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Abstract: Weeds are one of the most harmful agricultural pests that have a significant impact on
crops. Weeds are responsible for higher production costs due to crop waste and have a significant
impact on the global agricultural economy. The importance of this problem has promoted the research
community in exploring the use of technology to support farmers in the early detection of weeds.
Artificial intelligence (AI) driven image analysis for weed detection and, in particular, machine
learning (ML) and deep learning (DL) using images from crop fields have been widely used in the
literature for detecting various types of weeds that grow alongside crops. In this paper, we present
a systematic literature review (SLR) on current state-of-the-art DL techniques for weed detection.
Our SLR identified a rapid growth in research related to weed detection using DL since 2015 and
filtered 52 application papers and 8 survey papers for further analysis. The pooled results from
these papers yielded 34 unique weed types detection, 16 image processing techniques, and 11 DL
algorithms with 19 different variants of CNNs. Moreover, we include a literature survey on popular
vanilla ML techniques (e.g., SVM, random forest) that have been widely used prior to the dominance
of DL. Our study presents a detailed thematic analysis of ML/DL algorithms used for detecting the
weed/crop and provides a unique contribution to the analysis and assessment of the performance
of these ML/DL techniques. Our study also details the use of crops associated with weeds, such as
sugar beet, which was one of the most commonly used crops in most papers for detecting various
types of weeds. It also discusses the modality where RGB was most frequently used. Crop images
were frequently captured using robots, drones, and cell phones. It also discusses algorithm accuracy,
such as how SVM outperformed all machine learning algorithms in many cases, with the highest
accuracy of 99 percent, and how CNN with its variants also performed well with the highest accuracy
of 99 percent, with only VGGNet providing the lowest accuracy of 84 percent. Finally, the study will
serve as a starting point for researchers who wish to undertake further research in this area.

Keywords: weed detection; deep learning; machine learning; systematic literature review

1. Introduction

Crop farming is considered a significant agricultural pursuit for the global economy
in the modern era, and over a longer time period, it has had a notable impact on countries’
GDP. In 2018, it contributed 4% to the global GDP and accounts for more than 25% of the
GDP for many developing countries. Moreover, with almost 9% of the world population
hungry in 2020, agriculture is a powerful source of food, revenue, and employment and
is expected to minimize poverty, raise income levels, and boost prosperity for a projected
9.7 billion population by 2050 [1,2]. However, agricultural growth through crop farming

Sensors 2023, 23, 3670. https://doi.org/10.3390/s23073670 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073670
https://doi.org/10.3390/s23073670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6557-4676
https://orcid.org/0000-0003-0237-1705
https://orcid.org/0000-0002-7314-0624
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0002-5656-0416
https://doi.org/10.3390/s23073670
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073670?type=check_update&version=4


Sensors 2023, 23, 3670 2 of 45

is always at risk due to several reoccurring problems, for example, climate change, green-
house gas emissions, pollution and waste generation, malnutrition, and food wastage [1].
Another serious problem that plagues crop farming is the growth of weeds which leads to
significant crop wastage annually. Hence, weed management and removal practices have
been adopted for several decades to control weed growth [3–5].

Weeds are undesired plants that compete against productive crops for space, light,
water, and soil nutrients and propagate themselves either through seeding or rhizomes.
They are generally poisonous, produce thorns and burrs, and hamper crop management by
contaminating crop harvests. Smaller weed seedlings with a slow growth rate are more
difficult to detect and manage than larger ones which grow vigorously. Weed management
is complicated because the competitive nature of weeds can vary in different conditions and
seasons. For instance, the tall and fast-growing fat hen weed is considered dangerous to
adjacent crops, but fat hen seedlings that appear in late summer are considerably smaller in
size and not potentially dangerous [6]. Similarly, chickweed is smaller and less dangerous
during the summer season, but in winter, it can have a high growth rate and can swamp
crops such as onions and spring greens [7,8]. Moreover, weeds can co-exist ‘peacefully’
with the crops earlier on in their growth period but start competing for more natural
resources later on. Another difficulty in managing weeds is determining the exact time
when a weed actually starts to affect the harvest. Moreover, several weeds, such as couch
grass and creeping buttercup, can survive in drought and severe winter weather as they
store food in long underground stems. Weeds are also potential hosts for pests and diseases
which can easily spread to cultivated crops. For instance, the charlock and shepherd’s
purse weeds may carry clubroot and eelworm diseases, while chickweed can host the
cucumber mosaic virus [7,9,10]. Finally, different weeds have different seeding frequencies,
further complicating weed management; for instance, groundsel can produce 1000 seeds
per season, while scentless mayweed might produce 30,000 seeds per plant. These seeds
might stay in the soil for decades until exposed to light; for instance, the poppy seed can
survive even up to 80 years.

For several decades weeds have been managed, detected, and controlled
manually [3–5]. The most common method of weed detection is manual surveillance
by hiring crop scouts or by tasking crop farmers to do the same, which is expensive, diffi-
cult to manage, and infeasible to execute in unfavorable weather conditions Scouts only
work on a sample of the field and have to follow a pre-determined randomized pattern
(e.g., zigzag). Such a setting does not always ensure that all weeds will be detected and
removed. Scouts also carry specialized equipment (e.g., hand-held computers with GPS
and geo-tagging), which adds to the expense. They need to repeat the process regularly
and fill up a report. All these limitations make crop scouting difficult to manage, and hence,
weeds continue to affect crop harvest each year globally.

Motivation and Contribution

In this paper, we focus on smart farming techniques that can detect weeds in crop
images through machine learning methods, particularly DL. This can potentially eliminate
the need for crop scouts while scanning the entire field for weeds with no management
overload. However, ever since the introduction of Graphical Processing Units (GPUs),
DL has demonstrated an unparalleled pace of research and superior performance across
a wide variety of complicated applications involving images, text, video, and speech
datasets [11–15]. DL was considered nascent till 2010 due to a lack of hardware technology
to process its complex architectures. One of the initial researches on weed detection found in
1991 [16], which highlighted the limitations of using tractor-mounted weed detectors, and
proposed the use of digital image processing (IP) techniques [17,18] to detect weeds from
both aerial and previous manually-snapped photographs by crop scouts. Research efforts
using pure IP and CV techniques for automated weed detection remained very limited
for the next two odd decades [19–22]. This paper demonstrates that such applications
are still in their infancy with respect to applications in ML and DL [12,23]. Since 2000,
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researchers have been using ML sometimes in combination with CV to automatically detect
weeds from images [24–29]. Although most of these works detected weeds with reasonable
accuracy, they also highlighted the potential of DL for significantly better performances.

Through some initial searches, we determined that DL applications in research for
weed detection have increased considerably since 2015, and they primarily use convolu-
tional neural networks (CNNs) and their variants such as SegNet, GoogLeNet, ResNet,
DetectNet, and VGGNet [30,31]. Though some survey articles have been published since
2015 on DL applications for weed detection [32,33], they lack proper SLR.

The rapid pace of research in DL and its potential to provide a competitive performance
on complicated image-based recognition tasks motivated us to conduct the SLR on DL
applications of weed detection. Our general intent is to extract and summarize the relevant
and most recent research and provide concrete future directions regarding industrial
applications and academic research. As this domain involves working with image data of
weeds, we target applications of CNNs, particularly the most recent and standard published
research content for the time period between 2015 and January 2023. In our SLR, we answer
the following research questions:

RQ1: What is the trend of employing deep learning to address the problem of weed
detection in recent years?

RQ2: Which types of weeds and corresponding crops have been detected using deep
learning, and what are the characteristics of the corresponding weed datasets?

RQ3: Which deep learning algorithms are best suited for a particular weed/crop combi-
nation?

RQ4: What are the tangible future research directions to achieve further benefit from deep
learning applications for weed detection?

RQ1 is addressed in Section 4, where we describe our SLR methodology and analyze
the trends and other relevant statistics of extracted papers.

RQ2 and RQ3 are addressed in Section 5. For RQ2, we analyze and identify the
datasets that have been used in the papers and summarise the relevant information such as
weed types, crop types, and characteristics of weed images (e.g., resolution, size).

To address RQ3, we identify the different DL algorithms in the literature and compare
their frequency of usage and performance data. Moreover, we categorize each paper by
assigning a unique label based on the usage of ML, IP, and DL, along with characteristics
such as training time and performance. We then compare the performance of ML and IP
algorithms with DL ones. To further strengthen the analysis, we associate the weed types
with the algorithm used and its associated evaluation outcome. Finally, we address RQ4
in Section 8 by analyzing our findings and proposing a set of future research directions to
motivate and enhance the DL research weed detection domain.

2. Related Surveys

In this section, we discuss in detail the eight articles of literature review which we
extracted through our SLR.

In [34], the authors review seven research papers based on deep learning and dis-
cuss three previously-used techniques for the classification of weeds such as color-based,
threshold-based, and learning-based techniques. The authors review the papers over dif-
ferent parameters such as the type of deep learning used, targeted crops, training setup,
the training time of the algorithm, dataset acquisition, dataset strength, and accuracy of
the algorithm. Research gaps are also identified, and one of the gaps was the lack of a big
dataset which could be a major contribution in this field.

Moreover, in [35], the challenges faced by vision-based plant and weed detection
and their solutions have been discussed. Two main challenges of weed detection are the
light problems, i.e., the algorithm may work differently due to the presence of light, and
discrimination between crop and weed, i.e., sometimes both may look similar. Shading or
artificial lighting can be used to control the variation of natural light, or image processing
techniques like segmentation of background (and then converting the image into Grayscale)
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can be used to tackle this problem. For the second problem, different types of IP-based
classification techniques were discussed, which were based on shape, texture, height, and
DL. The authors discussed the comparison of traditional classification and DL methods.
They also highlight the application of online cloud databases as an important future
direction to further improve the recognition or detection of weeds and crops.

Furthermore, in [22], the authors summarize different problems and provided solu-
tions to weed classification using IP and DL techniques. Four basic steps of classification,
such as pre-processing, image segmentation, feature extraction (biological morphology,
spectral feature, visual texture, spatial context), and classification (convolutional machine
learning), have been discussed in detail. Some challenges like leaf overlapping, light vari-
ation, and stages of plant growth and their solutions were discussed. Semi-supervised
learning techniques have been proposed by the authors to improve the current performance
of the aforementioned techniques.

In [36], the authors analyze different techniques for weed detection using IoT tech-
nology. The authors discuss several DL algorithms employed in the context of IoT and
perform their comparative analysis, for example, CNN, SegNet (with a synthetic dataset
for achieving higher accuracy), and summarised training set technique with CNet, which
is a deep CNN based on image segmentation. The authors also propose an IoT-based
architecture where different devices and sensors are connected to one central data server,
and users can communicate with the server through the Internet. This model can be con-
trolled by a desktop computer or mobile device. Moreover, in [37], the authors focus on the
methods and technologies used in weed detection with particular focus on the requirements
of weed detection, its applications, and the system needed for weed detection, such as
satellite-based positioning, crop-row following, and multi-spectral images. They have also
drawn attention to the limitation of previously constructed detection systems, such as the
lack of within-row plant-detection facilities.

