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Abstract: Various super-resolution (SR) kernels in the degradation model deteriorate the performance
of the SR algorithms, showing unpleasant artifacts in the output images. Hence, SR kernel estimation
has been studied to improve the SR performance in several ways for more than a decade. In particular,
a conventional research named KernelGAN has recently been proposed. To estimate the SR kernel
from a single image, KernelGAN introduces generative adversarial networks(GANs) that utilize the
recurrence of similar structures across scales. Subsequently, an enhanced version of KernelGAN,
named E-KernelGAN, was proposed to consider image sharpness and edge thickness. Although
it is stable compared to the earlier method, it still encounters challenges in estimating sizable and
anisotropic kernels because the structural information of an input image is not sufficiently considered.
In this paper, we propose a kernel estimation algorithm called Total Variation Guided KernelGAN
(TVG-KernelGAN), which efficiently enables networks to focus on the structural information of
an input image. The experimental results show that the proposed algorithm accurately and stably
estimates kernels, particularly sizable and anisotropic kernels, both qualitatively and quantitatively.
In addition, we compared the results of the non-blind SR methods, using SR kernel estimation
techniques. The results indicate that the performance of the SR algorithms was improved using our
proposed method.

Keywords: kernel estimation; generative adversarial networks; super-resolution; self-similarity; total
variation; KernelGAN; structural information

1. Introduction

High-resolution (HR) images are required in various applications, for example, medi-
cal or satellite imaging, wherein specific objects must be distinguished or patterns must
be recognized. However, the observed images often have low resolution (LR) because of
the physical limitation of the small image sensor or the image acquisition environments.
Single image super-resolution (SISR) algorithms for recovering HR images from LR images,
have been extensively studied for decades. By overcoming the limitations of the observed
LR image, the desired information can be exploited, or the hardware cost efficiency can be
achieved. The LR image observation model, also referred to as the degradation model, is
described as follows [1]:

y = DBMx + n, (1)

where y represents the LR image, x represents the HR image, DBM is the degradation
operation comprising the downsampling matrix D, blurring matrix (blurring kernel, SR
kernel, point spread function; PSF) B, and warping matrix M while n represents the additive
white noise. Image super-resolution (SR) reconstruction is generally a severely ill-posed
problem because the information from an LR image is usually insufficient and the blurring
matrix B is typically unknown.

To overcome above inherent physical limitations and obtain an accurate HR image,
numerous methods have been proposed in two branches: (i) classical approaches [2–8], and
(ii) deep-learning-based approaches [9–16]. In the classical SISR, studies have generally
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focused on addressing the ill-posedness resulting from insufficient information in the
LR image and inaccurate registration by using methods based on regularizing the im-
age prior [2–5] or exploiting the recurrence property of the internal image patches [6–8].
However, the blurring matrix B in these methods is usually assumed to be known from
measurements or simple blurring such as a Gaussian kernel or bicubic kernel. Early deep-
learning-based approaches [9–15], HR images were degraded using a Gaussian or bicubic
kernel to generate LR-HR dataset pairs. However, this dataset generation method is insuffi-
cient for representing natural LR images because the blurring matrix B varies depending
on the image acquisition environment. Because only a single image is given in SISR, the
information that can be used for the SR is limited to B or the image priors. A comparison
between the SISR results using the assumed kernel and the estimated kernel is shown in
Figure 1. The SISR result using the assumed kernel in Figure 1b shows a blurry result
without any resolution improvement. However, when the estimated kernel is used, the
resolution of the SISR result is improved, evident through the clear visibility of whiskers
and patterns of fur in Figure 1c. Therefore, the blurring kernels in the SR process have to
be considered to improve the performance of the SISR algorithms.

(a) (b) (c) (d)

Figure 1. Comparison of SISR results for scale factor of ×2 using [13]. (a) input LR image degraded
with ground truth(GT) blurring kernel. (b) SISR result with a kernel assumed as Gaussian kernel.
(c) SISR result with an estimated kernel. (d) GT image.

