a factorized hierarchical search space that factorizes a CNN model into unique blocks
consisting of multiple layers, and parameters related to a layer. This method also evaluates
the network candidates by considering the inference latency on an edge device [48]. For
searching algorithms in NAS, there are random search [49], Bayesian optimization [50], rein-
forcement learning (RL) [8,45], and neuroevolution [51–53]. It is difficult to conclude which
algorithm is best, but there are some references that include comparison results [54,55].
The naïve methods used to fully train model candidates and evaluate them are out of date.
More effective methods to predict the accuracy of model candidates have been studied [56],
and one-shot NAS only trains one supernet, subsuming all model candidates, and each
model is cheaply evaluated by inheriting its weights from the supernet [57].

Typically, DNNs in conventional computers store and perform operations on model pa-
rameters in floating-point format. However, most edge devices have accelerators dedicated
to integer operations only. Therefore, quantization is performed to convert 16-bit or 32-bit
floating-point numbers into 8-bit integers. Some networks even convert floating-point
operations into binary operations in extreme ways, but in such cases, separate hardware
development is required to support these networks [58]. Parameter quantization can be
divided into post-training quantization (PTQ), which quantizes parameters after network
training, and quantization-aware training (QAT), which trains the network while con-
sidering quantization [21]. Post-quantization can also be divided into two groups, one
requiring the trained network only and the other requiring additional input data [20]. These
quantization methods are easy to apply because they are implemented in a public software
library [59].

The method of optimizing DNNs through pruning and quantization has been widely
used. However, there is a problem regarding the pruning of networks that include residual
blocks. While there are a few solutions to this problem, no literature compares and analyzes
them to suggest the best method. In addition, there is a lack of literature that compares and
analyzes the performance difference between the two representative quantization methods,
PTQ and QAT, according to the difficulty of the dataset. Therefore, this paper suggests
several methods for pruning residual blocks and compares them with existing methods
through experiments to find the optimal approach. This paper also presents experimental
comparisons between PTQ and QAT according to the difficulty of the dataset.

3. Comparative Studies for Network Compression
3.1. Network Architecture and Overview of the Porting Process

This paper deals with neural network compression methods for porting DNN-based
object detectors to edge devices. The object detector used in this paper is YOLOv4 [13].
The YOLO-series detector is a one-stage detector that simultaneously estimates the position
and the class of an object. One-stage detectors are known to be faster than two-stage
detectors that estimate the position first and then the class [11]. The architecture of YOLOv4
is shown in Figure 1. The basic convolution blocks in YOLOv4 consist of convolution, batch
normalization and Mish activation or convolution, batch normalization, and leaky ReLU
activation. These convolution blocks are denoted as CBM or CBL in Figure 1. When porting
YOLOv4 into the edge device equipped with Qualcomm QCS605, Mish activation [60] was
substituted with leaky-ReLU [61], since Mish activation is not supported by Qualcomm’s
library. As shown in Figure 1, YOLOv4 consists of a backbone for extracting general

Sensors 2023, 23, 3777 5 of 20

features, a neck for extracting multiscale detection features, and a head for outputting the
final results. The backbone adopts a CSP (cross-stage partial connections) block [62] that
splits the input channels before dense connections to reduce memory and computation,
and a CSP block contains a residual block, as shown in Figure 1. CSPx4 in Figure 1 denotes
that the CSP block appears four times in a row. In the neck of YOLOv4, SPP denotes a
Spatial Pyramid Pooling block to combine low- and high-resolution features [63]. Finally,
Concat and Conv in Figure 1 denote concatenation and convolution, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20

position and the class of an object. One-stage detectors are known to be faster than two-

stage detectors that estimate the position first and then the class [11]. The architecture of

YOLOv4 is shown in Figure 1. The basic convolution blocks in YOLOv4 consist of convo-

lution, batch normalization and Mish activation or convolution, batch normalization, and

leaky ReLU activation. These convolution blocks are denoted as CBM or CBL in Figure 1.

When porting YOLOv4 into the edge device equipped with Qualcomm QCS605, Mish ac-

tivation [60] was substituted with leaky-ReLU [61], since Mish activation is not supported

by Qualcomm’s library. As shown in Figure 1, YOLOv4 consists of a backbone for extract-

ing general features, a neck for extracting multiscale detection features, and a head for

outputting the final results. The backbone adopts a CSP (cross-stage partial connections)

block [62] that splits the input channels before dense connections to reduce memory and

computation, and a CSP block contains a residual block, as shown in Figure 1. CSPx4 in

Figure 1 denotes that the CSP block appears four times in a row. In the neck of YOLOv4,

SPP denotes a Spatial Pyramid Pooling block to combine low- and high-resolution fea-

tures [63]. Finally, Concat and Conv in Figure 1 denote concatenation and convolution,

respectively.

Figure 1. Network architecture of YOLOv4.

The process to port the object detector to an edge device is shown in Figure 2. First,

for the network compression, sparsity training is performed to permit a network to trans-

fer major information through only a small number of channels in each layer. Then, less

important channels that do not transfer much information are pruned, and the pruned

network is retrained to restore its performance in the fine-tuning phase. After the fine-

tuning phase, the network parameters are quantized and the network is finally ported to

an edge device. These final phases may vary depending on the quantization method and

device type.

Figure 1. Network architecture of YOLOv4.

The process to port the object detector to an edge device is shown in Figure 2. First, for
the network compression, sparsity training is performed to permit a network to transfer major
information through only a small number of channels in each layer. Then, less important
channels that do not transfer much information are pruned, and the pruned network is
retrained to restore its performance in the fine-tuning phase. After the fine-tuning phase, the
network parameters are quantized and the network is finally ported to an edge device. These
final phases may vary depending on the quantization method and device type.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 20

Figure 2. Process to port YOLOv4 to an edge device.

3.2. Simplification

The number of channels of the output tensor of a convolutional layer is equal to the

number of filters, so the amount of computation and memory are proportional to the num-

ber of channels of the output tensor. There may be relatively fewer informative ones

among the channels of the output tensor. By pruning these less informative channels, the

amount of computation and memory can be reduced, while maintaining the network ac-

curacy.

Generally, in a convolutional neural network, a convolutional layer is followed by a

batch normalization layer. The batch normalization layer uses statistics from the training

data to normalize the output tensor of the convolutional layer, as shown in Equation (1),

and then applies a scale factor γ and bias β to the normalized tensor, as shown in Equation

(2) [64].

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

√𝜎2 + 𝜖
 (1)

y = γ ∙ 𝑥𝑛𝑜𝑟𝑚 + 𝛽 (2)

γ and β are trainable parameters, and a low absolute value of trained γ of a channel

means that the corresponding channel transfers little information to the next layer; that is,

the channel may be not informative. A training method that reduces the original cost of a

neural network and the L1 norm of γ at the same time is called sparsity training [9,65].

After sparsity training, most of the information is transferred through a few channels, so

lots of channels become unnecessary. The cost function of sparsity training is to weight

the sum of the L1 norms of γ by α and then add it to the original cost of the network, as

shown in Equation (3) [66].

Loss = 𝑙𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝛼∑‖𝛾‖

𝛾=Γ

 (3)

After sparsity training, the channels with γ below the threshold are pruned and the

performance degraded by pruning is restored by fine tuning, as shown in Figure 2.

When pruning a convolutional neural network, residual blocks with a shortcut (skip

connection) need a special care [19]. A residual block is a network architecture that adds

a detour shortcut of two convolutional layers to avoid vanishing or exploding gradients,

as shown in Figure 3. The output tensor of a residual block is the sum of the block’s input

tensor and the output tensor of the convolutional layers within the block, as shown in

Figures 3 and 4. To calculate the sum of these two tensors, the channel number and chan-

nel indices of these tensors must be the same. If the channels of a tensor in a residual block

are pruned individually, the channel number and channel indices of a tensor become dif-

ferent and the sum of two tensors cannot be correctly calculated. This paper describes five

methods for pruning residual blocks in the following subsections and compares their per-

formances in an edge device.