In [38], the authors discuss DL techniques and architecture. In the former, they discuss
Artificial Neural Networks (ANN), CNN, and Graph Convolutional Networks (GCN), and
in the latter, they discuss image classification, object detection, semantic segmentation, and
instance segmentation. They also mention the significance of public datasets, specifically
carrot-weed, CWF-788, CWF-ID, DeepWeeds, GrassClover, Plant Seedlings, Sugar Beets
2016, Sugar Beet/Weed Dataset, and WeedCorn/Lettuce/Radish, to demonstrate how
images were acquired, size of the dataset, pixel-wise annotation and modality. They also
discuss data augmentation by mentioning limitations in the size of public datasets to work
in varied conditions. They discuss fine-grained learning that overcomes the problem of
general deep architectures, which ignores the challenges of similarities between crops and
weeds, along with low-rank factorization, quantization, and transferred convolutional
filters to solve the resource-consumption problems in analyzing real-time data for weed
detection through DL. For the manual collection of datasets for weed, identification could
be expensive, so weakly supervised and unsupervised methods can be necessary. For
weakly supervised, object detection or segmentation can be used on image-level annotation,
and for unsupervised learning, domain adaptation and deep clustering can be used. The
existing methods for deep learning cannot deal with new species once a model is trained; to
overcome this problem, incremental learning is proposed that is used to extend the existing
trained model without retraining it.

Finally, in [39], the importance of reducing the use of herbicides is highlighted, and
the authors review current and emerging technologies for this domain in the last 5 years.
They classify the discussions into “digital image sensor-based” and “non-digital image
sensor-based”. In the former, the shapes and morphological features of weeds are used
for detection, and in the latter, reflectance spectra are used to detect weeds. A complete
workflow example of weed detection of Romaine lettuce has been discussed. This workflow
shows the means of automatic weed detection using deep learning based on YOLO. In
all the review papers, the authors did not conduct an SLR, and the focus is apparently to
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review performance over specific tasks rather than conduct a wide-ranging review of DL
applications to weed detection.

Perhaps the paper most related to our work is [40], in which the authors review DL
approaches to weed detection based on four steps: data acquisition, dataset preparation,
weed detection, and localization and classification of weeds in crops. They develop a
taxonomy for DL applications specifying the weed and crop type, the DL architecture
applied, and the IP technique. In data acquisition, they detail how data or images have
been collected, for example, using digital cameras, public datasets, camera moving vehicles,
etc. They discuss and classify 19 public datasets according to several standard parameters,
such as modality, dataset size, etc. In the data preparation phase, after acquiring images
using different sources, images are prepared for training and testing, which includes
different techniques, for instance, image processing, image labeling, image augmentation,
etc. Weed detection is classified as a plant-based classification or a weed mapping approach.
In the former, every plant needs to be localized in an image before detection, and in the
latter, the density of the presence of weed in an image is used to detect that weed. In
the last step, the authors discuss different algorithms, such as CNN, YOLO, FCN, GCN,
and hybrid models, along with learning methods, such as supervised, unsupervised, and
semi-supervised.

Several major differences distinguish our paper from [40]. Firstly, our process of
review is more standardized because we conduct an SLR and answer concrete research
questions (Sections 1 and 4). Secondly, we present a more thorough analysis of the SLR
results, specifically through analyzing different combinations of algorithms, binning and
analyzing individual algorithmic performance, specifying appropriate thematic labels, and
analyzing the literature with respect to these labels (Section 7). Thirdly, we use a table
to present a comprehensive association of algorithmic performance across different weed
types and their respective crops, which provides a strong guideline to analyze current
performance in the literature and to determine directions for future research (Section 6).
Fourthly, we specify these directions more thoroughly to provide a type of road map for
researchers of this domain (Section 8).

3. Background Knowledge

Before looking deeper into weed detection techniques, it is necessary first to understand
weeds. This section discusses weeds, their various types, and weed detection algorithms.

3.1. Weed Types

Weeds can be generally classified as annual, biennial, and perennial [3–5]. Annual
weeds germinate, bloom, and die within one year, while biennial weeds have a life cycle
of two years, with germination and blooming happening in the first year and dying out
in the second year. Perennial includes all weeds which last longer than two years in that
they can germinate, bloom, and seed for several years. In our 60 extracted papers, authors
have used a total of 34 weeds, of which we identified 26 annual and 8 perennial types. We
illustrate these weeds in Figures 1–7 and discuss them in the following two sections.

Figure 1. From left to right: Pigweed, Blackgrass, Bluegrass, Dockleaf, Canadian Thistle (Source: [41]).
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Figure 2. From left to right: Chickweed, Cleaver, Cockleblur, Crowfoot, Fat-hen (Source: [41]).

Figure 3. From left to right: Field pansy, Hare’s ear mustard, Japanese hop, Jungle rice, Little seed
(Source: [41]).

Figure 4. From left to right: Mayweed, Meadow grass, Nutsedge, Paragrass, Shepherd’s purse
(Source: [41]).

Figure 5. From left to right: Silky-bent, Turnip weed, Dicot, Grass Weed, Velvetleaf (Source: [41]).

Figure 6. From left to right: Benghal dayflower, black nightshade, hedge bindweed, Indian jointvetch,
snakeweed (Source: [41]).

Figure 7. From left to right: Fescue grass, Chinee apple, Lantana camara, Sedge weed (Source: [41]).
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For each weed, we label it by its commonly-used published name and mentioned sci-
entific name in parentheses (wherever applicable). We extracted more detailed information
about all these weeds from the Invasive Species Compendium section of the Cab Insti-
tute’s website [42] and Wikipedia entries [43] along with websites of Garden Organic [44],
Crop Protect [45], Gardening Know How [46], Lawn Weeds [47], Farms [48], and the USA
Department of Agriculture [49]. Moreover, several weeds are categorized as both annual
and perennial, for example, chickweed, but we have considered them as annual weeds for
classification purposes.

3.1.1. Annual Weeds

In this section, we list the twenty-six (26) annual weeds used in our extracted pa-
pers. (1) Chickweed (Stellaria media), (2) Loose silky-bent (Apera spica-venti), (3) Velvetleaf
(Abutilon theophrasti), (4) Shepherd’s purse (Capsella bursa-pastoris), (5) Cleaver (Galium
aparine), (6) Black nightshade (Solanam nigrum), (7) Blackgrass (Alopecurus myosuroides), (8)
Littleseed canarygrass (Phalaris minor), (9) Crowfoot grass (Dactyloctenium aegyptium), (10)
Jungle rice (Echinochloa colona), (11) Mayweed (chamomile), (12) Fat-hen (Chenopodium album),
(13) Pigweed (Amaranthus albus), (14) Chinee apple (Ziziphus mauritiana), (15) Snakeweed
(Gutierrezia sarothrae), (16) Indian jointvetch (Aeschynomene indica), (17) Fescue grass, (18)
Bluegrass (Poa annua), (19) Meadow grass (Poa trivialis), (20) Hare’s ear mustard (Conringia
orientalis), (21) Turnip weed (Rapistrum rugosum), (22) Cocklebur (Xanthium strumarium),
(23) Field pansy (Viola rafinesquii), (24) Japanese hop (Humulus scandens), (25) Dicot, and
(26) Grass weed (Monocot). Collectively, the annual weeds can attack livestock and diverse
cereal and vegetable crops, notably wheat, maize, sugar beet, tomato, cotton, rice, carrots,
potato, peanuts, and corn. They also grow in different land types like crop fields, pastures,
orchards, home lawns, grasslands, arable lands, roadsides, seashores, and wooded areas
and in different soil types (sandy, dirty, wet). They pose severe management challenges:
they can weaken the crop by more than 70% in some severe cases and can continue to
germinate in the soil for decades, along with causing skin diseases to farmers and affecting
the milk taste of livestock [6,50–52].

3.1.2. Perennial Weeds

The following eight (8) perennial weeds have been used in our extracted papers
for weed detection: (1) Canadian thistle (Cirsium arvense), (2) Paragrass (urochloa mutica),
(3) Nutsedge (cyperus rotundus), (4) Dockleaf (Rumex obtusifolius), (5) Benghal dayflower
(tropical spiderwort), (6) Sedge weed, (7) Lantana (Lantana camara) [53], and (8) Hedge
bindweed (morning glory). Collectively, like the annual weeds, these weeds can cause severe
damage to crop fields, gardens, lawns, and other land types and can survive for several
decades in diverse soil conditions [54–57]. They can grow in water and on profound soils
in non-muddy areas and can attack sugarcane, chrysanthemum, rice, cotton, soybeans,
peanuts, and corn crops.

3.2. Deep Learning (DL) Algorithms

Deep Neural Networks (DNNs) are extensions of Artificial Neural Networks (ANNs)
in terms of complexity, number of connections, and hidden layers. A CNN is a DNN
that assigns learnable weights and biases to various aspects and objects of input images
to distinguish and classify objects such as weeds. CNNs do not require manual feature
selection; rather, the network learns important features automatically from training data to
reveal useful information hidden. CNNs are robust at classifying various objects with dif-
ferent scales, orientations, and levels of occlusion. CNNs capture the spatial and temporal
dependencies of the input image through relevant filters autonomously and hence provide
better and more efficient image processing with a considerably lesser number of estimable
parameters and processing time.

Max pooling is generally preferred as it discards the noise (data values unreliable for
machine learning) in the data and performs the de-noising operation. Due to the possibility
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of saturation in sigmoid and tanh activation functions, CNNs employ the rectified linear
activation unit (ReLU) as the activation function g(z), which outputs the aggregated value
z if it is greater than 0, and 0 otherwise, i.e., g(z) = max{0, z}. Hence, it is a piece-wise
linear function. The linearity of ReLU for z > 0 allows it to preserve many properties of the
input to facilitate stochastic gradient descent [15] and generalize to unseen data. Moreover,
batch normalization is performed in CNN, which breaks up the training image data into
mini-batches and standardizes the mini-batch input data to each layer. This stabilizes the
learning process and considerably reduces the training epochs required to train CNNs [58].

One application of convolution and max pooling with ReLU forms one layer of the
CNN pipeline. Typically multiple such layers can be employed. In each layer, we can
have parallel processing based on different color channels or feature maps, for example,
RGB. The output from the last pooling layer is flattened as a 1-D vector and fed to the fully
connected layer (i.e., conventional Multilayer Perceptrons (MLP)) for image classification,
e.g., detecting weeds within a given image. MLP outputs the probability of occurrence of
each possible object (on which the CNN has been trained) through the softmax activation
function σ(−→z )i = ezi / ∑K

j=1 ezj where σ is the softmax function for i-th activation input
vector −→z i, K represents the number of classes, and ezi and ezj represent the standard
exponential functions for input and output vectors, respectively.