A multitude of methods has been proposed to address this issue in real-world
SISR [17–19]. Ji et al. [16] proposed a method inspired by KernelGAN [20] that constructs a
kernel pool from a high-quality source image using kernel estimation techniques before
generating an LR image through degradation. This demonstrates that the degradation pro-
cess, particularly the blurring process, can be effectively modeled using kernel estimation
methods. Despite its advantages, KernelGAN may exhibit inconsistencies or instabilities
owing to the inherent randomness of GAN. Liang et al. [21] introduced a kernel-pool gen-
eration method, flow-based kernel prior (FKP), which exploits invertible mapping between
a random variable and a kernel using several flow blocks. It achieved stable kernel estima-
tion performance. However, their method required pre-training and could not estimate an
accurate kernel if the desired kernel was not included in the kernel pool. Kim et al. [22]
proposed an enhanced version of KernelGAN that exploits the distinctive properties of
LR-HR image pairs. Their method demonstrated improved performance compared to
KernelGAN, but still encountered challenges in estimating sizable and anisotropic kernels.

For this study, we proposed a kernel estimation method that addresses the challenge
of accurately estimating sizable and anisotropic kernels. The proposed method is guided
by a total variation map, which emphasizes the edge regions of the image where detailed
information is most prevalent, and exploits self-similarity to a greater extent than previous
methods. The main contributions of the study are summarized as follows:

• The proposed method adopts a total variation map and uses it as a guide for the
network to focus on the structural information of the image.

• Compared to previous methods, the proposed method is cost- and memory-efficient.
• We demonstrate that the proposed method exhibits superior performance, particu-

larly in accurately estimating sizable and anisotropic kernels, compared to conven-
tional methods.
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The remainder of the paper is organized as follows: In Section 2, a summary of the
relevant background work is provided. The proposed method is described in detail in
Section 3. The experimental results are presented in Section 4, and the conclusions are
presented in Section 5.

2. Background

As mentioned in the previous section, the blurring matrix B is generally assumed to be
a Gaussian or a bicubic kernel in various SISR studies. However, owing to environmental
factors such as camera shaking, rapid movement, and weather conditions, the blurring
kernel may not be identical even if the same imaging system is used. For SISR, accurately
estimating the blurring kernel is crucial because an inaccurately assumed kernel often
produces reconstructed images with ringing or blurring artifacts.

Michaeli et al. [7] proposed an SR kernel estimation method for a single image using
the self-similarity property of natural images, in which similar structures are repeated across
scales. In their method, patches with explicit structural similarities were matched, and the
SR kernel was estimated using maximum a posteriori (MAP) optimization. KernelGAN,
proposed by Bell-Kligler et al. [20], is a pioneering work that introduced a deep linear
network for SR kernel estimation. Although having the same fundamental background, it
employs a distinct optimization tool, GAN. In KernelGAN, the generator G generates a fake
patch by downscaling a patch randomly picked from the input image, and the discriminator
D determines whether it is a fake or real patch of the input image. KernelGAN is trained
to create a downscaled fake patch with the same statistics as a real patch, maximizing
self-similarity, such that the network reproduces the degradation process of the given input
image and extracts the optimal SR kernel. KernelGAN demonstrated that the network
could successfully estimate the SR kernels.

Kim et al. [22] noted that KernelGAN did not consider image sharpness and the differ-
ence in edge thickness between HR and LR images and proposed Enhanced-KernelGAN
(E-KernelGAN). They consider the image’s sharpness using ‘degradation and ranking
comparison’, which indirectly utilizes the structural information of the image and improves
the kernel estimation stability by excluding unsuitable candidates from the kernel space. In
addition, they proposed the ‘kernel correction’ module as a post-processing step to refine
the estimated kernel variance and resize it. This post-processing step, which considers edge
thickness, also indirectly uses structural information. E-KernelGAN successfully improves
the SR kernel estimation stability and accuracy, but fails to fully exploit the self-similarity
property that is fundamental to SISR kernel estimation. Consequently, the estimation of
sizable and anisotropic SR kernels is limited. In the next section, we propose Total Varia-
tion Guided KernelGAN (TVG-KernelGAN), which efficiently utilizes self-similarity by
weighting the input image.