Figure 2. Process to port YOLOv4 to an edge device.

3.2. Simplification

The number of channels of the output tensor of a convolutional layer is equal to the
number of filters, so the amount of computation and memory are proportional to the num-

Sensors 2023, 23, 3777 6 of 20

ber of channels of the output tensor. There may be relatively fewer informative ones among
the channels of the output tensor. By pruning these less informative channels, the amount
of computation and memory can be reduced, while maintaining the network accuracy.

Generally, in a convolutional neural network, a convolutional layer is followed by a
batch normalization layer. The batch normalization layer uses statistics from the training
data to normalize the output tensor of the convolutional layer, as shown in Equation (1),
and then applies a scale factor γ and bias β to the normalized tensor, as shown in Equa-
tion (2) [64].

xnorm =
x− µ√
σ2 + ε

(1)

y = γ·xnorm + β (2)

γ and β are trainable parameters, and a low absolute value of trained γ of a channel
means that the corresponding channel transfers little information to the next layer; that is,
the channel may be not informative. A training method that reduces the original cost of
a neural network and the L1 norm of γ at the same time is called sparsity training [9,65].
After sparsity training, most of the information is transferred through a few channels, so
lots of channels become unnecessary. The cost function of sparsity training is to weight the
sum of the L1 norms of γ by α and then add it to the original cost of the network, as shown
in Equation (3) [66].

Loss = lossoriginal + α ∑
γ=Γ
‖γ‖ (3)

After sparsity training, the channels with γ below the threshold are pruned and the
performance degraded by pruning is restored by fine tuning, as shown in Figure 2.

When pruning a convolutional neural network, residual blocks with a shortcut (skip
connection) need a special care [19]. A residual block is a network architecture that adds a
detour shortcut of two convolutional layers to avoid vanishing or exploding gradients, as
shown in Figure 3. The output tensor of a residual block is the sum of the block’s input
tensor and the output tensor of the convolutional layers within the block, as shown in
Figure 3; Figure 4. To calculate the sum of these two tensors, the channel number and
channel indices of these tensors must be the same. If the channels of a tensor in a residual
block are pruned individually, the channel number and channel indices of a tensor become
different and the sum of two tensors cannot be correctly calculated. This paper describes
five methods for pruning residual blocks in the following subsections and compares their
performances in an edge device.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

Figure 3. Residual block structure in Resnet.

Figure 4. Residual block structure in YOLOv4.

3.2.1. Skip Method

The skip method only prunes the remaining layers except for the 3 × 3 convolutional

layers bypassed by shortcut in a residual block, as shown in Figure 5. Although this

method is simple to implement, it has the limitation that it cannot prune the computation-

ally heavy 3 × 3 convolutional layer.

Figure 5. Skip method.

3.2.2. Head-First Method

The head-first method was proposed by Li et al. [67]. The head-first method generates

the pruning mask from the first 3 × 3 convolutional layer in the sequential residual blocks

as shown in Figure 6 and applies the same mask to the other 3 × 3 convolutional layers

connected by shortcuts. As illustrated in Figure 6, when residual blocks are sequentially

connected, the information of the output tensor of the first 3 × 3 convolutional layer is

passed to the end of the blocks through shortcuts, so the pruning mask of this tensor is

Figure 3. Residual block structure in Resnet.

Sensors 2023, 23, 3777 7 of 20

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

Figure 3. Residual block structure in Resnet.

Figure 4. Residual block structure in YOLOv4.

3.2.1. Skip Method

The skip method only prunes the remaining layers except for the 3 × 3 convolutional

layers bypassed by shortcut in a residual block, as shown in Figure 5. Although this

method is simple to implement, it has the limitation that it cannot prune the computation-

ally heavy 3 × 3 convolutional layer.

Figure 5. Skip method.

3.2.2. Head-First Method

The head-first method was proposed by Li et al. [67]. The head-first method generates

the pruning mask from the first 3 × 3 convolutional layer in the sequential residual blocks

as shown in Figure 6 and applies the same mask to the other 3 × 3 convolutional layers

connected by shortcuts. As illustrated in Figure 6, when residual blocks are sequentially

connected, the information of the output tensor of the first 3 × 3 convolutional layer is

passed to the end of the blocks through shortcuts, so the pruning mask of this tensor is

Figure 4. Residual block structure in YOLOv4.

3.2.1. Skip Method

The skip method only prunes the remaining layers except for the 3 × 3 convolutional
layers bypassed by shortcut in a residual block, as shown in Figure 5. Although this method
is simple to implement, it has the limitation that it cannot prune the computationally heavy
3 × 3 convolutional layer.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

Figure 3. Residual block structure in Resnet.

Figure 4. Residual block structure in YOLOv4.

3.2.1. Skip Method

The skip method only prunes the remaining layers except for the 3 × 3 convolutional

layers bypassed by shortcut in a residual block, as shown in Figure 5. Although this

method is simple to implement, it has the limitation that it cannot prune the computation-

ally heavy 3 × 3 convolutional layer.

Figure 5. Skip method.

3.2.2. Head-First Method

The head-first method was proposed by Li et al. [67]. The head-first method generates

the pruning mask from the first 3 × 3 convolutional layer in the sequential residual blocks

as shown in Figure 6 and applies the same mask to the other 3 × 3 convolutional layers

connected by shortcuts. As illustrated in Figure 6, when residual blocks are sequentially

connected, the information of the output tensor of the first 3 × 3 convolutional layer is

passed to the end of the blocks through shortcuts, so the pruning mask of this tensor is

Figure 5. Skip method.

3.2.2. Head-First Method

The head-first method was proposed by Li et al. [67]. The head-first method generates
the pruning mask from the first 3 × 3 convolutional layer in the sequential residual blocks
as shown in Figure 6 and applies the same mask to the other 3 × 3 convolutional layers
connected by shortcuts. As illustrated in Figure 6, when residual blocks are sequentially
connected, the information of the output tensor of the first 3 × 3 convolutional layer is
passed to the end of the blocks through shortcuts, so the pruning mask of this tensor is
applied directly to the output tensor of other 3 × 3 convolutional layers. This method is
also easy to implement and, unlike the skip method, the pruning of the 3 × 3 convolutional
layer is possible, but some of the important channels of the 3 × 3 convolutional layer can
be pruned, which may cause performance degradation.

Sensors 2023, 23, 3777 8 of 20

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

applied directly to the output tensor of other 3 × 3 convolutional layers. This method is

also easy to implement and, unlike the skip method, the pruning of the 3 × 3 convolutional

layer is possible, but some of the important channels of the 3 × 3 convolutional layer can

be pruned, which may cause performance degradation.

Figure 6. Head-first method.

3.2.3. OR Method

The OR method only prunes those channels that are prunable in all 3 × 3 convolu-

tional layers within residual blocks and is introduced in SlimYOLOv3 [66]. As shown in

Figure 7, the OR method generates a new mask by the logical OR operation of the pruning

masks of each 3 × 3 convolutional layer within residual blocks and applies the new mask

to all 3 × 3 convolutional layers. Unlike the head-first method, this method has no risk of

pruning important channels, but conversely, it also cannot prune unimportant channels.

Figure 7. OR method.

Figure 6. Head-first method.

3.2.3. OR Method

The OR method only prunes those channels that are prunable in all 3× 3 convolutional
layers within residual blocks and is introduced in SlimYOLOv3 [66]. As shown in Figure 7,
the OR method generates a new mask by the logical OR operation of the pruning masks of
each 3 × 3 convolutional layer within residual blocks and applies the new mask to all 3 × 3
convolutional layers. Unlike the head-first method, this method has no risk of pruning
important channels, but conversely, it also cannot prune unimportant channels.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

applied directly to the output tensor of other 3 × 3 convolutional layers. This method is

also easy to implement and, unlike the skip method, the pruning of the 3 × 3 convolutional

layer is possible, but some of the important channels of the 3 × 3 convolutional layer can

be pruned, which may cause performance degradation.