3.3. Variants of CNNs

The first usable and concrete CNN architecture was LeNet-5, proposed by Yann LeCun
in 1998 and developed to recognize handwritten and printed characters [59]. It has a 2-
layered architecture with 6 feature maps in the first layer and 16 feature maps in the second
layer, followed by two fully-connected layers. A key outcome of this work is that larger
image sizes can distinguish more pixels for the stroke end-points for written characters.
After LeNet-5, ImageNet [60] has motivated researchers to propose enhancements leading
to significant reductions in top-5 error percentages, i.e., the proportion of miss-classified
images appearing in the top-5 results sorted in decreasing order of predictive confidence
P(Yi|Xi) (where Xi is the input test data and Yi is the class label under consideration). For
instance, AlexNet [61] is trained on 1.2 million images to achieve the lowest top-5 error rate
of 16%, with five convolutional layers, followed by three fully connected dense layers. The
authors used ReLU activation in all layers except the last layer, which employed softmax
activation. Moreover, VGGNet 16 [62] is a deeper network than AlexNet with a top-5 error
rate of 7.5%, with five CNN layers followed by three fully connected layers. VGGNet
needs to estimate approximately 140 million parameters for training; however, due to the
availability of pre-trained models, VGGNets are still being employed for several image
classification tasks.

GoogleNet [63] achieved a top-5 error rate of 6.7% (almost equal to human-level
performance) with its inception modules merging convolutional operations together rather
than implementing them in different layers, and the concatenated output shows results
from all convolutional operations. It employs 22 layers containing 9 inception module
layers inserted between several pooling, convolutional, and fully connected layers with
a drop-out layer used to drop input neurons from processing randomly to prevent over-
fitting. GoogleNet achieves a significant reduction in the number of parameters to be
estimated (4 million) as compared to AlexNet (60 million) and LeNet-5 (more than 100
million). Inception Module V1 used by GoogleNet was later upgraded to Inception Module
V4 and Inception ResNet.

The ground-breaking research in CNN was achieved by ResNet (Residual Network)
with a top-5 error rate of 3.6% (better than human performance) and remains unbeatable
to date [64]. ResNet is a deep CNN with 152 layers which provides a solution to the
vanishing gradient problem, i.e., the gradient becomes very small as it keeps on getting
multiplied during backpropagation until it stops influencing any weight updates (learning
stops). ResNet assumes that deeper layers should not generate more training errors than
the shallower ones. Hence, it employs skip-connections, which transfer the results of
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a few layers to deeper layers while skipping some layers in between, hence preventing
deeper layers from producing higher training errors than shallow layers. The gradient
flow through the shortcut connection to the earlier layers, thus, reducing the vanishing
gradient problem.

Along with this, SegNet [65] has been used for weed detection through image seg-
mentation. It comprises an encoder network and a decoder network, much similar to
Autoencoders [12]. In encoding, convolutions are performed using the 13 convolutional
layers from VGGNet, followed by 2× 2 max pooling to generate an encoded representation.
In decoding, the max pooling indices from the encoding phase are employed to upsample
the encoded data; for example, the 2 × 2 matrix is upsampled to a 4 × 4 matrix, and
convolutions are also applied during the upsampling operations. Finally, the softmax
function is applied at the end. In essence, there are no fully connected layers after decoding.
Rather 1 × 1 convolutions are used, which allows outputting of a label for each pixel (a
requirement for image segmentation) rather than a label for the whole input image. Such a
setup is also called a Fully Convolutional Network (FCN). Another FCN-based algorithm is
U-Net [66], which is used for biomedical image segmentation. It does not employ pooling
indices during the decoding phase. Rather, the entire feature maps are transferred from
encoder to decoder to acquire better segmentation performance but at the cost of time and
memory. This makes U-Nets computationally intensive as compared to SegNets.

Finally, Deeplab [67] is a series of image segmentation algorithms invented by Google
(Deeplabv1, Deeplabv2, Deeplabv3, Deeplabv3+) in 2018. The iterative application of
pooling operations in FCNs reduces the spatial resolution of images. Deeplab uses atrous
convolutions to generate much denser decoded feature maps with lesser computational
overhead. It also enhances the localization accuracy in FCNs through the use of conditional
random fields.

3.4. Machine Learning Algorithms

We now briefly describe the more important Machine Learning (ML) algorithms (for
more details, refer to [68–71]). Support Vector Machines (SVMs) estimate an optimal hyper-
plane between data points to linearly separate two classes by maximizing the margin with
respect to the closest points called support vectors. Mathematically, from the equation
y = m ∗ x + c, we can have y = a ∗ x + b and a ∗ x + b− y = 0. Suppose we have vectors
X = (x, y) and W = (a,−1), then the vector in hyper-plane become W ∗ x + b = 0. Assume
n training instances with each instance x of D dimension and belonging to class y = +1
or y = −1. Then the training would be xi, yi where i = 1 · · · n, yiε−1, 1, and xεRD. If
D=2, then hyper plane would be described as follows: for yi = 1 as yi(W ∗ x + b) >= 1
and for yi = −1 as yi(W ∗ x + b) <= −1. This leads to equations h1 : w.x + b = −1
and h2 : w.x + b = 1 for two lines forming the hyper-plane. The distance between h1
and the starting point is (−1− b)/|w| and the distance between h2 and starting point is
(1− b)/|W|. The maximum distance between h1 and h2 is called the margin M: M =
(−1− b)/|w| − (1− b)/|w| = 2/|w|.

Decision Trees (DTs) model data as a tree whose nodes represent features as decision
points, branches as feature values, and leaf nodes as class labels. Different patterns of
label classification can then be extracted from the root node to each leaf node. At each
decision node, features are selected at each node based on statistical criteria, mostly infor-
mation gain. Specifically, the entropy of any partition of a dataset D can be expressed as
Entropy(D) = −∑n

i pi ∗ log2(pi), where p is the probability of occurrence of an instance i
in n total instances. The Information Gain G(D, A) represents the change in entropy of D
when we consider feature A for decision node: G(D, A) = E(D)−∑

f
i (|D f |/|D|) ∗ E(D),

where f represents all possible values of F, |D| represents total instances in D, and |D f |
represents the number of rows containing the particular value f . Random Forest (RF)
is a well-known DT ensemble algorithm that employs bootstrap aggregation (bagging)
to generate m (m < N) datasets D1, D2, · · · , Dm by sampling D uniformly and randomly
with replacement. A set of m DTs h1, h2, · · · , hm is generated for each dataset. An unseen
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instance is then tested on each tree, and the class with the majority vote from amongst all
m trees is output as the final predicted value.

In the same vein, Adaptive boosting (Adaboost) uses an ensemble boosting technique
to construct a strong learner from a number of weak learners, which are typically DTs.
In each iteration, it adapts by finding miss-classified data points from each learner and
increases their weights (to learn them with more emphasis in the next iteration) while
decreasing the weights of correctly classified points (to learn them with less emphasis in the
next iteration). As long as the performance of each learner is better than random guessing,
Adaboost is guaranteed to converge to a strong learner. A boosted classifier over T weak
classifiers can be represented as FT(x) = ∑T

t=1 ft(x) where each ft is a weak learner that
takes x as input and outputs the class label. A hypothesis h(xi) for each sample in training
data is output by each ft. At iteration t, each weak learner is assigned a coefficient αt to
minimize the following sum of training error Et: Et = ∑i E[Ft−1(xi) + αth(xi)] where Ft−1
is the boosted classifier of the previous stage, E(F) represents the error function and ft(x) =
αh(x) is the weak learner under consideration for addition to the Adaboost classifier.

Artificial Neural (ANNs), more commonly known as Multilayer Perceptrons, are ML
versions of the CNNs described earlier. They can model complex non-linear stochastic
relationships between predictors and label through layers of neurons (processing units).
Predictor data are fed to an input layer, processed over one or more hidden layers, and
predictions are generated at the output layer. The neurons between each pair of layers are
connected to each other through synapses called weights. The weight vectors are updated
based on numerical values output from a mathematical activation function from each neuron
in the hidden and output layer, based on the aggregated input at each neuron. A sample
output can be represented as hi = σ(∑N

j=0 Vijxi + Th
i id) where σ is the activation function,

N is the number of input neurons to a given neuron, vi j are the weights of these input
neurons, xi shows the input values to input neurons, and T is the threshold for activation.

Moreover, the k-nearest neighbor (KNN) categorizes the input x by its k nearest
neighbors. For k, it will observe the adjacent neighbors of hidden data points and assign the
data point to a class with the highest number of data points from all classes of k neighbors.
It uses Euclidean distance when it calculates the probabilities. KNN gives the input x to the
class which has the highest probability: P(Y = j|X = x) = 1/K ∑iεa I(yi = j), where a is
the set of k nearest neighbors and I(yi = j) is an indication variable which calculates to 1 if a
given neighbor (xi, yi) in a is a participant of class j, else it calculates to 0. Finally, K-means
is primarily used for cluster analysis. It divides the data into k predefined unique clusters
(collection of data points with similar features) where each data point should preferably
belong to only a single cluster. It initially sets k centroids randomly and assigns every data
point to its nearby cluster. It calculates the centroids for each cluster by averaging all the
data points belonging to that cluster. The Euclidean distance between a data point q and

centroid p is typically calculated as d(q, p) =
√

∑n
i=1(qi − pi)2, where n is the the number

of features.

3.5. Image Processing Techniques

Image Processing (IP) can be used to improve images for further processing with DL or
ML algorithms. IP facilitates algorithm tasks by improving image quality and transforming
images to meet the needs of the algorithm. Local Binary Patterns (LBP) [72] is a visual
descriptor of images in CV based on thresholding. It divides an image into equal-sized cells,
for example, with each cell containing 16 × 16 pixels. Each center pixel c is then compared
to each of its 8 neighbors n, for example, clockwise starting from top-right, middle-right,
then bottom-right, and so on. The thresholding works as follows: if the value of n is greater
than the value of c, we set n = 0; otherwise, we set n = 1, giving us an 8-digit binary
number. Then, we compute a histogram over c indicating the frequency of each of the
256 (28) combinations of this binary number. Finally, we concatenate the histograms of all
cells to form a feature vector for the whole image, which can then be processed in machine
learning and deep learning tasks. Mathematically, LBP for pixel c over a neighboring radius
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r (set to 8) is estimated as follows: LBPc,r = ∑P−1
i s(vi − vc)2i where P is the number of

neighboring pixels, vi and vc are values of the neighboring and center pixel respectively,
s(t) is thresholding such that s(t) = 1 if t > 0 and 0 otherwise. The histogram feature
vector of size 2P (256) is then estimated from the obtained LBP code.