3. Proposed Method
3.1. Challenging Kernels and SR

Classical SR methods typically estimate HR images by solving the optimization prob-
lem as follows:

x̂ = argmin
x

{
‖y− DBMx‖2

2 + λ‖∇x‖p
p

}
. (2)

x̂ is the optimal HR image that minimizes the given cost function. The first term is the
data fidelity term, and the second term is the p-norm regularization term, which imports
various image priors to suppress noise. λ is the regularization parameter that determines
how much the regularization term contributes to the optimization process. In SISR, M
is not considered because the given image can be located at arbitrary coordinates. D
is a downsampling matrix the inverse of which is generally interpreted as an arbitrary
interpolator, such as a bilinear or bicubic interpolator. The remaining factors that affect the
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SR performance are B and the regularization term. Meanwhile, deep-learning-based SR
methods typically use Equation (3) to predict HR images.

x̂ = F

[
argmin

Θ

{
∑i ‖F(Θ, yi)− xi‖2}, y

]
,

where, yi = DBMxi + n.

(3)

F is the SR network output with the network parameter Θ and input image y. Data
pairs (xi, yi) are prepared using the degradation model in Equation (1). In general, the
blurring kernel B is assumed to be bicubic or Gaussian, which limits the generalization
performance of the network. To investigate the effects of different blurring kernels on the
SR results, we degraded the same input image using four differently shaped kernels and
applied the SR methods as shown in Figure 2. When the input image was degraded with a
small round kernel, the resulting SR image showed relatively weak ringing artifacts and
blurring artifacts, as shown in the first column of Figure 2b. The ringing and blurring
artifacts became more severe in the second column of Figure 2b with the change to an
anisotropic kernel. With a sizable kernel in the third column of Figure 2b, the SR results
show severe blurring artifacts without any noticeable resolution enhancement. In the case
of a sizable and anisotropic kernel in the fourth column of Figure 2b, severe blurring and
ringing artifacts can be found. These results show that more sizable and anisotropic kernels
severely deteriorate the SR performance; the focus of this study is this kind of kernel. As
shown in Section 4, previous work on kernel estimation failed to estimate these sizable and
anisotropic kernels. In this paper, we propose a method that successfully estimates these
challenging kernels.

(a) (b)

Figure 2. SR results comparison using blurring kernels in scale factor ×2. (a) GT, (b) the first row
shows the results of solving Equation (2) and the second row shows the results of [13]. The input
images of each column are degraded, respectively, from GT using the different blurring kernels
shown in the middle of each columns. However, in the SR process, both SR methods assumed the
same Gaussian kernel as a blurring kernel to investigate the effects of different kernels.

3.2. Total Variation Weight Map

When a given input image is severely blurred, the network has difficulty extracting
meaningful features from the given patch to distinguish between real and fake patches.
Consequently, the network may converge to a meaningless local minimum. To estimate
the sizable and anisotropic kernels successfully in such situations, we focused on the
edges of the images. Several studies on SR and kernel estimation have used edges that
contain rich structural information [15,23–25]. In particular, Cho and Lee [24] estimated
an extremely directional and sharp kernel, generally known as a motion-blurring kernel,
using a strong edge prior. This implies that strong edges that remain after the blurring
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process are still present when the same blurring process is applied. Inspired by this edge
prior, we incorporated the edges of the input image into the kernel estimation process.

The proposed method aims to maximize self-similarity efficiently by weighting the
edge region of the input image such that the network can focus on structural information
and successfully estimates more challenging SR kernels. Because we are interested in the
edge region rather than the edge itself, we require a relatively smooth weight around
the edges. Farsiu et al. [2] proposed total variation using four directions, including two
diagonal directions, to regularize the noise. They demonstrated that this regularization
suppressed noise while preserving the edges, meaning that the total variation smoothly
and gradually highlighted the edges and details.