Figure 6. Head-first method.

3.2.3. OR Method

The OR method only prunes those channels that are prunable in all 3 × 3 convolu-

tional layers within residual blocks and is introduced in SlimYOLOv3 [66]. As shown in

Figure 7, the OR method generates a new mask by the logical OR operation of the pruning

masks of each 3 × 3 convolutional layer within residual blocks and applies the new mask

to all 3 × 3 convolutional layers. Unlike the head-first method, this method has no risk of

pruning important channels, but conversely, it also cannot prune unimportant channels.

Figure 7. OR method.

Figure 7. OR method.

3.2.4. Slice and Concatenation Method

This method modifies the addition operation in a residual block instead of the pruning
mask. This method prunes the channels of each convolutional layer individually, and
the modified addition operation merges two channels with the same index by addition
and concatenates unpaired channels to the output, as shown in Figure 8. This method
slices the input tensors of the addition operation into channels and processes each channel
individually using loop and conditional statements. Processing channels individually
generates many nodes in Tensorflow’s graph [68] and it dramatically increases the inference

Sensors 2023, 23, 3777 9 of 20

times on both edge devices and regular computers with high-performance GPUs. For this
reason, this method was excluded from the comparative experiments.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

3.2.4. Slice and Concatenation Method

This method modifies the addition operation in a residual block instead of the prun-

ing mask. This method prunes the channels of each convolutional layer individually, and

the modified addition operation merges two channels with the same index by addition

and concatenates unpaired channels to the output, as shown in Figure 8. This method

slices the input tensors of the addition operation into channels and processes each channel

individually using loop and conditional statements. Processing channels individually

generates many nodes in Tensorflow’s graph [68] and it dramatically increases the infer-

ence times on both edge devices and regular computers with high-performance GPUs. For

this reason, this method was excluded from the comparative experiments.

Figure 8. Slice and concatenation.

3.2.5. Gather Method

The gather method also prunes convolutional layers individually and modifies the

addition operation in a residual block. In order to make the channel number and channel

indices of the two input tensors of the addition operation the same, this method pairs the

unpaired channels with all zero-valued channels and then adds two input tensors to-

gether, as shown in Figure 9. Unlike slice and concatenation, this method performs the

addition between the tensors rather than the channels, thus reducing the generation of

operational nodes. We implemented this method using Tensorflow’s gather function [69]

that gathers the channels selected by the list of channel index. For example, this method

creates temporary input tensors by concatenating a zero-valued channel (denoted [Z] in

Figure 9) to the pruned input tensors. Then, as shown in Figure 9, if the original channel

indices of the two pruned input tensors are [0,1,2,4,6] and [0,1,3,4,5], in order to make the

two input tensors have the same dimension and channel indices, this method extracts the

[0,1,2,Z,4,Z,6] channels and [0,1,Z,3,4,5,Z] channels, respectively, from two temporary in-

put tensors using the gather function. This method achieves the same pruning result as

the slice and concatenation method, while minimizing the operational node generation.

Figure 9. Gather method.

3.2.6. Concatenation and Convolution Method

The process of slicing a specific channel from a tensor or merging multiple channels

into one can be implemented with 1 × 1 binary filter convolution. In order to prune the

channels of each layer individually, the addition in a residual block can be modified as

concatenation–convolution (CC) operation by using 1 × 1 convolution, as shown in Figure

Figure 8. Slice and concatenation.

3.2.5. Gather Method

The gather method also prunes convolutional layers individually and modifies the
addition operation in a residual block. In order to make the channel number and channel
indices of the two input tensors of the addition operation the same, this method pairs
the unpaired channels with all zero-valued channels and then adds two input tensors
together, as shown in Figure 9. Unlike slice and concatenation, this method performs the
addition between the tensors rather than the channels, thus reducing the generation of
operational nodes. We implemented this method using Tensorflow’s gather function [69]
that gathers the channels selected by the list of channel index. For example, this method
creates temporary input tensors by concatenating a zero-valued channel (denoted [Z] in
Figure 9) to the pruned input tensors. Then, as shown in Figure 9, if the original channel
indices of the two pruned input tensors are [0,1,2,4,6] and [0,1,3,4,5], in order to make the
two input tensors have the same dimension and channel indices, this method extracts the
[0,1,2,Z,4,Z,6] channels and [0,1,Z,3,4,5,Z] channels, respectively, from two temporary input
tensors using the gather function. This method achieves the same pruning result as the
slice and concatenation method, while minimizing the operational node generation.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

3.2.4. Slice and Concatenation Method

This method modifies the addition operation in a residual block instead of the prun-

ing mask. This method prunes the channels of each convolutional layer individually, and

the modified addition operation merges two channels with the same index by addition

and concatenates unpaired channels to the output, as shown in Figure 8. This method

slices the input tensors of the addition operation into channels and processes each channel

individually using loop and conditional statements. Processing channels individually

generates many nodes in Tensorflow’s graph [68] and it dramatically increases the infer-

ence times on both edge devices and regular computers with high-performance GPUs. For

this reason, this method was excluded from the comparative experiments.

Figure 8. Slice and concatenation.

3.2.5. Gather Method

The gather method also prunes convolutional layers individually and modifies the

addition operation in a residual block. In order to make the channel number and channel

indices of the two input tensors of the addition operation the same, this method pairs the

unpaired channels with all zero-valued channels and then adds two input tensors to-

gether, as shown in Figure 9. Unlike slice and concatenation, this method performs the

addition between the tensors rather than the channels, thus reducing the generation of

operational nodes. We implemented this method using Tensorflow’s gather function [69]

that gathers the channels selected by the list of channel index. For example, this method

creates temporary input tensors by concatenating a zero-valued channel (denoted [Z] in

Figure 9) to the pruned input tensors. Then, as shown in Figure 9, if the original channel

indices of the two pruned input tensors are [0,1,2,4,6] and [0,1,3,4,5], in order to make the

two input tensors have the same dimension and channel indices, this method extracts the

[0,1,2,Z,4,Z,6] channels and [0,1,Z,3,4,5,Z] channels, respectively, from two temporary in-

put tensors using the gather function. This method achieves the same pruning result as

the slice and concatenation method, while minimizing the operational node generation.

Figure 9. Gather method.

3.2.6. Concatenation and Convolution Method

The process of slicing a specific channel from a tensor or merging multiple channels

into one can be implemented with 1 × 1 binary filter convolution. In order to prune the

channels of each layer individually, the addition in a residual block can be modified as

concatenation–convolution (CC) operation by using 1 × 1 convolution, as shown in Figure

Figure 9. Gather method.

3.2.6. Concatenation and Convolution Method

The process of slicing a specific channel from a tensor or merging multiple channels
into one can be implemented with 1 × 1 binary filter convolution. In order to prune
the channels of each layer individually, the addition in a residual block can be modified
as concatenation–convolution (CC) operation by using 1 × 1 convolution, as shown in
Figure 10. First, the two pruned input tensors of the CC operation are concatenated along
the channel axis. Then, via 1 × 1 convolution, the unpruned channel pairs from both
tensors are merged into one, and otherwise unpaired channels are simply extracted and
concatenated. For this, the filter coefficients of the 1 × 1 convolution are generated from
the pruning masks of two input tensors. As this method allows the individual pruning of
channels in all layers based on their importance, it can effectively simplify a neural network
while maintaining high network performance. However, the computations for the 1 × 1
convolution in CC operation is not ignorable.

Sensors 2023, 23, 3777 10 of 20

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20

10. First, the two pruned input tensors of the CC operation are concatenated along the

channel axis. Then, via 1 × 1 convolution, the unpruned channel pairs from both tensors

are merged into one, and otherwise unpaired channels are simply extracted and concate-

nated. For this, the filter coefficients of the 1 × 1 convolution are generated from the prun-

ing masks of two input tensors. As this method allows the individual pruning of channels

in all layers based on their importance, it can effectively simplify a neural network while

maintaining high network performance. However, the computations for the 1 × 1 convo-

lution in CC operation is not ignorable.