Moreover, Simple Linear Iterative Clustering (SLIC) [73] is an image segmentation
algorithm that uses k-means clustering to create superpixels, which are small-sized clusters of
pixels sharing common features. Clustering is done by distance measurement computation
in 5D (labxy) space, where (l, a, b) is the 3-dimensional color representation of the pixel at
coordinate (x, y). The distance measure DS is then defined as follows: DS = dlab + (m/s) ∗
dxy where dlab =

√
(lk − li)2 + (ak − ai)2 + (bk − bi)2 and dxy =

√
(xk − xi)2 + (yk − yi)2

and m controls the density of superpixels proportionally. Moreover, Histogram of Gradients
(HoG) [74] is used for feature extraction. It divides an image into a number of regions, and
for each region, it estimates the gradient (magnitude) and the orientation (direction) of the
edges in that region. Then, the histogram of this data (HoG) for each region is generated
separately. Suppose that for each pixel (x, y), we define HG as the distance between the
adjacent right and adjacent left pixel values and VG as the distance between the adjacent
top and bottom pixel values. The gradient magnitude GM is GM =

√
(HG)2 + (VG)2 and

the gradient angle GA is GA = tan−1(HG/VG) Then, HoG is generated by binning the
frequencies of either GM or GA or both together [74].

In addition, Hilbert Transform (HT) [18] is used to separate features of a specific shape
within an image, for example, circles, lines, and ellipses. A line is a collection of single
points with slope m and intercept c and y = mx + c in the xy plane. In HT, we convert
a line from (x, y) plane to (m, c) space, i.e., from y = mx + c to c = −mx + y. To avoid
unbounded values of m, the well-known Hough space (r, θ) transformation can also be
used as follows: r = x.cosθ + y.sinθ. Moreover, Median filtering [17] is a non-linear IP
technique that maintains edges while removing noise. It calculates the median gray-scale
value of a pixel’s neighborhood. In applying a fixed-size kernel, we sort all pixel values
within this kernel based on gray-scale values. Then, the median value of this sorted array
will be used, and zeros can be padded in rows and columns to complete the pixel count.
Finally, Background Subtraction (BS) [75] is a well-known technique used in IP and CV for
detecting moving objects in videos from static cameras for additional processing. It isolates
these foreground objects with respect to a reference image by subtracting the current frame
from a reference frame called the background model. If the data points are non-linear, then
we need to add one more dimension to the data point, which will be z = x2 + y2.

GANs (generative adversarial networks) [76] are types of generative deep learning
algorithms whose purpose is to learn a set of training samples and their probability distribu-
tions and then generate data from this distribution. GANs can produce more samples based
on the measured probability distribution and are particularly accurate in producing real-
istic high-resolution images. GANs comprise two different feed-forward artificial neural
networks named Generator (Gen) and Discriminator (Dis) that participate in an adversarial
game. The input to the generator is Gaussian noise pz(x) and Gen tries to generate an
approximation pmodel(x) to the probability distribution of the actual data pdata(x). Mean-
while, Dis learns to distinguish whether a data point x is sampled from pdata(x) or pz(x),
the latter being input to Dis as data sampled from pmodel(x). The task of Gen is to fool Dis
into thinking that data sampled from pmodel(x) is actually the data sampled from pdata(x).
Therefore, Dis maximizes the probability of classifying data as pdata(x) and minimizes
the probability of classifying it as pmodel(x), while Gen tries to do the exact opposite. In
this context, both Dis and Gen participate in a two-player minimax game with the value
function Val(Dis, Gen) as minGenmaxDisVal(Dis, Gen) = Ex ∼ pdata(x)[logDis(x)] + Ez ∼
pz(z)[log(1− Dis(Gen(z))))] where Gen maximizes logDis(Gen(z)) rather than minimiz-
ing log(1− Dis(Gen(z))) [12,76].
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4. SLR Methodology

In this section, we address RQ1: What is the trend of employing deep learning to
address the problem of weed detection in recent years. To answer this, we conduct an
SLR by following the standard methodology [77] and dividing our work into three phases:
(1) Planning, (2) Execution, and (3) Reporting (see Figure 8).

Figure 8. Our SLR process.

In the planning phase, we identify the research objective, research protocols, search
keywords, and digital sources for extracting the relevant papers. In the execution phase,
we execute our search queries on each of the identified digital sources to acquire the
relevant corpus of papers by using a three-step technique (described below) and eliminating
duplicates. In the reporting phase, we apply thematic classification to our final list of
extracted papers and describe them in detail, identify the limitations of these works, and
then propose a concrete set of future work recommendations.

In this SLR, our specific consideration is in the domain of DL applications in weed
detection. Our research objective is to extract the state-of-the-art, identify published
academic research related to this domain, understand the content of these papers, classify
our results using different methods of analyses, identify the gaps or limitations through
these classifications, and consequently propose guidelines and directions to motivate and
enhance the state-of-the-art research. To achieve this, we adopted the following inclusion
and exclusion criteria.

• We targeted original academic research content published in journals, conferences,
workshops, and symposiums. We excluded periodicals (magazines and news from
newspapers), letters, books, and online content, specifically websites, blogs, and social
network feeds.
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• We considered papers published in the English language only.
• We selected the following digital sources: IEEE, ACM, Elsevier, Springer, and Google

Scholar. Our previous experience [78,79] has shown us that these sources are collec-
tively effective in retrieving required content for data analytics, machine learning, and
any computer science domain in general. Moreover, Google Scholar can effectively
index published data from other sources, for instance, Taylor and Francis, Wiley, MDPI,
and Inderscience.

• Initially, we focused on research published from 2010 and onwards. However, after
some preliminary results, we discovered that the content most relevant to the domain
of weed detection using DL was published primarily from 2015 onwards. Therefore,
we focus our SLR from Jan 2015 till Jan 2023.

The published DL research has seen an exponential rise in different domains in the
last several years, for example, after the proposal of generative adversarial networks in
2014 and the discovery of different variants of CNNs, autoencoders, and recurrent neural
networks (RNNs). Hence, we decided to focus only on the latest research from 2015 till
January 2023. We considered all articles irrespective of the country of the first authors.
Moreover, we considered three types of research publications: (1) application papers, i.e.,
papers that present a novel research idea along with experimental results; (2) literature
reviews (both systematic and non-systematic) and (3) frameworks, i.e., papers that present
a novel research framework/idea with a concrete design but it has not been validated with
experimental work.

We formulated our search queries from our four research questions (mentioned in
Section 1). In these questions, we focused on discovering important information on smart
farming, particularly deep learning, applications for weed detection, for instance, the
different research trends and statistics, types of weeds detected and algorithms used,
and performance comparison of algorithms. From our previous experience [78,79], we
concluded that all this information could be extracted by using search queries based on
different combinations of the following three keywords: (1) weed detection, (2) smart
farming, which is used interchangeably with smart agriculture and precision farming, (3)
Weed Classification, and (4) deep learning, in which we particularly targeted CNNs. Based
on this, we initially executed the following nine search queries (& = AND): (1) {“weed
detection”}, (2) {“precision farming” & “weed detection”}, (3) {“precision agriculture” &
“weed detection”}, (4) {“smart farming” & “weed detection”}, (5) {“weed detection” & “deep
learning”}, (6) {“precision farming” & “weed detection” & “deep learning”}, (7) {“precision
agriculture” & “weed detection” & “deep learning”}, (8) {“smart farming” & “weed detec-
tion” & “deep learning”}, (9) {“weed detection” & “CNN”}, (10) {“weed classification”},
(11) {“precision farming” & “weed classification”}, (11) {“precision agriculture” & “weed
classification”}, (12) {“smart farming” & “weed classification”}, (13) {“weed classification”
& “deep learning”}, (14) {“precision farming” & “weed classifcation” & “deep learning”},
(15) {“weed classification” & “CNN”}

The results from these queries showed that the most relevant papers could be obtained
only through the following two queries (which we also used in our SLR): (1) {“weed
detection” & “deep learning”} (labeled as Q1), (2) {“weed detection” & “CNN”} (labeled
as Q2) and (3) {“weed classification” & “CNN”} (labeled as Q3). Q1 and Q2 also retrieved
articles related to applications in ML and IP (without any DL implementation) for weed
detection. We considered these papers in our SLR to facilitate a comparison of these
algorithms with DL to understand further the strengths and limitations of these approaches
(RQ4 in Section 1).

We implemented a three-step procedure to filter out our required subset of research
articles (shown in the execution phase in Figure 8). In the first step, we filtered out the
articles based on their titles, i.e., we did not consider articles whose titles were not related
to the domain of weed detection using DL, for instance, several titles related to smart
farming but no research contribution to weed detection. In the second step, we adopted the
same approach to filter articles from the first step based on their abstracts, and in the third
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step, we filtered articles from the second step based on their content, i.e., after reading the
article’s introduction, methodology, and results section.

Across all the digital sources, we filtered out a total of 129 articles from the title
filtration step, of which 25 were duplicates. Thus, we filtered out 92, 81, and 64 articles after
the title, abstract and content filtration, respectively. The breakdown of these numbers with
respect to each digital source (IEEE, ACM, Elsevier, Springer, Google Scholar) and search
query (Q1, Q2, and Q3) is shown in Table 1. Of our 64 articles, 49 (83%) were retrieved by
Q1 alone, 10 by Q2, and the remaining 4 by Q3. Across Q1, Q2, and Q3, IEEE retrieved 29
(53%) of these 64 articles, while ACM retrieved 2 (3%) only. The 8 articles were retrieved
from Springer, 10 from Elsevier, and 15 from Google Scholar. All the above trends are also
applicable for title filtering and abstract filtering data.

Figure 9 shows the frequency distribution of our filtered 64 articles from January 2015
to January 2023. We observed an exponential trend in the number of publications from 2015
onwards. Moreover, Figure 10 demonstrates that out of our 64 articles, 55 were application
papers, 8 were literature reviews, and only 1 article introduced a framework. Finally,
Figure 11 shows the co-author citation graph for our 64 papers. Out of a total of 221 authors
in these papers, the presented 13 authors in Figure 11 have the strongest co-authorship
links. The colors red and green represent two clusters of co-authorship links with the
author Arnold W. Schumann participating in the red cluster (in the years 2020 and 2021)
[38] as well as in the green cluster (in 2019) [80,81].

Figure 9. Year Wise Distribution of Articles.

Figure 10. Article types and Frequency.
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Figure 11. Co-Author Citation Graph.

Table 1. Breakdown of frequency of articles filtered with respect to title, abstract, and content across
search queries Q1. Q2 and Q3 and digital sources.

Q1 Q2 Q3

Digital Sources Title Abstract Content Title Abstract Content Title Abstract Content

IEEE 50 42 25 4 4 4 0 0 0

ACM 3 2 1 2 2 1 0 0 0

Elsevier 8 7 8 3 3 2 0 0 0

Springer 8 7 6 3 3 2 0 0 0

Google Scholar 10 5 9 9 2 2 11 6 4

5. Review of Weed Detection Algorithms

In this section, we summarize the findings of our surveys on application articles
and literature reviews. For convenience, we merged the single paper, which proposed a
framework [82] into the application articles (i.e., implementation) category.