There are several options for highlighting the edges, as shown in Figure 3. The weight
maps were normalized using the maximum values of each map. Consistent with [2],
Figure 3e showed the smoothest edge map with the smallest weight difference between the
strong and weak edges. Therefore, we used the following four-direction total variation map:

mapTV =
1

∑
a=0

1

∑
b=−1︸ ︷︷ ︸

a+b≥0

||y− Pa
n1Pb

n2y||1,

w = mapTV + c,

(4)

where P is the shift operator in the vertical direction n1 and horizontal direction n2, and
a and b are the order of P. We focus on the edge region of the input image; however,
this does not mean that the plane region has no information. Therefore, we added a
constant c to mapTV so that the plane region is not completely discarded from the kernel
estimation process.

(a) (b) (c) (d) (e)

Figure 3. Normalized weights map examples, (a) GT, (b) Using forward difference for two directions
and L2 norm, (c) Using Sobel filtering and L1 norm, (d) Using forward difference for two directions
and L1 norm, (e) Using forward difference for four directions and L1 norm.

3.3. TVG-KernelGAN

The structure of the proposed method is shown in Figure 4. The input image is
first weighted by the total variation map and used as an input patch for G and D. By
incorporating the total variation map as a weight, the network directly utilizes the structural
information of the input image and focuses on the edge region. The weighted input is not
used during the entire training process but is instead used at certain iterations, i.e.,

ŷ =

{
w ∗ y, if mod(t,s) = 0
y, otherwise,

(5)

where ŷ is the input for G and D at iteration t, and s is the ratio parameter that determines
the frequency of using the weight map w. In the same context as the addition of the
constant c to mapTV in Equation (4), this switching scheme ensures that the information
in the plane region is not completely discarded. Furthermore, the total variation guide
scheme is applied after several tens of iterations when a general bicubic kernel shape is
sufficiently formed.
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Figure 4. Structure of TVG-KernelGAN.

Finally, the TVG-KernelGAN loss function is given by

LTVG-KernelGAN = |D(ŷ)− 1|+ |D(G(ŷ))|+ RB. (6)

Here, RB is the kernel regularization term as in [20], and RB is given as follows:

RB = αKenergy + βKboundary + γKsparse + δKcenter. (7)

K terms represent the kernel losses that force the kernel extracted from G to be mean-
ingful. Kenergy make the kernel conserve the energy of the input data; Kboundary and Ksparse
make the kernel not be an over-smoothing kernel; and Kcenter centers the kernel. α, β, γ,
and δ are the regularization parameters of K terms, respectively. Because the total variation
guiding scheme requires only simple calculations on the input image and no additional
network, the proposed method efficiently improves the kernel estimation performance
with less additional cost and memory than KernelGAN and E-KernelGAN.

4. Experimental Results

We evaluated our method using three datasets: DIV2KRK, Flickr2KRK and DIV2KSK.
The DIV2KRK dataset consists of 100 validation images from DIV2K [26] degraded with
random kernels that were generated in [20] to follow an anisotropic Gaussian random
distribution and applied by multiplicative noise. Similarly, Flickr2KRK was generated using
the first 100 images in Flickr2K [27] by applying the same kernel generation process. In both
datasets, we shuffled 100 kernels and used them to degrade and downsample the ground
truth (GT) images for scale factors of ×2 and ×4. However, these datasets lack sufficiently
sizable and anisotropic kernels, and have meaningless kernels with several isolated peaks.
To evaluate the performance of the kernel estimation on sizable and anisotropic kernels,
we generated a new dataset named the DIV2KSK (DIV2K Synthetic Kernel). We randomly
selected 15 validation images from DIV2K [26], and degraded and downsampled them
using 16 synthetic kernels for scale factors of ×2 and ×4, respectively, to produce total
240 input images.