Figure 10. Concatenation–convolution.

3.3. Batch Normalization Folding and Quantization

In addition to the network simplification mentioned above, porting a network to an

edge device requires the parameter quantization and the folding process that combines a

convolution with a batch normalization. In general, a convolution block consists of con-

volutional, batch normalization, and activation layers. After all network parameters (filter

coefficients, mean, variance, scale factor γ and bias β of channels, etc.) have been trained,

the convolutional and batch normalization layers can be combined as in Equation (8) to

reduce computations. This is so-called batch normalization folding [20].

𝑦𝑐𝑜𝑛𝑣 = 𝑊𝑐𝑜𝑛𝑣 ∙ 𝑥 + 𝑏𝑐𝑜𝑛𝑣 (4)

𝑦𝐵𝑁 = 𝛾
𝑦𝑐𝑜𝑛𝑣 − 𝜇

√𝛿2 + 𝜖
+ β (5)

𝑊𝑓𝑜𝑙𝑑 = 𝛾
𝑊𝑐𝑜𝑛𝑣

√𝛿2 + 𝜖
 (6)

𝑏𝑓𝑜𝑙𝑑 = 𝛾
𝑏𝑐𝑜𝑛𝑣 − 𝜇

√𝛿2 + 𝜖
+ β (7)

𝑦𝐵𝑁 = 𝑊𝑓𝑜𝑙𝑑 ∙ 𝑥 + 𝑏𝑓𝑜𝑙𝑑 (8)

Equations (4) and (5) are for convolution and batch normalization, respectively. Since

both convolution and batch normalization are linear transformations, the weight and bias

of the convolution are combined with the parameters of batch normalization, as in Equa-

tions (6) and (7), to calculate the weight and bias of the folding layer, respectively. After

network simplification and batch normalization folding, parameter quantization is per-

formed to port a network to an edge device that supports fast parallel integer

Figure 10. Concatenation–convolution.

3.3. Batch Normalization Folding and Quantization

In addition to the network simplification mentioned above, porting a network to an
edge device requires the parameter quantization and the folding process that combines a
convolution with a batch normalization. In general, a convolution block consists of convo-
lutional, batch normalization, and activation layers. After all network parameters (filter
coefficients, mean, variance, scale factor γ and bias β of channels, etc.) have been trained,
the convolutional and batch normalization layers can be combined as in Equation (8) to
reduce computations. This is so-called batch normalization folding [20].

yconv = Wconv·x + bconv (4)

yBN = γ
yconv − µ√

δ2 + ε
+ β (5)

W f old = γ
Wconv√
δ2 + ε

(6)

b f old = γ
bconv − µ√

δ2 + ε
+ β (7)

yBN = W f old·x + b f old (8)

Equations (4) and (5) are for convolution and batch normalization, respectively. Since both
convolution and batch normalization are linear transformations, the weight and bias of the con-
volution are combined with the parameters of batch normalization, as in Equations (6) and (7),
to calculate the weight and bias of the folding layer, respectively. After network simpli-
fication and batch normalization folding, parameter quantization is performed to port a
network to an edge device that supports fast parallel integer multiplication. In this paper,
the quantization method of Qualcomm’s software library was applied [59]. We compared
post-training quantization and quantization-aware training. Post-training quantization
(PTQ) quantizes network parameters after network training. This is easy to apply, but the
quantization of the trained weights can lead to information loss, which can degrade the
network performance. In particular, this network performance degradation easily occurs in
binary or shallow neural networks [29]. PTQ is further subdivided into methods with or with-
out input data. In this paper, PTQ, which does not require input data, is used for parameter
quantization [59]. Unlike PTQ, quantization-aware training (QAT) trains neural networks
by considering parameter quantization. To do this, the QAT method performs training

Sensors 2023, 23, 3777 11 of 20

by inserting auxiliary nodes to simulate the quantized version of an original network, as
shown in Figure 11a. It is impossible to directly train the quantized network because there
is a limit of precision in calculating the gradient of the loss and using it to update the
network parameters. Therefore, instead of using quantized parameters, this method inserts
simulation nodes to estimate the loss of the quantized version of the original network and
trains the network to minimize the loss. After training, the network is quantized as shown
in Figure 11b. In general, QAT shows better quantization performance than PTQ because this
method trains the original network to guarantee the performance of the quantized version
through simulation as much as possible. In this paper, the QAT suggested by Jacob et al. is
applied to finely train the pruned network [21].

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20

multiplication. In this paper, the quantization method of Qualcomm’s software library

was applied [59]. We compared post-training quantization and quantization-aware train-

ing. Post-training quantization (PTQ) quantizes network parameters after network train-

ing. This is easy to apply, but the quantization of the trained weights can lead to infor-

mation loss, which can degrade the network performance. In particular, this network per-

formance degradation easily occurs in binary or shallow neural networks [29]. PTQ is fur-

ther subdivided into methods with or without input data. In this paper, PTQ, which does

not require input data, is used for parameter quantization [59]. Unlike PTQ, quantization-

aware training (QAT) trains neural networks by considering parameter quantization. To

do this, the QAT method performs training by inserting auxiliary nodes to simulate the

quantized version of an original network, as shown in Figure 11a. It is impossible to di-

rectly train the quantized network because there is a limit of precision in calculating the

gradient of the loss and using it to update the network parameters. Therefore, instead of

using quantized parameters, this method inserts simulation nodes to estimate the loss of

the quantized version of the original network and trains the network to minimize the loss.

After training, the network is quantized as shown in Figure 11b. In general, QAT shows

better quantization performance than PTQ because this method trains the original net-

work to guarantee the performance of the quantized version through simulation as much

as possible. In this paper, the QAT suggested by Jacob et al. is applied to finely train the

pruned network [21].

(a) (b)

Figure 11. Quantization aware training. (a) Network architecture for the simulation of the quantized

network; (b) quantized network after QAT.

4. Experimental Results

To compare the aforementioned pruning methods and quantization methods, we de-

veloped an intelligent camera equipped with Qualcomm’s QCS605 (Figure 12). QCS605 is

a System-on-Chip (SoC) that integrates CPU, GPU, and DSP for high-performance Inter-

net of Things. It can be considered a small, low-power AI edge device because its dimen-

sions are 78 × 52 × 38 mm, giving 2.1 TOPS at 1 watt. As the main applications of this

camera, we considered visual surveillance and drones.

Figure 12. Intelligent camera equipped with Qualcomm QCS605.

Figure 11. Quantization aware training. (a) Network architecture for the simulation of the quantized
network; (b) quantized network after QAT.

4. Experimental Results

To compare the aforementioned pruning methods and quantization methods, we
developed an intelligent camera equipped with Qualcomm’s QCS605 (Figure 12). QCS605
is a System-on-Chip (SoC) that integrates CPU, GPU, and DSP for high-performance
Internet of Things. It can be considered a small, low-power AI edge device because its
dimensions are 78 × 52 × 38 mm, giving 2.1 TOPS at 1 watt. As the main applications of
this camera, we considered visual surveillance and drones.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20

multiplication. In this paper, the quantization method of Qualcomm’s software library

was applied [59]. We compared post-training quantization and quantization-aware train-

ing. Post-training quantization (PTQ) quantizes network parameters after network train-

ing. This is easy to apply, but the quantization of the trained weights can lead to infor-

mation loss, which can degrade the network performance. In particular, this network per-

formance degradation easily occurs in binary or shallow neural networks [29]. PTQ is fur-

ther subdivided into methods with or without input data. In this paper, PTQ, which does

not require input data, is used for parameter quantization [59]. Unlike PTQ, quantization-

aware training (QAT) trains neural networks by considering parameter quantization. To

do this, the QAT method performs training by inserting auxiliary nodes to simulate the

quantized version of an original network, as shown in Figure 11a. It is impossible to di-

rectly train the quantized network because there is a limit of precision in calculating the

gradient of the loss and using it to update the network parameters. Therefore, instead of

using quantized parameters, this method inserts simulation nodes to estimate the loss of

the quantized version of the original network and trains the network to minimize the loss.