5.1. Weed Datasets Available for Deep Learning

In this section, we answer RQ2: Which types of weeds and corresponding crops have
been detected using deep learning, and what are the characteristics of the corresponding
weed datasets? In this regard, we extracted and classified important characteristics regard-
ing the datasets of weed images used by researchers of the application papers, shown in
Table 2. These are (1) corresponds to the reference article, (2) the dataset name or label
(Dataset), (3) the size or the number of images in the dataset (Size), (4) the type of crop for
which the weed was detected by the authors (Crop), (5) the particular weed type which
was detected (Weed), (6) the modality of the dataset (Modality), (7) the data collection
technique through which images were acquired (Data Collection), and (8) the resolution of
the images (Resolution). We use N/M (Not Mentioned) to indicate any of this information
not mentioned by the authors.
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Table 2. Information regarding weed datasets used in application papers.

Article Dataset Size Crop Weed Modality Data Collection Resolution

[32] Gharo N/M Wheat N/M N/M Drone 4000 × 3000

[33] Sensifly 1500 Wheat, Maize, Sugar
beet Chickweed, Blackgrass RGB Referred Dataset 150 × 150

[83] IARI 60 Rice, Maize Littleseed canarygrass,
Crowfoot, Jungle rice N/M Referred Dataset 800 × 450

[84] Tegucigalpa N/M Vegetables N/M RGB Semi-Professional
Camera 4512 × 3000

[85] Carrot Field N/M Carrot N/M N/M Camera N/M

[28] Tumakuru 2560 Chrysanthemum Paragrass, Nutsedge RGB Digital Camera 250 × 250

[31] Heide Weed 2907 Carrot N/M RGB Robot(BoniRob) 832 × 832, 416 × 416
and 288 × 288

[86] WeedMap 11,441 Sugar beet N/M RGB, CIR Drone 480 × 360

[87] Dundee 6087 Pasture Dockleaf RGB, Greyscale Camera 64 × 64

[88] Plant Seedling 5539 Sugar beet, Maize,
Wheat

Mayweed, Chickweed,
Blackgrass, Shepherd’s
purse, Cleaver, Fat-hen,

Loose silky-bent

N/M Referred Dataset N/M

[89] Brimrose N/M N/M N/M Hyperspectral Brimrose VA210, JAI
BM-141 camera

500 × 500, 250 × 250,
and 125 × 125

[90] Campo Grande N/M Soybean Dockleaf RGB Drone 4000 × 3000

[91] Luye N/M N/M N/M RGB Drone 1920 × 1080

[30] Bosch BoniRob 1300 Sugar beet Shepherd’s purse RGB + NIR Robot 1296 × 966

[82] Cherry Research Farm N/M Strawberry Fescue grass RGB Referred Dataset N/M

[92] Bosch BoniRob,
Stuttgart N/M Sugar beet N/M RGB + NIR Robot N/M

[93] DeepField, Bosch
BoniRob N/M Sugar beet Dicot, grassweed RGB, RGB + NIR Drone, Robot N/M

[94] Crop Weed 291 N/M N/M RGB Camera N/M
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Table 2. Cont.

Article Dataset Size Crop Weed Modality Data Collection Resolution

[95] CWFID N/M Carrot N/M RGB (Multispectral) Robot N/M

[96] CropDeep 1000 Corn
Bluegrass, Fat-hen,

Canadian thistle, Sedge
weed

N/M Referred Dataset 224 × 224

[97] CWFID 120 N/M N/M RGB (Multispectral) Referred Dataset N/M

[98] Bosch BoniRob N/M Sugar beet N/M RGB + NIR Robot 1296 × 966

[99] CWFID 60 Carrot N/M RGB (Multispectral) Referred Dataset N/M

[100] CWFID 60 Carrot Mayweed RGB (Multispectral) Referred Dataset N/M

[81] Golf Field 36,000 Turfgrass Dockleaf N/M Camera 640 × 360

[101] Manitoba 906 Canola N/M RGB Camera 1440 × 960

[102] Campo Grande 400 Soybean Dockleaf RGB Drone 4000 × 3000

[103] Shiraz University N/M Sugar beet
Pigweed, Fat-hen,

Hare’s-ear mustard,
Turnip weed

RGB Camera 960 × 1280

[104] ImageNet N/M Cereal Canadian thistle RGB Canon PowerShot G15
Camera 200 × 200

[105] Ecology 3266 Maize, Wheat, Peanut
Seedlings

Fat-hen, Japanese hop,
Cocklebur N/M Drone 227 × 227

[106] Rumex 100 900 Grass Dockleaf N/M Referred Dataset 200 × 150

[107] Tobacco Field 76 Tobacco Seedling N/M N/M Camera 65 × 65

[108] Bosch BoniRob 900 Sugar beet N/M RGB + NIR
(Multispectral) Robot 61×61

[109] Bean, Spinach 5534 Bean, Spinach N/M RGB Drone 64 × 64

[110] Cereal N/M Cereal N/M N/M Camera 1224 × 1024

[80] Griffin 4550 Turfgrass, Bahigrass Dockleaf RGB Digital Camera 640 × 256

[111] Heide Feldhof Farm 796 Wheat

Mayweed,
Meadowgrass,

Chickweed, Field pansy,
Pigweed

N/M Terrestrial Images
(Cellphone Camera) N/M

[112] DeepLab N/M Sugar beet N/M RGB, NIR, CIR, NDVI Drone 480 × 360

[113] Bosch BoniRob, OilSeed 280 Sugar beet N/M RGB, NIR Robot, Camera 1296 × 966



Sensors 2023, 23, 3670 18 of 45

Table 2. Cont.

Article Dataset Size Crop Weed Modality Data Collection Resolution

[114] Bok Choy 11,150 Chinese White Cabbage N/M RGB Camera 512 × 512

[115] Reduit 15,336 Soybean Dockleaf N/M Drone 227 × 227.

[116] MonoDicot N/M Ragi Grass weed, Dicot N/M Camera N/M

[117] DeepWeeds 17,509 N/M Chinee apple, Snake
weed, Lantana RGB Referred Dataset 256 × 256

[118] Radish Weed 6000 Corn, Lettuce, Radish Nutsedge, Fat-hen,
Canadian thistle RGB Camera 800 × 600

[119] Bonn, Stuttgart 9070 Sugar beet N/M RGB-NIR Camera 512 × 384

[120] Greece Farm 504 Tomato, Cotton Black nightshade,
Velvetleaf RGB Camera 128 × 128

[121] FUT Farm 5400 Rice
Indian jointvetch,

Benghal dayflower,
Jungle rice

N/M Camera 250 × 250

[122] Flanders 652 Sugar beet Hedge Bindweed RGB Camera 800 × 1200

[123] Annotaed Imagery
Dataset 462 Corn, Soybean

Cocklebur, foxtail,
redroot pigweed and

giant ragweed
RGB Sony WX350, Panasonic

DMC-ZS50 1200 × 900

[124] UAV Imagery N/M Soybean N/M N/M UAV N/M

[125] UAV Imagery N/M Spinach, beet, Bean N/M N/M UAV 7360 × 4972

[126] E.maculata, N/M N/M dandelion, ground ivy,
spotted spurge. N/M UAV 426 × 240

[127] Giselsson 5539 N/M N/M N/M Referred Dataset N/M

[128] Beni Mellal-Khenifra 1318 Cereal crops. Monocotyledon and
dicotyledon N/M Nikon 7000 camera N/M

[129] Dataset 9200 Vegetables N/M N/M digital camera 2048 × 1536

[130] Dataset 1385 Sugar beet N/M RGB digital camera 480 × 640
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Table 2 shows that researchers in application papers have used a total of 44 unique
weed image datasets. Under ‘Dataset,’ we present the dataset names as labeled by the
corresponding researchers in their papers. Where no specific name was assigned to a
dataset by the authors, we have used the city’s name wherein the implementation was done
as dataset name (e.g., Gharo (Pakistan)). Most researchers have created their personalized
weed image datasets by using drones, robots, and a large variety of cameras. However,
three available datasets have also been used: (1) Indian Agriculture Research Institute
(IARI), (2) Crop Weed Field Image (CWFID), and (3) Plant Seedling (available on Kaggle).
The three largest datasets are Gold Field (36,000), WeedMap (11,441), and Bok Choy (11,150),
while the three smallest datasets are CWFID (120), Tobacco Field (76), and IARI (60).

A total of 26 unique crops are used in weed detection. Notably, sugar beet is the
most common crop (used in 13 papers), followed by carrot and wheat (in 5 papers), maize
(4 papers), and rice, soybean, corn, and cereal (in 4 papers). All the remaining crops are
used once in our filtered 51 application papers. As far as the distribution of 34 weed types
is concerned, Dockleaf is used for weed detection most frequently (in 7 papers), followed
by fat-hen (5 papers), Canadian thistle, Chickweed, and Mayweed (in 3 papers), and
Blackgrass, Jungle rice, Nutsedge, Shepherd’s purse, Fescue grass, Grass weed and Pigweed
(in 2 papers). The remaining 22 weeds are used once. Regarding the input modality, RGB
is used most frequently in 33 articles, 5 times in combination with Near Infrared (NIR),
and 5 times in multi-spectral mode. Moreover, hyperspectral, NIR, grayscale, and NDVI
modes are used once, while Color Infra Red (CIR) is employed twice. Regarding data
collection, drones (as UAVs) are used to acquire images in 13 papers, cameras are used in
22 papers (with different types such as digital, cellphone, and professional), robots are used
in 9 papers, and the remaining are referred to as datasets. Here, we would like to mention
about Bonirob, an agricultural robot developed in Germany and used to acquire images in
3 articles. A variety of resolutions are also employed, ranging from a minimum of 61 × 61
and 64 × 64 to a maximum of 4512 × 3000 and 4000 × 3000. Out of 51 papers, 14 have used
a resolution greater than 1000, and the remaining 36 have a resolution less than 1000. Most
high-resolution images have RGB Modality, and low resolution have NIR, CIR, Greyscale,
hyperspectral, and NIR + RGB. High-resolution images are mostly snapped by drones,
while low-resolution images are snapped through semi-professional or cell phone cameras.
Only 35 articles have mentioned the size of the dataset, with the GoldField dataset having
the most images (36,000) and CWFID being used in two papers with the fewest images (60).