We implemented our algorithm using the Python PyTorch library and trained it using
an NVIDIA GeForce RTX 3090 GPU. For training, we set the initial learning rate to 2× 10−4

and trained the network for 3000 iterations using the ADAM optimizer with β1 = 0.5 and
β2 = 0.999. The parameters c and s were set to 0.6 and 2, respectively.
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4.1. Kernel Estimation Results

We evaluated our method by comparing it with the conventional kernel estimation
algorithms; KernelGAN [20], FKP-KernelGAN [21], E-KernelGAN [22] and E-KernelGAN-
DIP. The E-KernelGAN-DIP utilizes a deep image prior (DIP) [28] network to estimate
more reasonable kernels. To quantitatively evaluate the estimated kernels, we used two
metrics: kernel error(KE) and kernel similarity(KS), as follows:

KE = ‖BGT − B̂‖2
2,

KS =
BGT · B̂

‖BGT‖2‖B̂‖2
.

(8)

KE is the sum of the difference squares between the GT kernel BGT and the estimated
kernel B̂. KE represents the errors of the values of B̂ to those of BGT . However, it tends to
be low when B̂ is a round shape and large enough. To address this limitation, we introduce
a metric KS similar to that proposed in [29] to evaluate the shape similarity between BGT

and B̂. To ensure a fair comparison, all kernels, including the ground truth kernels, are
moved for their center of mass to be centered because we do not consider image shift. In
addition, to analyze the relationship between the kernel estimation performance of the
algorithms and the GT kernel size, we introduce the kernel size r as follows:

MT =

{
1, if Bi > T,
0, otherwise,

where i ∈ B, T =
max(B)

30
,

r =
∑i MT

i
N1N2

.

(9)

MT is a binary mask where the elements of B greater than the threshold T are marked,
i is the location of the kernel space, and (N1, N2) is the kernel space size, that is, (17, 17) in
the case of a scale factor ×2. The region marked by MT captures most of the kernel energy
of a given kernel (at least 95 percent of the total kernel energy).

First, a qualitative comparison of kernel estimation results on the DIV2KRK and
Flickr2KRK datasets for scale factor of ×2 is shown in Figures 5 and 6, respectively. Kernel-
GAN often fails to estimate the direction and overall shape of a kernel, including its length
and thickness. FKP-KernelGAN(FKP) attempted to estimate the kernel as closely to the
GT kernel as possible, but it had clear limitations, as it could not present kernels on which
it had not previously been trained. In the case of E-KernelGAN and E-KernelGAN-DIP,
although they could stably estimate the kernel direction, the shape of the estimated kernels
tended to be relatively small, round-shaped, and short compared to the GT kernels. Our
proposed method, TVG-KernelGAN, estimates kernels that approximate the GT kernels,
regarding both the kernel direction and overall shape. However, for small and sharp
kernels such as the kernel in the 4th row of Figure 6f, TVG-KernelGAN tended to estimate
kernels thicker than the GT kernel. Next, a qualitative comparison of the kernel estimation
results on the DIV2KSK dataset for the scale factor of ×2 is shown in Figure 7. The kernel
estimation tendencies were similar to those of the two previous two datasets. KernelGAN
was unstable and inaccurate, FKP had obvious limitations, and the results of E-KernelGAN
and E-KernelGAN-DIP still had insufficient length. By contrast, TVG-KernelGAN out-
performed the other conventional methods, as the GT kernels were large and anisotropic.
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(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative results of the kernel estimation for scale factor of ×2 for DIV2KRK dataset.
(a) KernelGAN [20], (b) FKP [21], (c) E-KernelGAN [22], (d) E-KernelGAN-DIP [22], (e) TVG-
KernelGAN, (f) GT.