After training, the network is quantized as shown in Figure 11b. In general, QAT shows

better quantization performance than PTQ because this method trains the original net-

work to guarantee the performance of the quantized version through simulation as much

as possible. In this paper, the QAT suggested by Jacob et al. is applied to finely train the

pruned network [21].

(a) (b)

Figure 11. Quantization aware training. (a) Network architecture for the simulation of the quantized

network; (b) quantized network after QAT.

4. Experimental Results

To compare the aforementioned pruning methods and quantization methods, we de-

veloped an intelligent camera equipped with Qualcomm’s QCS605 (Figure 12). QCS605 is

a System-on-Chip (SoC) that integrates CPU, GPU, and DSP for high-performance Inter-

net of Things. It can be considered a small, low-power AI edge device because its dimen-

sions are 78 × 52 × 38 mm, giving 2.1 TOPS at 1 watt. As the main applications of this

camera, we considered visual surveillance and drones.

Figure 12. Intelligent camera equipped with Qualcomm QCS605. Figure 12. Intelligent camera equipped with Qualcomm QCS605.

The process to port a deep neural network to Qualcomm’s chip is as follows. First,
a neural network is created under a deep learning framework such as Tensorflow, Caffe,
or ONNX. Then, the network is converted into a deep learning container (DLC) file using
Qualcomm’s software development kit (SDK) called snapdragon neural processing engine
(SNPE) [59]. The DLC file is ported to a device. In this paper, we ported YOLOv4 object de-
tector into QCS605. Since SNPE does not support Mish and nearest neighbor interpolation
used in YOLOv4, Mish and nearest neighbor interpolation were replaced by leaky ReLU
and bilinear interpolation, respectively.

For the experiment, we used a public dataset called VisDrone-DET2019 [70] collected
from drones and a private dataset collected from our developed camera. The private dataset

Sensors 2023, 23, 3777 12 of 20

was named SCOD. In the case of VisDrone-DET2019, the detection difficulty is very high
because most objects look small and their types vary, as shown in Figure 13a. In the case of
SCOD, the detection difficulty is lower than VisDrone-DET2019 because most objects look
relatively large and there are only three object types, as shown in Figure 13b. Table 1; Table 2
show the number of training and test objects according to object type in the VisDrone-
DET2019 and SCOD datasets, respectively. For all experimental results except Section 4.4,
the input images for the object detector were resized to 416× 416× 3 and 416× 256× 3 for
the VisDrone-DET2019 and SCOD datasets, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20

The process to port a deep neural network to Qualcomm’s chip is as follows. First, a

neural network is created under a deep learning framework such as Tensorflow, Caffe, or

ONNX. Then, the network is converted into a deep learning container (DLC) file using

Qualcomm’s software development kit (SDK) called snapdragon neural processing en-

gine (SNPE) [59]. The DLC file is ported to a device. In this paper, we ported YOLOv4

object detector into QCS605. Since SNPE does not support Mish and nearest neighbor in-

terpolation used in YOLOv4, Mish and nearest neighbor interpolation were replaced by

leaky ReLU and bilinear interpolation, respectively.

For the experiment, we used a public dataset called VisDrone-DET2019 [70] collected

from drones and a private dataset collected from our developed camera. The private da-

taset was named SCOD. In the case of VisDrone-DET2019, the detection difficulty is very

high because most objects look small and their types vary, as shown in Figure 13a. In the

case of SCOD, the detection difficulty is lower than VisDrone-DET2019 because most ob-

jects look relatively large and there are only three object types, as shown in Figure 13b.

Tables 1 and 2 show the number of training and test objects according to object type in the

VisDrone-DET2019 and SCOD datasets, respectively. For all experimental results except

Section 4.4, the input images for the object detector were resized to 416 × 416 × 3 and

416 × 256 × 3 for the VisDrone-DET2019 and SCOD datasets, respectively.

(a) (b)

Figure 13. Experimental data sets. (a) Visdrone2019-Det; (b) SCOD.

Table 1. Description of VisDrone-DET2019.

Class Pedestrian People Bicycle Car Van Truck Tricycle Awning Tricycle Bus Motor

#GT(Train) 79,337 27,059 10,480 144,867 24,956 12,875 4812 3246 5926 29,647

#GT(Test) 8844 5125 1287 14064 1975 750 1045 532 251 4886

Table 2. Description of SCOD.

Class Vehicle Pedestrian Cyclist

#GT(Train) 49,131 49,794 6553

#GT(Test) 8563 5853 1378

4.1. Experimental Results for Quantization Methods

First, the mean average precision (mAP) according to the quantization methods for

each dataset was compared, as shown in Table 3. In the SCOD dataset with relatively low

detection difficulty, the performance difference between the non-quantized and quantized

networks was small. However, in the case of VisDrone-DET2019 with high detection dif-

ficulty, QAT showed little performance degradation, but PTQ showed significant perfor-

mance degradation compared to the non-quantized result.

Figure 13. Experimental data sets. (a) Visdrone2019-Det; (b) SCOD.

Table 1. Description of VisDrone-DET2019.

Class Pedestrian People Bicycle Car Van Truck Tricycle Awning Tricycle Bus Motor

#GT(Train) 79,337 27,059 10,480 144,867 24,956 12,875 4812 3246 5926 29,647

#GT(Test) 8844 5125 1287 14,064 1975 750 1045 532 251 4886

Table 2. Description of SCOD.

Class Vehicle Pedestrian Cyclist

#GT(Train) 49,131 49,794 6553

#GT(Test) 8563 5853 1378

4.1. Experimental Results for Quantization Methods

First, the mean average precision (mAP) according to the quantization methods for
each dataset was compared, as shown in Table 3. In the SCOD dataset with relatively low
detection difficulty, the performance difference between the non-quantized and quantized
networks was small. However, in the case of VisDrone-DET2019 with high detection
difficulty, QAT showed little performance degradation, but PTQ showed significant perfor-
mance degradation compared to the non-quantized result.

Table 3. Comparison of detection performance according to quantization methods.

Dataset Quantization Method mAP (%)

VisDrone-DET2019

None (FP32) 19.68

PTQ (INT8) 14.97

QAT (INT8) 19.09

SCOD

None (FP32) 88.22

PTQ (INT8) 89.48

QAT (INT8) 88.73

Sensors 2023, 23, 3777 13 of 20

4.2. Experimental Results for Sparsity Training

In order to prune a network, the network should be trained to minimize the loss, as shown
in Equation (3). According to the penalty factor α in Equation (3), there is a trade-off between
the detection performance and the information concentration on several channels in a
network. Figure 14a,b shows the histograms of the scale factor γ of the network channels
according to the penalty factor α for VisDrone-DET2019 and SCOD DB, respectively. As
the penalty factor α increases, the number of channels with low γ, which indicates the
importance of the channel, increases. That is, the number of channels that greatly contribute
to the detection performance becomes small. Therefore, even if a significant number of
channels are pruned, the performance degradation due to this is insignificant. However, if
the penalty factor becomes too large, the original loss that the network is actually trying to
minimize is less minimized and causes performance degradation. Table 4 shows the mAP
according to the penalty coefficient after finishing sparsity training only. Based on Table 4
and Figure 14, we set the penalty factor 10−2 and 10−3 for VisDrone-DET2019 and SCOD,
respectively, by considering the detection performance and the γ histogram according to
the penalty factor.

Table 4. Detection performance of networks according to penalty coefficient α.

Dataset Penalty Factor mAP (%)

VisDrone-DET2019

0 19.68

10−3 19.97

10−2 19.73

10−1 18.66

SCOD

0 87.99

10−4 88.12

10−3 87.23

10−2 84.78

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20

Table 3. Comparison of detection performance according to quantization methods.