5.2. Algorithms Used for Weed Detection

In this and the next section, we collectively answer RQ3: which deep learning algo-
rithms are best suited for a particular weed/crop combination? In this regard, we initially
extract and classify the algorithmic performance of our application papers, shown in
Table 3. Here, we present (1) the article reference (Article), (2) the name of the algorithm(s)
employed by the authors (Algorithm), (3) the image processing technique used, if any
(IPT), (4) performance measure or KPI, such as accuracy or precision/recall (KPI), (5) the
maximum value of this KPI achieved by the authors (Result), (6) the training time taken
by the algorithm (TR.Time), (7) the split ratio for train and test sets (TR.TS.Split), and (8) a
thematic classification label (TCL) which we assigned to each paper based on the algorithm
and the weed detection approach used in the paper.
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Table 3. Algorithmic Performance and Related Data for our application papers.

Article Algorithm IPT KPI Result TR.Time TR.TS.Split TCL

[32] N/M Background Subtraction Accuracy 67% N/M N/M IP

[33] CNN N/A Accuracy 97% N/M 72–27% DL.CNN

[83] GoogleNet N/A Accuracy 98% N/M 83–16% DL.CNN

[84] N/M CV (rgb2gray, im2bw,
bwlabel, regionprops) Accuracy 99% 2.98 s N/M IP

[85] CNN N/A PR, RC 91.1%, 86.8% 1895 min (CPU), 976
min (GPU) N/M DL.CNN

[28] SVM, ANN, CNN Median and Gaussian
filter Accuracy 87%, 93%, 98% N/M 90–10% ML.DL.CNN

[31] YOLO, GoogLeNet N/A Accuracy 89%, 86% N/M 90–10% DL.CNN

[86] ResNet18, SVM Hough transform, SLIC Accuracy 90% N/M N/M ML.DL.CNN

[87]
SVM, KNN, Ensemble
Subspace Discriminant,

CNN
CV Accuracy 89%, 84%, 87%, 93.15% N/M 80–20% ML.DL.CNN

[88] Mask R CNN, FCN N/A Accuracy >90%, <90% N/M 60–40% DL.CNN

[89] CNN HoG Accuracy 88% (CNN) N/M 60–40% DL.CNN

[90] SVM, ANN SLIC Accuracy 95%, 96% 0.0211 60–40% ML

[91] CNN LBP, HoG Accuracy 96% (CNN) N/M N/M DL.CNN

[30] SegNet, SegNet-Basic N/A Accuracy 84%, 98% 0.14 s, 0.08s N/M DL.CNN

[82] N/M Feature Extraction,
Classification N/M N/M N/M N/M IP

[92] FCN N/A PR, RC 97.9%, 87.8% N/M N/M DL.AE

[93] FCN N/A Avg. PR 87.90% N/M N/M DL.AE

[94] RF N/A Accuracy 97% 57.4 ms 75–25% ML

[95] N/M

Foreground Extraction,
Image Tiling,

Moment-Invariant
Feature Extraction

N/M N/M 480s N/M IP
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Table 3. Cont.

Article Algorithm IPT KPI Result TR.Time TR.TS.Split TCL

[96] ResNet-50, YOLO N/A Accuracy 99% N/M 80–20% DL.CNN

[97] SegNet256, SegNet512 N/A Accuracy 96% 11,389 s 75–25% DL.AE

[98] RF

Background
Subtraction, Masking,

Feature Extraction,
Markov Random Field

PR, RC 95%, 96% N/M N/M ML

[99] SVM Image Segmentation,
Feature Extraction Accuracy 88.99% N/M 70–30% ML

[100] SVM
Image Segmentation
(K-Means), Feature
Extraction (HoG)

Accuracy 92% N/M 70–30% ML

[81] DetectNet, GoogLeNet
VGGNet N/A Accuracy 99%, 50%, 90% N/M 78–22% DL.CNN

[101] SegNet, VGGNet,
U-NET

Background
Subtraction, Image

Labeling,
Accuracy 99% (SegNet), 96%

(VGGNet), 97% (U-Net) N/M 85–15% DL.CNN

[102] CaffeNet, SVM,
AdaBoost, RF N/A Accuracy 99%, 97%, 96%, 93% N/M 75–25% ML.DL.CNN

[103] SVM, ANN N/A Accuracy 95%, 92% N/M 60–40% ML

[104] NBG, DT, KNN, SVM,
ANN Morphological Erosion Accuracy 97%, 96%, 96%, 96%,

96%, 98% (IP), N/M N/M ML

[105] AlexNet N/A Accuracy 99.89% 468 s with double GPUs 70–30% DL.CNN

[106] SVM

Feature Extraction,
Codebook Learning
(Clustering), Feature

Encoding

Accuracy 89% N/M 50–50% ML

[107] ERT, RF LBP, HOG Accuracy 52.5%, 52.4% 83 s 68–32% ML

[108] CNN N/A mAP 95% 3.6–4.5 s N/M DL.CNN

[109] ResNet18, SVM, RF N/A AUC 95%, 95%, 97% N/M 80–20% ML.DL.CNN

[110] GoogleNet N/A PR, RC 86%, 46% N/M N/M DL.CNN

[80] VGGNet, GoogLeNet,
DetectNet N/A Accuracy 99% (VGGNet) N/M 88–12% DL.CNN

[111] VGGNet, CNN N/A mAP 84% N/M 80–20% DL.CNN
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Table 3. Cont.

Article Algorithm IPT KPI Result TR.Time TR.TS.Split TCL

[112] SegNet, U-Net,
DeepLabV3 N/A AUC, F1-score 85%, 72%, 92%, 85%,

97%, 92% N/M N/M DL.AE

[113] DeepLab Histogram Equalization MIoU 96% N/M 70–30% DL.AE

[114] CenterNet
Background

Subtraction, Image
Segmentation

PR 95% N/M 80%–20% DL.CNN

[115] AlexNet, ANN SLIC Accuracy 99%, 48.09% N/M 70–30% ML.DL.CNN

[116] SSD,VGGNet CV N/M N/M N/M 80–20% DL.CNN

[117] CNN Graph Feature
Extraction Accuracy 98% N/M 80–20% DL.CNN

[118]
GCN-ResNet101,

AlexNet, VGGNet,
ResNet101

N/A Accuracy 98% (GCN-ResNet101) 1.42 s 70–30% DL.CNN

[119] ResNet50, U-Net,
SegNet, FCN

Image Segmentation
(PSPNet, RSS) mAP 93% (ResNet50) N/M N/M DL.CNN

[120]

Inception-Resnet,
VGGNet, MobileNet,
DenseNet, Xception,
SVM, XGBoost, LR

N/A F1-score 99% (DenseNet, SVM) N/M N/M ML.DL.CNN

[121] SSD N/A Accuracy 86% N/M 90–10% DL.CNN

[122] YOLO K-Means mAP 89% 6.48 ms 85–15% DL.CNN

[123] VGG16, ResNet50,
Inception30, YOLOv3 N/A accuracy 98% 354 s 60–40% DL.ML.CNN

[124] SSD, Faster RCNN,
CNN N/A Precision 65% N/M N/M DL.ML.CNN

[125] CNN N/A Precision 93% N/M N/M DL.ML.CNN

[126] DCNN N/A F1-score 92% N/M N/M DL.ML.CNN

[127] VGG16, ResNet50,
DenseNet N/A accuracy 91% N/M N/M DL.ML.CNN

[128] YOLO N/A accuracy 83% N/M N/M DL.ML.CNN

[129] YOLO-v3, CenterNet,
and Faster R-CNN N/A F1-score 97% N/M N/M DL.ML.CNN

[130] U-Net, ResNet N/A IoU 96% N/M N/M DL.ML.CNN
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We found that both ML and DL algorithms are used by researchers for weed detec-
tion. In total, 10 different algorithms are used whose frequency distribution is shown in
Table 4. For DL, CNN is used in general. Although Autoencoder (AE) is also used, as such,
no specific AE has been used separately, for example, denoising AE, stacked AE, or varia-
tional AE. Rather, only the AE architecture is used within the algorithmic process of CNNs
to improve the CNN performance. Hence, we have not considered AE as separate from
CNN in this work. The CNN algorithms are applied 65 (with different variants) times in
application papers (details below), followed by ML algorithms, specifically, SVM (12 times),
RF (5), ANN (5), KNN (2), Boosting (XGBoost and Adaboost) (2), DT (includes vanilla DT
and ERT) (2), NBG (1), and LR (1). This shows that many representative ML algorithms
have already been applied for weed detection, although the frequency of applications
remains severely limited as compared to CNN.

The 65 CNNs appeared over a total of 19 different variants, whose frequency distribu-
tion is shown in Table 5. Specifically, the custom CNN model is used in 12 implementations,
and transfer learning is used in 21 implementation articles, including 7 implementations
of ResNet, SegNet, and VGGNet. GoogleNet and FCN are used in 6 and 5 articles, respec-
tively. YOLO, U-Net, and AlexNet are each used in three articles while DetectNet, DeepLab
(all variants combined), and SSD are used in two articles, and Mask R CNN, CaffeNet,
CenterNet, GCN, MobileNet, DenseNet, and Xception are used once. This demonstrates
that researchers are not focusing on several CNN models only; rather, there is a trend to
explore recently-introduced CNN variants as soon as they are published (as most of the
variants are introduced recently and have very limited applications).

Image Processing (IP) techniques are used in 38 application articles, with a total
of 16 unique techniques whose frequency distribution is shown in Table 6. There are
four (4) articles in which the authors applied only IP techniques for weed detection, i.e.,
without using any ML or DL algorithm. In these articles, the authors have used techniques
such as both background and foreground subtraction (BFS), converting RGB to Grayscale,
binarizing and labeling the images (CV), feature extraction (Ftr Ext), classification (Classify),
and image tiling techniques. In the remaining 34 articles, IP techniques have been used for
pre-processing images for either a separate application of ML or DL or both ML and DL
collectively. Table 6 shows that feature extraction, image segmentation, and BFS are used
more frequently, along with SLIC, LBP, and HoG, while some less-applied techniques are
also used once, for example, morphological erosion and histogram equalization (HE).

Table 4. Frequency Distribution of Algorithms.

Algorithm Frequency

CNN 65

SVM 12

RF 5

ANN 5

KNN 2

Boosting 2

DT 2

NBG 1

Linear Regression 1

Regarding the use of performance measures, 32 out of the 51 application papers used
the accuracy of weed detection, which gives an average of the predictive performance
for both classes (‘weed detected’ and ‘no weed detected’ respectively). Precision and
recall for the ‘weed detected’ class, which provide a better indicator of the weed detection
performance, are employed in only 11 articles. Of the latter, two papers employ the F1-
Score, which is estimated from both precision and recall values. Performance measure was
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not m1entioned in four articles, while Area Under the Curve (AUC), which provides a
measure of overall classification performance similar to accuracy, is used in two (2) articles,
once in combination with F1-score. In total, 11 papers out of 52 mentioned model training
timing, YOLO with K-means took the shortest time to train at 6.8 ms, and CNN took the
longest at 1895 min. As there is no standard for dividing data into train and test, most
papers used 60–40, 70–30, and 80–20 splits.

Table 5. Frequency Distribution of CNN Variants.