A quantitative comparison of the kernel estimation results for the entire dataset and
for the scale factors of ×2 and ×4 is shown in Table 1. A lower value of KE and a higher
value of KS indicate better performance. The numbers in red indicate the first-highest
scores. For the DIV2KRK dataset, E-KernelGAN-DIP achieved the highest scores for both
KE and KS, followed by E-KernelGAN, which achieved a score almost identical to that of
E-KernelGAN-DIP. TVG-KernelGAN achieved the third-highest score. For the Flickr2KRK
dataset, TVG-KernelGAN achieved the highest score for KE and the second-highest score
for KS, whereas E-KernelGAN-DIP achieved the second-highest score for KE and the
highest score for KS. E-KernelGAN achieved the third-highest score for both KE and KS.
The E-KernelGAN, E-KernelGAN-DIP, and TVG-KernelGAN scores differ little for the two
datasets. However, for the DIV2KSK dataset, TVG-KernelGAN achieved a significantly
higher score than the other conventional methods. This quantitative comparison was
consistent with the qualitative comparison presented above. In addition, Figure 8a,b,
respectively, show the mean of KE and KS of all three dataset samples according to kernel
size r, and Figure 8c shows examples of kernels of various sizes and the corresponding r
values. TVG-KernelGAN achieved the highest scores for both KE and KS except for the
smallest kernel size. These results suggest that the proposed method is more accurate and
stable than conventional methods for estimating sizable and anisotropic kernels.
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(a) (b) (c) (d) (e) (f)

Figure 6. Qualitative results of the kernel estimation for scale factor of ×2 for Flickr2KRK dataset.
(a) KernelGAN [20], (b) FKP [21], (c) E-KernelGAN [22], (d) E-KernelGAN-DIP [22], (e) TVG-
KernelGAN, (f) GT.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 7. Qualitative results of the kernel estimation for scale factor of ×2 for DIV2KSK dataset.
(a,g) KernelGAN [20], (b,h) FKP [21], (c,i) E-KernelGAN [22], (d,j) E-KernelGAN-DIP [22], (e,k) TVG-
KernelGAN, (f,l) GT.
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(a) (b)

(c)

Figure 8. KE and KS curves according to the kernel sizes r. (a) KE, (b) KS, (c) the kernel examples
and the corresponding kernel sizes r.

Table 1. Comparison of the kernel estimation results in terms of quantitative score, kernel error (KE)
and kernel similarity (KS).