Dataset Quantization Method mAP (%)

VisDrone-DET2019

None (FP32) 19.68

PTQ (INT8) 14.97

QAT (INT8) 19.09

SCOD

None (FP32) 88.22

PTQ (INT8) 89.48

QAT (INT8) 88.73

4.2. Experimental Results for Sparsity Training

In order to prune a network, the network should be trained to minimize the loss, as

shown in Equation (3). According to the penalty factor α in Equation (3), there is a trade-

off between the detection performance and the information concentration on several chan-

nels in a network. Figure 14a,b shows the histograms of the scale factor γ of the network

channels according to the penalty factor α for VisDrone-DET2019 and SCOD DB, respec-

tively. As the penalty factor α increases, the number of channels with low γ, which indi-

cates the importance of the channel, increases. That is, the number of channels that greatly

contribute to the detection performance becomes small. Therefore, even if a significant

number of channels are pruned, the performance degradation due to this is insignificant.

However, if the penalty factor becomes too large, the original loss that the network is ac-

tually trying to minimize is less minimized and causes performance degradation. Table 4

shows the mAP according to the penalty coefficient after finishing sparsity training only.

Based on Table 4 and Figure 14, we set the penalty factor 10−2 and 10−3 for VisDrone-

DET2019 and SCOD, respectively, by considering the detection performance and the γ

histogram according to the penalty factor.

(a)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

2000

0

4000

6000

8000

10000

1000

0

2000

3000

4000

5000

6000

7000

2000

0

4000

6000

8000

10000

5000

0

10000

15000

20000

absolute value of

F
re

q
u

en
c
y

Penalty factor=1e-3

absolute value of

Penalty factor=0

F
re

q
u

en
c
y

absolute value of

Penalty factor=1e-2

F
re

q
u

en
c
y

absolute value of

Penalty factor=1e-1

F
re

q
u

en
c
y

Figure 14. Cont.

Sensors 2023, 23, 3777 14 of 20Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

(b)

Figure 14. Histogram of γ according to the penalty factor α. (a) Visdrone2019-Det; (b) SCOD.

Table 4. Detection performance of networks according to penalty coefficient α.

Dataset Penalty factor mAP (%)

VisDrone-DET2019

0 19.68

10-3 19.97

10-2 19.73

10-1 18.66

SCOD

0 87.99

10-4 88.12

10-3 87.23

10-2 84.78

4.3. Comparison of Pruning Methods Considering Residual Network Structure

YOLOv4 was pruned by applying five channel pruning methods considering the re-

sidual network structure, and the performances according to the pruning methods were

compared in the server equipped with high-performance GPU and in QCS605. Tables 5

and 6 show the performances of the networks with channels 0%, 50%, and 70% pruned by

the five pruning methods in VisDrone-DET2019 and SCOD, respectively. In Tables 5 and

6, all items except the inference time were measured only on the DSP of QCS605. The

inference time was measured on both of the servers’ high-performance GPU (Nvidia Titan

RTX 24GB) and QCS605′s DSP. The second column of Tables 5 and 6 denote the pruning

methods. In the second column, the pruning methods SKIP, Head-First, OR, Gather, and

Concatenation–Convolution were denoted by SK, HF, OR, GA, and CC, respectively. As

shown in Tables 5 and 6, since the GPU has powerful computing power, the inference time

according to the pruning ratio is not significantly different in the GPU. As shown in Tables

5 and 6, when applying the GA method in GPU, the inference time is similar to other

0 1 2 3 4 5

absolute value of

Penalty factor=0

2000

0

4000

6000

8000

10000

F
re

q
u

en
cy

0 1 2 3 4 5

absolute value of

Penalty factor=1e-4

2000

0

3000

4000

5000

6000

F
re

q
u

en
cy

1000

0 1 2 3 4 5

absolute value of

Penalty factor=1e-3

2500

0

5000

7500

10000

12500

F
re

q
u

en
cy

17500

15000

0 1 2 3 4

absolute value of

Penalty factor=1e-2

5000

0

10000

15000

20000

F
re

q
u
en

cy

25000

Figure 14. Histogram of γ according to the penalty factor α. (a) Visdrone2019-Det; (b) SCOD.

4.3. Comparison of Pruning Methods Considering Residual Network Structure

YOLOv4 was pruned by applying five channel pruning methods considering the
residual network structure, and the performances according to the pruning methods were
compared in the server equipped with high-performance GPU and in QCS605. Table 5;
Table 6 show the performances of the networks with channels 0%, 50%, and 70% pruned
by the five pruning methods in VisDrone-DET2019 and SCOD, respectively. In Table 5;
Table 6, all items except the inference time were measured only on the DSP of QCS605. The
inference time was measured on both of the servers’ high-performance GPU (Nvidia Titan
RTX 24GB) and QCS605′s DSP. The second column of Table 5; Table 6 denote the pruning
methods. In the second column, the pruning methods SKIP, Head-First, OR, Gather, and
Concatenation–Convolution were denoted by SK, HF, OR, GA, and CC, respectively. As
shown in Table 5; Table 6, since the GPU has powerful computing power, the inference
time according to the pruning ratio is not significantly different in the GPU. As shown
in Table 5; Table 6, when applying the GA method in GPU, the inference time is similar
to other methods, but in DSP, the time is nearly double that of other methods. We think
that this occurs because Tensorflow’s gather function is not optimized for QCS605. The
inference time of CC method is 10% longer than that of the SK, HF, and OR methods. This is
because the amount of computation is increased by concatenation and 1 × 1 convolutional
layer in CC operation. As shown in Table 5, the memory consumption and inference time
of HF are less than others, but the detection performance is lowered by 1~2% compared to
the SK or OR method as the pruning rate is increased. As shown in Table 6, the detection
performance of the SK method is less than that of the others in the SCOD dataset whose
detection difficulty is low. Considering the detection performance for each DB, memory
consumption, and inference time, the OR method was found to be the best among the
five methods.

Sensors 2023, 23, 3777 15 of 20

Table 5. Comparison pruning results in VisDrone-DET2019.

Pruning
Rate Method

mAP
(%) Parameter BFLOPs

Inference Time (ms) Volume
(MB)GPU DSP

0 - 19.68 63.9 M 59.76 25 191 245.1

50

SK 20.35 19.5 M 38.03 24 128 74.8

HF 20.39 17.5 M 35.27 23 123 67.1

OR 20.65 19.1 M 37.89 23 127 73.2

CC 19.99 19.4 M 39.96 24 139 74.5

GA 19.99 18.2 M 36.36 24 260 69.8

70

SK 19.01 7.2 M 26.97 23 102 28.0

HF 17.97 5.7 M 21.50 22 89 22.0

OR 19.09 7.1 M 26.91 22 101 27.6

CC 18.68 7.2 M 27.83 24 111 27.8

GA 18.69 6.5 M 25.10 24 221 25.1

Table 6. Comparison pruning results in SCOD.

Pruning
Rate Method

mAP
(%) Parameter BFLOPs

Inference Time (ms) Volume
(MB)GPU DSP

0 - 87.99 63.9 M 36.78 23 128 244.2

50

SK 87.87 16.6 M 24.26 22 81 63.9

HF 88.45 15.9 M 23.71 22 81 61.1

OR 89.09 16.4 M 24.21 21 80 63.1

CC 88.22 16.8 M 25.74 23 88 64.7

GA 88.22 15.6 M 23.47 22 196 61.8

70

SK 84.78 7.7 M 17.81 22 66 29.8

HF 86.39 6.6 M 16.28 21 64 25.5

OR 87.63 7.6 M 17.78 21 66 29.5

CC 85.65 7.6 M 18.55 23 71 29.1

GA 85.65 6.8 M 16.71 22 189 26.6

Figure 15; Figure 16 show the detection results in VisDrone-DET2019 and SCOD,
respectively. In Figure 15; Figure 16, the left pictures show the detection results of the original
YOLOv4 and the right ones show the detection results of the YOLOv4 ported to QCS605
through the simplification and the quantization. For the simplification of YOLOv4, 70% of the
channels were pruned using the OR method. Although the pruned network missed a few
small objects in VisDrone-DET2019, the detection performance of the pruned network was
very close to that of the original, even though 70% of the channels were pruned.