DL Algorithm Frequency

CNN 11

ResNet 8

SegNet 7

VGGNet 8

GoogleNet 5

FCN 4

YOLO 4

U-Net 3

AlexNet 3

DetectNet 2

DeepLab 2

SSD 3

Mask R CNN 2

CaffeNet 1

CenterNet 1

GCN 1

MobileNet 1

DenseNet 1

Xception 2

Table 6. Frequency Distribution of IP Techniques.

IP Techniques Frequency

Feature Extraction 6

Background and Foreground Subtraction 5

Image Segmentation 5

HoG 4

CV 3

SLIC 3

LBP 2

Cluster 2

MG Filter 1

Hough Transformation 1

Classify 1

Image Tiling 1

MRF 1

Masking 1

Morphological Erosion 1

Histogram Equalization 1
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Here we addressed How does the performance and usage of machine learning and
image processing techniques compare with that of deep learning for weed detection?
where we categorize each application paper by assigning it a unique thematic classification
label (TCL) based on the usage of ML, DL, and IP, along with other information such as
training time and KPI. We classify application paper under five TCLs: (1) DL.AE , (2) ML,
(3) DL.CNN, (4) IP, and (5) ML.DL.CNN. In the following, we define these TCLs and
present data about their constituent articles. A summary of this is presented in Figure 12.
(the details of the articles are provided in Section 6).

• DL.AE: This type represents five articles that employ the autoencoder (AE) technology,
i.e., the encoder-decoder DNNs for weed detection. In two of these articles, both the
encoder and decoder are modeled as an FCN. In the remaining three articles, two
articles use the AE-based CNN called SegNet as {SegNet256, SegNet512} and {SegNet,
U-Net, DeepLabV3}, while the last article uses only DeepLab. We remark that the U-
Net and DeepLab series of CNN variants are also based on AE. Histogram Equalization
(HE) is the only technology that is specified for DL.AE category.

• ML: This type represents 9 articles that only employ ML techniques for weed detection.
In four of these articles, the performance of a set of ML algorithms are compared, while
an individual ML algorithm is used in the remaining five articles. The comparison
sets include {SVM, ANN} (in two articles), {NBG, DT, KNN, SVM, ANN} (1) and {ERT,
RF} (1). The individual applications include RF (2) and SVM (3). In one of the SVM
applications, K-means clustering is used to pre-process the image data and then IP
techniques such as SLIC, BFS, Masking, Feature Extraction, Markov Random Field,
Image Segmentation, and Morphological Erosion. are used with ML

• DL.CNN: This type represents the 31 articles that employ the CNN or one/more
of its variants for weed detection. Regarding individual applications, CNN is used
most frequently in nine articles, GoogleNet in two articles, and YOLO, SSD, AlexNet,
and CenterNet in two articles each. Besides this, the following combinations of vari-
ants are used: {ResNet, U-Net, SegNet, FCN, GoogleNet}, {GCN, AlexNet, VGGNet,
ResNet}, {SSD, VGGNet}, {CNN, VGGNet}, {SegNet, VGGNet, U-Net}, {DetectNet,
GoogLeNet VGGNet}, {ResNet-50, YOLO}, {SegNet, SegNet-Basic}, {Mask R CNN,
FCN} and {YOLO, GoogleNet}. All these combinations are used once, except {Detect-
Net, GoogLeNet VGGNet}, which is used twice. The IP techniques employed with
DL.CNN papers are as follows: HoG, LBP, BFS (background), image labeling, image
segmentation, CV, feature extraction, and clustering.

• IP: This type represents four articles that only employ IP techniques for weed detection.
As mentioned above, these techniques are image tiling, classification, CV, feature
extraction, and background and foreground subtraction.

• ML.DL.CNN: This type represents seven articles that employ both CNN (or one/more
of its variants) and ML for weed detection. These 7 combinations are as follows:
{SVM, ANN, CNN}, {ResNet, SVM}, {SVM, KNN, ESD, CNN}, {CaffeNet, SVM, Ad-
aboost, RF}, {ResNet, SVM, RF}, {AlexNet, ANN} and {ResNet, VGGNet, MobileNet,
DenseNet, Xception, SVM, XGBoost, LR} (abbreviations of algorithms are shown for
this sequence for brevity). The IP techniques used in ML.DL.CNN includes MGF, HT,
SLIC, and CV algorithms.

In this section, we analyze the performance of algorithms with respect to our TLCs.
We will first emphasize the training time and train-test split ratio data shown in Table 3.
Our purpose in listing the training time was to gauge the delay or speed-up achieved in
training the DL algorithms due to the complicated nature of this learning task. In fact,
GPU usage has addressed this problem thoroughly. It is considered prudent to conduct a
comparative analysis for different tasks and GPU/CPU settings. In our case, no training
time was recorded by the authors in 36 (out of 51) articles. In the remaining articles, the
maximum recorded time is as follows: (1) 480 s (IP), (2) 83 s (ML), (3) 976 m (DL.CNN),
(4) 480 s (ML.DL.CNN), and (5) 11,389 s (DL.AE). Thus, the maximum training time is
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976 min (approximately 16 h) for DL.CNN followed by 3.1 h for DL.AE. Where pre-trained
DL models were employed, training time is in the order of seconds.

Figure 12. The distribution of different algorithms with respect to five thematic classification labels
(TCLs).

The train-test split ratio has been mentioned in 32 articles. After analyzing the ratios,
we mapped them into four categories: 60–40, 70–30, 80–20, and 90–10. Out of 31 arti-
cles, 11 articles used an 80–20, and 11 others used a 70–30 ratio (these two ratios are
the most common ones in ML and DL domains). However, four articles based on DL
have used a 90–10 ratio, and five articles (three from ML and two from DL.CNN) have
used a 60–40 ratio. Our aim here is to present such information. However, we are not
intended to make conclusions about the reason for a ratio selection because these mat-
ters are guided by several factors, such as the size of the dataset, previous experience, or
trial-and-error experimentation.

To compare the performance of algorithms across our TCLs, we executed the following
steps. We decided to analyze all the different performance measures together by focusing
on their values. In other words, we do not specifically distinguish between accuracy,
precision, recall, etc., but we focus only on their values to compare all application papers
together. For this, we analyzed the values in Table 3 and manually created three bins or
ranges of values: (1) [45–85) (labeled as low performance), (2) [85–95) (medium), and (3)
[95–100] (high). Moreover, we estimated and considered the F1-score in case both precision
and recall are measured, and we considered the performance values of each algorithm
separately in case multiple algorithms were used in the article. Finally, we considered the
F1-score over AUC in articles where both were recorded, and for a recorded performance
of ‘>90’ by the authors, we considered it in the range of 85–95. The results are shown in
Figure 13 and discussed as follows:

• ML: 2 algorithms have a low performance, 4 have medium, while 10 have a high
performance (over multiple algorithms).

• IP: Two articles mention their results which are low and high, respectively (no multiple
algorithms used).
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• DL.CNN: 5 algorithms have a low performance, 21 have a medium, and 18 have a
high performance (over multiple algorithms).

• ML.DL.CNN: 2 algorithms have a low performance, 13 have medium while 10 have a
high performance (over multiple algorithms), and

• DL.AE: One article has a low performance, two have a medium, and the remaining
two demonstrate high performance.

Figure 13. Observed performance evaluation with respect to our defined thematic classification
labels.

A notable trend here is that, although ML applications are limited with respect to
DL.CNN, the proportion of algorithms that demonstrate a high performance is more
(63%) as compared to DL.CNN (44%). In ML.DL.CNN category, of the 10 algorithms
demonstrating high performance, 4 of these are ML algorithms while the rest are CNN
variants. This clearly shows that traditional ML algorithms, particularly SVM and RF, are
demonstrating performances at par with CNN and its variants. Regarding the use of the
AE, the performance seems to have remained consistent over the low, medium, and high
bands. However, we do acknowledge that a dataset of five articles is limited to making any
generalization of this trend.

6. Classification as per Weeds/Crops

To understand the aforementioned trends more thoroughly, we created a table shown
in Table 7, which illustrates associations of different weed types and different crop types
respectively with their algorithmic applications and demonstrates which algorithm has
been used to detect the weed type which belongs to a crop type.

We would like to highlight the following facts before our analysis: (1) We do not
present the algorithms for which their corresponding weed/crop types are not mentioned
by the authors; (2) In all papers using multiple weed types, the performance achieved is
applicable for each type; (3) If algorithm A is used as a feature extractor for algorithm B
(e.g., {ResNet-50, YOLO}, {RCNN, SSD} and {VGGNet, SSD})), we have assigned A and B
the same performance measure as both contributed to achieving this performance, (4) We
do not specifically distinguish between accuracy, precision, recall, etc. as mentioned above
for Figure 13, and (5) we show the highest accuracy with which the weed belonging to a
crop type is detected using one or more algorithms and in each algorithm. The table assists
in understanding the applications and deriving appropriate recommendations.
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Table 7. Classification of Weeds and Crops wrt Algorithms.

Weed Type Crop Type DL Algorithms Best Accuracy

Pigweed Sugar beet, Wheat CNN, VGGNet, SVM, ANN 95% [SVM]

Blackgrass Sugar beet, Wheat CNN, FCN, Mask R CNN 97% [CNN]

Bluegrass Corn ResNet, YOLO 99% [ResNet, YOLO]

Dockleaf Pasture, Soybean, Turfgrass, Bahigrass CNN, VGGNet, GoogleNet, AlexNet, DetectNet, CaffeNet 99% [AlexNet, CaffeNet]

Canadian Thistle Corn, Cereal crops ResNet, YOLO, VGGNet, AlexNet, GCN, SVM, ANN, DT, KNN 99% [YOLO]

Chickweed Cranesbill, Sugar beet, Maize, Wheat, Charlock CNN, VGGNet, ,FCN, Mask R CNN 95% [Mask R CNN]

Cleaver Maize, Sugar beet, Wheat FCN, Mask R CNN 95% [Mask R CNN]

Cockleblur Maize, Wheat, Peanut AlexNet 99% [AlexNet]

Crowfoot Maize, Rice GoogleNet 98% [GoogleNet]

Fat-Hen Wheat, Maize, Peanut, Corn, Sugar beet ResNet, VGGNet, FCN, YOLO, AlexNet, Mask R CNN, GCN 99% [YOLO]

Field Pansy Wheat CNN, VGGNet 84% [CNN, VGGNet]

Hare Ear’s Mustard Sugar beet SVM, ANN 95% [SVM]

Japanses Hop Maize, Wheat, Peanut AlexNet 99% [AlexNet]

Jungle Rice Rice, Maize GoogleNet, SSD 98% [GoogleNet]

Little Seed Rice, Maize GoogleNet, SSD 98% [GoogleNet]

Mayweed Wheat, Maize, Carrot, Sugar beet CNN, VGGNet, , FCN, Mask R CNN 95% [Mask R CNN]

Meadow Grass Wheat CNN, VGGNet 84% [CNN, VGGNet]

Nutsedge Chrysanthemum, Corn CNN, ResNet, VGGNet, AlexNet, GCN 98% [CNN, GCN]

Paragrass Chrysanthemum CNN VGGNet, AlexNet, GCN 98% [CNN, GCN]

Shepherd’s Purse Maize, Sugar beet, Wheat SegNet, FCN, Mask R CNN 95% [Mask R CNN]

Silky-bent Cranesbill, Sugar beet, Maize, Wheat, Charlock FCN, Mask R CNN 95% [Mask R CNN]

Turnip Weed Sugar beet SVM, ANN 95% [SVM]

Dicot Sugar beet, Soybean FCN 87% [FCN]

Grass Weed Wheat, Maize, Sugar beet FCN 87% [FCN]

Velvetleaf Tomato, Cotton ResNet, VGGNet, MobileNet, DenseNet, Xception, SVM 99% [SVM, DenseNet]

Benghal Dayflower Rice SSD 86% [SSD]
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Table 7. Cont.