KernelGAN FKP E-
KernelGAN E-KernelGAN-DIP TVG-

KernelGAN

DIV2KRK
×2 KE 0.0067 0.0072 0.0043 0.0043 0.0046

KS 0.9294 0.9239 0.9574 0.9579 0.9543

×4 KE 0.00088 0.00080 0.00062 0.00062 0.00070
KS 0.9537 0.9537 0.9698 0.9699 0.9680

Flickr2KRK
×2 KE 0.0087 0.0106 0.0081 0.0080 0.0077

KS 0.8989 0.8833 0.9094 0.9100 0.9097

×4 KE 0.00111 0.00093 0.00090 0.00089 0.00089
KS 0.9391 0.9392 0.9550 0.9550 0.9552

DIV2KSK
×2 KE 0.0051 0.0072 0.0058 0.0057 0.0043

KS 0.9446 0.9138 0.9426 0.9431 0.9547

×4 KE 0.00088 0.00100 0.00083 0.00083 0.00074
KS 0.9478 0.9419 0.9577 0.9579 0.9593

4.2. Non-Blind Super-Resolution Results

In this subsection, we conducted experiments on two branches of SISR, the classical
approach and the deep-learning-based approach, to show that the SISR results are im-
proved by using the kernels estimated by the proposed method, particularly for sizable and
anisotropic kernels. First, we employed ZSSR [13] as the deep-learning-based approach.
Briefly explained, it downscales the input image with a given blurring kernel and then
upscales it using a deep-learning upscaling network. It imitates the inverse of the down-
scaling process for the upscaling network to predict the output SR image after the training
session. In this process, the more accurate the blurring kernel is for the downscaling, the
higher the SR performance. Next, we employed Equation (2) as a classical approach, by
optimizing it using the conjugate gradient descent method. We set λ = 1× 10−6, p = 0.8
and ∇ in the regularization term as a forward difference derivative operator.
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Qualitative comparisons of the SR results obtained using the two SR methods for
the scale factor of ×2 are shown in Figures 9 and 10, and that for the scale factor of ×4
are shown in Figures 11 and 12. We observed that wrongly estimated kernels result in
artifacts in the SR results. First, when the estimated kernels were small, the SR results
exhibited both the ringing and blurring artifacts as shown in Figures 9d and 10d. Second,
when the estimated kernels had the incorrect anisotropic direction or round shapes, the
SR results exhibited ringing artifacts as shown in Figures 10c,e,f, 11c,e,f and 12c. Lastly,
when the estimated kernels had the correct anisotropic direction but insufficient length,
the SR results again exhibited ringing artifacts as shown in Figures 9e,f and 10d, or the
slightly blurry artifacts as shown in Figure 12e,f. In contrast, the SR results using the
kernels estimated by the proposed method showed resolution enhancement with much
less or no ringing artifacts as shown in Figures 9g, 10g, 11g and 12g. For a quantitative
comparison, we also measured PSNR and SSIM between the GT images and the SR results
images for the entire dataset and the scale factor of ×2 as shown in Table 2. E-KernelGAN
and E-KernelGAN-DIP achieved superior or similar scores with TVG-KernelGAN for the
first two datasets. However, TVG-KernelGAN achieved superior scores for the DIV2KSK
dataset with more sizable and anisotropic kernels. These results are consistent with that
in Section 4.1, showing that the performance of the SR algorithms using the sizable and
anisotropic kernels estimated by the proposed method has been improved.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. SR results of the 95th image of DIV2KRK dataset using the estimated kernels for scale factor
of ×2. The first row is the ZSSR results and the second row is the results of solving Equation (2).
From (c) to (g), the estimated kernels are shown in the middle of each column. (a) GT image and
kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22], (f) E-KernelGAN-DIP [22],
(g) TVG-KernelGAN, (h) GT.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. SR results of the 8th image degraded by the 12th kernel of DIV2KSK dataset using the
estimated kernels for scale factor of ×2. The first row is the ZSSR results and the second row is the
results of solving Equation (2). From (c) to (g), the estimated kernels are shown in the middle of each
column. (a) GT image and kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22],
(f) E-KernelGAN-DIP [22], (g) TVG-KernelGAN, (h) GT.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. SR results of the 34th image of Flickr2KRK dataset using the estimated kernels for scale
factor of×4. The first row is the ZSSR results and the second row is the results of solving Equation (2).
From (c) to (g), the estimated kernels are shown in the middle of each column. (a) GT image and
kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22], (f) E-KernelGAN-DIP [22],
(g) TVG-KernelGAN, (h) GT.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12. SR results of the 14th image degraded by the 1st kernel of DIV2KSK dataset using the
estimated kernels for scale factor of ×4. The first row is the ZSSR results and the second row is the
results of solving Equation (2). From (c) to (g), the estimated kernels are shown in the middle of each
column. (a) GT image and kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22],
(f) E-KernelGAN-DIP [22], (g) TVG-KernelGAN, (h) GT.

Table 2. Comparison of PSNR and SSIM scores of the SR results using estimated kernels.

Bicubic KernelGAN FKP E-
KernelGAN

E-
KernelGAN-

DIP

TVG-
KernelGAN GT

DIV2KRK
ZSSR PSNR 28.6953 28.7329 28.3635 29.3803 29.3544 29.0642 29.8799

SSIM 0.8035 0.8360 0.8413 0.8472 0.8470 0.8416 0.8656

Equation (2) PSNR 28.6953 30.0237 28.9431 30.3637 30.3741 30.3425 31.5232
SSIM 0.8035 0.8516 0.8329 0.8573 0.8576 0.8562 0.8801