Sensors 2023, 23, 3777 16 of 20

Sensors 2023, 23, x FOR PEER REVIEW 16 of 20

YOLOv4 and the right ones show the detection results of the YOLOv4 ported to QCS605

through the simplification and the quantization. For the simplification of YOLOv4, 70%

of the channels were pruned using the OR method. Although the pruned network missed

a few small objects in VisDrone-DET2019, the detection performance of the pruned net-

work was very close to that of the original, even though 70% of the channels were pruned.

(a) (b)

Figure 15. Detection results in Visdrone2019-Det. (a) Original version of YOLOv4; (b) YOLOv4 op-

timized for an edge device.

(a) (b)

Figure 15. Detection results in Visdrone2019-Det. (a) Original version of YOLOv4; (b) YOLOv4
optimized for an edge device.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 20

YOLOv4 and the right ones show the detection results of the YOLOv4 ported to QCS605

through the simplification and the quantization. For the simplification of YOLOv4, 70%

of the channels were pruned using the OR method. Although the pruned network missed

a few small objects in VisDrone-DET2019, the detection performance of the pruned net-

work was very close to that of the original, even though 70% of the channels were pruned.

(a) (b)

Figure 15. Detection results in Visdrone2019-Det. (a) Original version of YOLOv4; (b) YOLOv4 op-

timized for an edge device.

(a) (b)

Figure 16. Detection results in SCOD. (a) Original version of YOLOv4; (b) YOLOv4 optimized for an
edge device.

Sensors 2023, 23, 3777 17 of 20

4.4. Detection Performance according to Input Image Size and Pruning Ratio

The input image resolution to the network has a significant impact on the object de-
tection performance. The lower the resolution of the input image, the shorter the inference
time. However, if the detection objects are visually small, such as VisDrone-DET2019, the
detection performance may be significantly degraded. In this paper, we developed an
intelligent camera equipped with QCS605 that detects objects within 100 ms per image.
To maximize the detection performance while satisfying the time constraint, the detector
was evaluated with two datasets while adjusting the pruning rate and the input image
resolution, as shown in Table 7. For pruning, the OR method was applied in the same way
as in the previous experiment. As shown in Table 7, when the object is visually small, it
is appropriate to increase the resolution of the input image for maintaining the detection
performance and to increase the pruning rate to satisfy the time constraint at the same time.

Table 7. Detection performance according to input image resolution and pruning ratio.

Dataset Input Size Prune Rate
(%)

mAP
(%)

Inference Time
(ms)

Volume
(MB)

VisDrone

384× 384 60 18.24 94 46.6

416× 416 70 18.90 101 27.6

448× 448 80 18.84 98 13.6

SCOD

480× 320 60 90.43 93 46.1

512× 352 70 90.64 99 28.8

544× 384 80 90.98 97 13.9

5. Conclusions and Future Work

In this paper, we analyzed network compression methods (network simplification and
parameter quantization) for real-time running DNN-based object detectors on edge devices
through various experiments. In particular, five pruning methods considering the residual
network structure were compared and it was found that the OR method is the best. In
addition, it was found that when the detection difficulty of the dataset is low, the detection
performance does not differ significantly depending on the parameter quantization method,
but in other cases, QAT can prevent performance degradation. Finally, when the object
is visually small, it was proven to be appropriate to increase the resolution of the input
image to maintain the detection performance and to increase the pruning rate to reduce the
inference time. The pruning methods compared in this paper do not consider how far the
layer to be pruned is from the input and output nodes of the network. When the pruning
rate of the layers close to the output node is high, it is expected that the detection result will
change significantly before and after network pruning. Moreover, when the pruning rate of
the layers close to the input node is high, it is expected that various primitive features will
not be extracted. Therefore, in the future, we will study the pruning method considering
the distance of each layer from the input and output node.

Author Contributions: Conceptualization, H.G.J. and J.K.S.; methodology, K.C. and S.M.W.; software,
K.C. and S.M.W.; validation, H.G.J. and J.K.S.; formal analysis, H.G.J. and J.K.S.; investigation, S.M.W.;
resources, K.C.; data curation, S.M.W.; writing—original draft preparation, K.C. and S.M.W.; writing—
review and editing, K.C. and J.K.S.; visualization, K.C. and S.M.W.; supervision, H.G.J. and J.K.S.;
project administration, J.K.S.; funding acquisition, J.K.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (2022R1F1A1074708), and in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (2020R1A6A1A03038540).

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 3777 18 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghimire, D.; Kil, D.; Kim, S.H. A Survey on Efficient Convolutional Neural Networks and Hardware Acceleration. Electronics

2022, 11, 945. [CrossRef]
2. Neill, J.O. An Overview of Neural Network Compression. arXiv 2020, arXiv:2006.03669.
3. Mishra, R.; Gupta, H.P.; Dutta, T. A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions. arXiv

2020, arXiv:2010.03954.
4. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural

Network Inference. arXiv 2021, arXiv:2103.13630.
5. Mazumder, A.N.; Meng, J.; Al Rashid, H.; Kallakuri, U.; Zhang, X.; Seo, J.S.; Mohsenin, T. A Survey on the Optimization of Neural

Network Accelerators for Micro-AI On-Device Inference. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 532–547. [CrossRef]
6. Denton, E.; Zaremba, W.; Bruna, J.; Lecun, Y.; Fergus, R. Exploiting Linear Structure Within Convolutional Networks for Efficient

Evaluation. arXiv 2014, arXiv:1404.073627.
7. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
8. Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578.
9. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning Structured Sparsity in Deep Neural Networks. arXiv 2016, arXiv:1608.03665.
10. Wang, T.; Wang, K.; Cai, H.; Lin, J.; Liu, Z.; Han, S. APQ: Joint Search for Network Architecture, Pruning and Quantization Policy.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020.
11. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep Learning Based Object Detection

Models. Digit. Signal Process. 2022, 126, 103514. [CrossRef]
12. Suhail, A.; Jayabalan, M.; Thiruchelvam, V. Convolutional Neural Network Based Object Detection: A Review. J. Crit. Rev. 2020,

7, 786–792.
13. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
14. Dlamini, S.; Chen, Y.-H.; Kuo, C.-F.J. Complete Fully Automatic Detection, Segmentation and 3D Reconstruction of Tumor Volume

for Non-Small Cell Lung Cancer Using YOLOv4 and Region-Based Active Contour Model. Expert. Syst. Appl. 2023, 212, 118661.
[CrossRef]

15. Yurdusev, A.A.; Adem, K.; Hekim, M. Detection and Classification of Microcalcifications in Mammograms Images Using
Difference Filter and Yolov4 Deep Learning Model. Biomed. Signal Process. Control 2023, 80, 104360. [CrossRef]

16. YOLOv4. Available online: https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/yolo_v4.html (accessed on 6 March
2023).

17. Getting Started with YOLO V4. Available online: https://kr.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html
(accessed on 6 March 2023).

18. Qualcomm QCS605 SoC|Next-Gen 8-Core IoT & Smart Camera Chipset|Qualcomm. Available online: https://www.qualcomm.
com/products/technology/processors/application-processors/qcs605 (accessed on 29 September 2022).

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; van Baalen, M.; Blankevoort, T. A White Paper on Neural Network
Quantization. arXiv 2021, arXiv:2106.08295.

21. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

22. Masana, M.; Van De Weijer, J.; Herranz, L.; Bagdanov, A.D.; Alvarez, J.M. Domain-Adaptive Deep Network Compression. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4289–4297.

23. Yang, H.; Tang, M.; Wen, W.; Yan, F.; Hu, D.; Li, A.; Li, H.; Chen, Y. Learning Low-Rank Deep Neural Networks via Singular
Vector Orthogonality Regularization and Singular Value Sparsification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 678–679.