Flickr2KRK
ZSSR PSNR 28.0653 28.4859 27.5576 28.7836 28.7809 28.5700 29.4258

SSIM 0.7897 0.8230 0.8281 0.8297 0.8296 0.8281 0.8500

Equation (2) PSNR 28.0653 29.2672 28.5526 29.3507 29.3542 29.2909 29.0367
SSIM 0.7897 0.8385 0.8222 0.8404 0.8406 0.8406 0.8341

DIV2KSK
ZSSR PSNR 24.5548 25.3626 24.7414 25.4244 25.4294 25.4313 26.2298

SSIM 0.6874 0.7507 0.7514 0.7499 0.7496 0.7529 0.7921

Equation (2) PSNR 24.5548 25.9113 25.1470 25.7892 25.7525 25.9618 26.8826
SSIM 0.6874 0.7608 0.7300 0.7566 0.7563 0.7629 0.7975

4.3. Memory and Cost Efficiency

We evaluated the cost and memory efficiency of the KernelGAN series, including
KernelGAN, E-KernelGAN, E-KernelGAN-DIP, and TVG-KernelGAN, by measuring the
parameter numbers and run-time for 3000 iterations at a scale factor of ×2. The results of
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these measurements are presented in Table 3. First, owing to the use of a large D network,
E-KernelGAN had parameters that were 2.5 times more than that of KernelGAN, and
required several times more run-time for kernel estimation than KernelGAN. Furthermore,
as E-KernelGAN-DIP utilizes the DIP network, it has significantly more parameters and
requires a much longer time, as shown in Table 3. However, because we did not construct
any additional networks, TVG-KernelGAN has the same parameter numbers as KernelGAN
and takes same time as KernelGAN, making it much more time-efficient than E-KernelGAN
and E-KernelGAN-DIP. These results suggest that the TVG-KernelGAN can efficiently
leverage self-similarity in the input image with a simple modification.

Table 3. Run-time for scale factor of ×2 and the network parameters of KernelGAN series.

KernelGAN E-KernelGAN E-KernelGAN-
DIP TVG-KernelGAN

Network
parameters 181 k 464 k 2824 k 181 k

Run-time 57 s 356 s 930 s 57 s

4.4. Limitation

As shown in Sections 4.1 and 4.2, TVG-KernelGAN performed better in estimating
sizable and anisotropic kernels. However, it achieved lower scores of KE and KS for
the smallest kernel size r as shown in Figure 8, achieving even lower scores than those
of KernelGAN. In a comparison of PSNR and SSIM scores in Table 2, TVG-KernelGAN
showed lower scores than those of the E-KernelGAN series, particularly on the DIV2KRK
dataset because the DIV2KRK dataset has many small-size kernels compared to the other
two datasets. To our knowledge, TVG-KernelGAN fails to estimate the small-size kernels
because we emphasized the edge region of the input image rather than the edge itself
to estimate sizable and anisotropic kernels. The input image is less blurry when the
degradation blurring kernel is small. Then, the small kernel from G can easily minimize the
GAN loss by utilizing the relatively sharp edge of the original input image. On the contrary,
weighting the edge region makes the original edge thicker, preventing G from estimating
the small kernel. Therefore, we expect that an adaptive algorithm that utilizes the edge
weighting scheme according to the degree of smoothness will help solve this problem.

5. Conclusions

In this study, we proposed a kernel estimation method for image super-resolution
using GAN guided by a total variation map. We simply weighted the input image using its
total variation, which includes four directions, to emphasize the edge region, which has
prevalent structural information for the network efficiently to maximize the self-similarity
of the given input image. The experimental results, including the qualitative and quanti-
tative evaluations, demonstrate that the proposed method estimates the SR kernels more
accurately and stably than conventional methods, particularly for sizable and anisotropic
kernels. The super-resolution results further show that the proposed method is superior
to the compared methods. In addition, the network parameter numbers and run-time
measurements demonstrate the efficiency of the proposed method, which simply modifies
the input data.
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