24. Chen, S.; Zhou, J.; Sun, W.; Huang, L. Joint Matrix Decomposition for Deep Convolutional Neural Networks Compression.
Neurocomputing 2023, 516, 11–26. [CrossRef]

25. Kim, Y.-D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks for Fast and Low
Power Mobile Applications. arXiv 2015, arXiv:1511.06530.

26. Phan, A.-H.; Sobolev, K.; Sozykin, K.; Ermilov, D.; Gusak, J.; Tichavsky, P.; Glukhov, V.; Oseledets, I.; Cichocki, A. Stable Low-Rank
Tensor Decomposition for Compression of Convolutional Neural Network. In Proceedings of the Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 522–539.

http://doi.org/10.3390/electronics11060945
http://doi.org/10.1109/JETCAS.2021.3129415
http://doi.org/10.1016/j.dsp.2022.103514
http://doi.org/10.1016/j.eswa.2022.118661
http://doi.org/10.1016/j.bspc.2022.104360
https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/yolo_v4.html
https://kr.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html
https://www.qualcomm.com/products/technology/processors/application-processors/qcs605
https://www.qualcomm.com/products/technology/processors/application-processors/qcs605
http://doi.org/10.1016/j.neucom.2022.10.021

Sensors 2023, 23, 3777 19 of 20

27. Yin, M.; Sui, Y.; Liao, S.; Yuan, B. Towards Efficient Tensor Decomposition-Based DNN Model Compression with Optimization
Framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 10674–10683.

28. Li, N.; Pan, Y.; Chen, Y.; Ding, Z.; Zhao, D.; Xu, Z. Heuristic Rank Selection with Progressively Searching Tensor Ring Network.
Complex Intell. Syst. 2022, 8, 771–785. [CrossRef]

29. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and Quantization for Deep Neural Network Acceleration: A Survey.
Neurocomputing 2021, 461, 370–403. [CrossRef]

30. Guo, Y.; Yao, A.; Chen, Y. Dynamic Network Surgery for Efficient DNNs. arXiv 2016, arXiv:1608.04493.
31. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2018, arXiv:1810.05270.
32. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks. arXiv 2015,

arXiv:1506.02626.
33. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
34. Luo, J.-H.; Wu, J.; Lin, W. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the

IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.
35. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks through Network Slimming. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.
36. Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; Zhu, J. Discrimination-Aware Channel Pruning for Deep

Neural Networks. arXiv 2018, arXiv:1810.11809.
37. Hu, H.; Peng, R.; Tai, Y.-W.; Tang, C.-K. Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep

Architectures. arXiv 2016, arXiv:1607.03250.
38. Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.-Y.; Davis, L.S. NISP: Pruning Networks Using Neuron

Importance Score Propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 9194–9203.

39. Mirzadeh, S.-I.; Farajtabar, M.; Li, A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved Knowledge Distillation via Teacher
Assistant. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2020; pp. 5191–5198.

40. Li, T.; Li, J.; Liu, Z.; Zhang, C. Few Sample Knowledge Distillation for Efficient Network Compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 14639–14647.

41. Yang, J.; Zou, H.; Cao, S.; Chen, Z.; Xie, L. MobileDA: Toward Edge-Domain Adaptation. IEEE Int. Things J. 2020, 7, 6909–6918.
[CrossRef]

42. Duong, C.N.; Luu, K.; Quach, K.G.; Le, N. ShrinkTeaNet: Million-Scale Lightweight Face Recognition via Shrinking Teacher-
Student Networks. arXiv 2019, arXiv:1905.10620.

43. Yun, S.; Park, J.; Lee, K.; Shin, J. Regularizing Class-Wise Predictions via Self-Knowledge Distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 13876–13885.

44. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive Neural
Architecture Search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 19–34.

45. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

46. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J. Efficient Neural Architecture Search via Parameter Sharing. In Proceedings of
the International Conference on Machine Learning, PMLR, Vienna, Austria, 25–31 July 2018; pp. 4095–4104.

47. Saikia, T.; Marrakchi, Y.; Zela, A.; Hutter, F.; Brox, T. AutoDispNet: Improving Disparity Estimation with AutoML. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp.
1812–1823.

48. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 2820–2828.

49. Li, L.; Talwalkar, A. Random Search and Reproducibility for Neural Architecture Search. In Proceedings of the Uncertainty in
Artificial Intelligence, PMLR, Virtual, 3–6 August 2020; pp. 367–377.

50. White, C.; Neiswanger, W.; Savani, Y. BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture
Search. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2–9 February 2021; pp. 10293–10301.

51. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al.
Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Academic Press:
Cambridge, MA, USA, 2019; pp. 293–312.

52. Suganuma, M.; Shirakawa, S.; Nagao, T. A Genetic Programming Approach to Designing Convolutional Neural Network
Architectures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017;
pp. 497–504.

53. Galván, E.; Mooney, P. Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges. IEEE Trans. Artif. Intell.
2021, 2, 476–493. [CrossRef]

http://doi.org/10.1007/s40747-021-00308-x
http://doi.org/10.1016/j.neucom.2021.07.045
http://doi.org/10.1109/JIOT.2020.2976762
http://doi.org/10.1109/TAI.2021.3067574

Sensors 2023, 23, 3777 20 of 20

54. Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019,
arXiv:1912.06059.

55. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q. V Regularized Evolution for Image Classifier Architecture Search. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4780–4789.

56. Xu, Y.; Wang, Y.; Han, K.; Tang, Y.; Jui, S.; Xu, C.; Xu, C. ReNAS:Relativistic Evaluation of Neural Architecture Search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 4411–4420.

57. Zhang, M.; Li, H.; Pan, S.; Chang, X.; Su, S. Overcoming multi-model forgetting in one-shot NAS with diversity maximization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 7809–7818.

58. Li, Y.; Liu, Z.; Liu, W.; Jiang, Y.; Wang, Y.; Goh, W.L.; Yu, H.; Ren, F. A 34-FPS 698-GOP/s/W Binarized Deep Neural Network-
Based Natural Scene Text Interpretation Accelerator for Mobile Edge Computing. IEEE Trans. Ind. Electron. 2019, 66, 7407–7416.
[CrossRef]

59. Snapdragon Neural Processing Engine SDK: Features Overview. Available online: https://developer.qualcomm.com/sites/
default/files/docs/snpe/overview.html (accessed on 29 September 2022).

60. Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681.
61. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015,

arXiv:1505.00853.
62. Wang, C.-Y.; Liao, H.-Y.M.; Yeh, I.-H.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W. CSPNet: A New Backbone That Can Enhance Learning

Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

63. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

64. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.

65. Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; Peste, A. Sparsity in Deep Learning: Pruning and Growth for Efficient Inference
and Training in Neural Networks. J. Mach. Learn. Res. 2021, 22, 10882–11005.

66. Zhang, P.; Zhong, Y.; Li, X. SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019; pp. 37–45.

67. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2017, arXiv:1608.08710.
68. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 29 September 2022).
69. Tf.Gather|TensorFlow v2.10.0. Available online: https://www.tensorflow.org/api_docs/python/tf/gather (accessed on 29

September 2022).
70. Du, D.; Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q.; Peng, T.; Zheng, J.; Wang, X.; Zhang, Y.; et al. VisDrone-DET2019: The

Vision Meets Drone Object Detection in Image Challenge Results. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019; pp. 213–226.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TIE.2018.2875643
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
http://doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/gather

	Introduction
	Related Research
	Comparative Studies for Network Compression
	Network Architecture and Overview of the Porting Process
	Simplification
	Skip Method
	Head-First Method
	OR Method
	Slice and Concatenation Method
	Gather Method
	Concatenation and Convolution Method

	Batch Normalization Folding and Quantization

	Experimental Results
	Experimental Results for Quantization Methods
	Experimental Results for Sparsity Training
	Comparison of Pruning Methods Considering Residual Network Structure
	Detection Performance according to Input Image Size and Pruning Ratio

	Conclusions and Future Work
	References