Weed Type Crop Type DL Algorithms Best Accuracy

Black Nightshade Tomato, Cotton ResNet, VGGNet, MobileNet, DenseNet, Xception, SVM 99% [SVM, DenseNet]

Hedge Bindweed Sugar Beet YOLO 89% [YOLO]

Indian Jointvetch Rice , Maize SSD 86% [SSD]

SnakeWeed N/M CNN 98% [CNN]

Chinee Apple N/M CNN 98% [CNN]

Lantana Camara N/M CNN 98% [CNN]

Cocklebur, foxtail, redroot pigweed and giant
ragweed Corn, Soybean VGG16, ResNet50, Inception30, YOLOv3 98% [VGG16]

N/M Soybean SSD, Faster RCNN, CNN 65% [RCNN]

N/M Spinach, beet, Bean CNN 93% [CNN]

Dandelion, ground ivy, spotted spurge. N/M DCNN 92% [DCNN]

N/M N/M VGG16, ResNet50, DenseNet 91% [ensemble]

Cereal crops. Monocotyledon and dicotyledon YOLO 83% [YOLO]

Vegetables N/M YOLO-v3, CenterNet, and Faster R-CNN 97% [YOLO-v3]

Sugar beet N/M U-Net, ResNet 96% [U-net, ResNet]
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The performance of detecting each of the weed types in different crops is high, with a
minimum performance of 84% for Field Pansy and Wheat crops and 99% for Bluegrass in
Corn, Cockleblur, Dockleaf in Soybean, Pasture, Turfgrass, and bahiagrass, Japanese Hop in
Maize, Wheat and Peanut and Black Nightshade and Velveleaf in Tomato and Cotton. The
top-4 weeds that are used most frequently by researchers are Canadian thistle, followed by
Dockleaf, Fat-hen, and Velvetleaf, while those who are applied only once include Latana
Camara, Chinee Apple, SnakeWeed, Indian Jointvetch, Hedge Bind, Benghal Dayflower,
Grass Weed, Dicot, Paragrass, Crowfoot and CockleBlur.The top-3 crops that are used most
frequently by researchers are Sugar beet, followed by Carrot and Maize, while those that are
applied only once include Cranesbill, Charlock, Soybean, Canola, Peanut, White Cabbage,
Tobacco Seedling, Lettuce, Tomato, Radish. It is apparent that the applications of the top-4
weed types are spread out over different algorithms, i.e., the novelty in research articles
is introduced through the application of novel or other algorithms. From the perspective
of algorithms, each algorithm demonstrated high performance in detecting one or more
weed types, with a minimum performance of 87% for FCN and SSD and a maximum of
99% for SVM, CNN, VGGNet, and DetectNet. For DL, the top-3 algorithms that are used
most frequently are CNN, VGGNet, and FCN, while for ML, the top-3 are SVM, ANN, and
KNN. The average performance over all DL algorithms is 94% while the same performance
over all the ML algorithms is 90%. In our opinion, this difference is small, and we believe
the ML community still has much to offer for weed detection, which could be potentially
comparable to DL algorithms. Furthermore, when combined with other algorithms, SVM
and Mask R CNN performed equally or better (five times) and only underperformed once
(to YOLO). SVM and YOLO have not been used together in other cases. YOLO is the only
algorithm that performs every time better or equal to other algorithms when combined.
In three cases, CNN alone performed best, and when combined with other algorithms, it
performed equally (three times). The following are the findings regarding crop association
with algorithms. Sugar beet was used as a crop in 13 of the 51 papers, and different weed
types were associated with each paper. Papers with sugar beet crops used a combination
of FCN and Mask R CNN six times and FCN, Mask R CNN, and CNN four times. YOLO
was only used once to detect sugar beet, and it had the lowest accuracy of 89 percent when
compared to FCN, Mask R CNN, and CNN. In nine papers, sugar beet is mostly combined
with maize and wheat. Maize and rice were used together four times, and GoogleNet and
SSD were frequently used to detect weeds in maize and rice. GoogleNet and SSD are used
together twice, and SSD and GoogleNet are used separately once. GoogleNet provided
the highest accuracy of 99 percent when combined with SSD and without, but SSD alone
provided 98 percent accuracy. Tomato and cotton were used together in two cases where
ResNet, VGGNet, MobileNet, DenseNet, Xception, and SVM were used to detect weeds,
and both times SVM and DenseNet provided 99 percent accuracy. Furthermore, each crop
is used in a unique combination.

7. Summary of Identified Articles in SLR

This section describes a literature survey of our identified 60 articles. We present the
application papers and literature review papers in separate sections.

7.1. Summary of Identified Application Papers

In this section, we briefly discuss each application paper according to our TCLs. The
sequence in which these papers are discussed is the same as the one found in Table 3.

7.1.1. IP Papers

In [32], the basic idea adopted by the authors is to detect weeds at different stages of
growth of the wheat crop, along with detecting the barren land to determine the amount
of land used for cultivation. For detection, the authors employ background subtraction
techniques in the Hue Saturation Value (HSV) color space, but they can only achieve a
maximum weed detection accuracy of 67% with high-resolution images acquired through



Sensors 2023, 23, 3670 31 of 45

drones. Moreover, in [84], the authors use CV functions for the classification of weeds and
crops, notably, rgb2gray for detection of green plants, im2bw to convert digital images to
binary images, bwlabel for labeling binary images, and regionprops for measuring feature of
images and detection of weed. The classification accuracy obtained with these functions is
99% with a training time of approximately 3 s.

In [82], authors create and implement a framework called the Image Processing Oper-
ation (IPO) library for the classification of weeds. IPO stores information about weeds and
crops in JSON format which are then automatically converted to MATLAB functions to
perform weed discrimination, with the option to add personalized user-defined functions.
The authors claim that IPO is partially successful and discuss methods to remove some
of its limitations. Finally, in [95], the authors study different features of weed leaves for
detection using IP. In their method, the authors propose the execution of several stages
in sequences, such as foreground extraction with grey-scale images, image tiling, feature
extraction, and classification. For classification, authors employ moment-invariant shape
features i.e., rotation, scaling, and translation for identifying the weed, with a training time
of 480 s.

In [131], the researchers described the importance of large datasets for better weed
detection and also emphasized the need for GANs. They also mention a lack of real-world
datasets for weeds. To solve this problem, they proposed a model that combines transfer
learning or a pre-trained model with GANs. The crop weed dataset at the early growth
stage was used, with 202 images of tomato as a crop and 130 images of black nightshade as a
weed. To select the best parameters for the model, various combinations of hyperparameter
tuning were used. Three pre-trained models were used: Xception, Inception-ResNet, and
DenseNet. Xception outperformed with a 99.07% accuracy.

Researchers in [132] study combined Generative Adversarial Networks (GANs) with
Deep Convolutional Networks to create a model that detects weed better than existing
models. GANs are used to generate synthetic images of weeds, and deep neural networks
are used to detect weed images from original and GAN-generated images. They also
compared their model to existing models like AlexNet, ResNet, VGG16, and GoogleNet,
but their model outperformed with an accuracy of 96.34%.

Researchers focused on a robust image segmentation method in [133], which will
be used to distinguish between crops and weeds in real time. They also discussed using
annotated images in various studies and stated that annotating images could be time-
consuming. However, they used GANs to generate synthetic images to supplement the
dataset. Then, for image segmentation, they used CNN variants such as UNet-ResNet,
SegNet, and BonNet. UNet-ResNet and SegNet outperformed with 98.3 percent accuracy.

The authors of [134] study developed an algorithm that is used to synthesize real
agricultural images. The images were captured with a multi-spectral camera, and Near-
Infrared images were collected. They used conditional GAN for segmentation. They also
stated that their experiments improved the generalization ability of segmentation and
enhanced the model’s performance. They used various CNN variants for segmentation,
including UNet, SegNet, ResNet, and UNet-ResNet, and UNet outperformed with 97%
accuracy in Crop detection and 72% in Weeds.

7.1.2. ML Papers

In [90], the authors attempt to classify soil, soybean, and weed images based on the
color indices of these three classes. They compare the performance of SVM and ANN
over this task after processing and segregating the datasets through SLIC. The results do
not demonstrate any major difference in accuracy between SVM (95%) and ANN (96%).
Moreover, in [94], the researchers use ML for the classification of weeds and crops by using
RF. The employed dataset is divided into different categories, specifically crop, weed, and
irrelevant data. The authors train the model on offline datasets and apply these pre-trained
models to real-time images. They have trained their system to give feedback to the flow
control system. The RF algorithm gave 97% accuracy with a training time of 57.4 ms.
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Moreover, in [98], the authors use RF for crop and weed classification through the
following approach. They perform classification using NIR + RGB images, which were
captured through a mobile robot. NIR can help distinguish the plant from the soil and
background. This process is defined in four steps; firstly, identification of a plant using NIR
information, which helps remove unrelated backgrounds so that only relevant regions can
be considered for classification. Then masking is computed on pixel location. Secondly,
feature selection has been performed on the relevant region. Then in the third step, RF
is applied to those computed features, and a binary probability distribution is obtained,
which described that the pixel belongs to a crop or a weed. In the fourth and last step, to
improve the classification results, the information from the third step is utilized in Markov
Random Field (MRF) by computing label assignment independently of the other nearby
labels. In this way, authors were able to achieve 97% accuracy with RF.

In [99], the authors focus on identifying weeds from carrot fields to reduce the use of
herbicides. During the development of plants, it is very difficult to discriminate between
the color of a plant and weeds, which also makes the discrimination process even more
difficult when both the plant and weed overlap each other. To address this problem, they
proposed a 3-step procedure: (1) image segmentation. In this step, the input images are
segregated from weeds using a normalization equation which gives higher weight to the
greener part of the plants and removes the other colors from the input image, (2) in the
second step, feature extraction is performed from the images got from the first step, and
(3) in the third step, weed detection is performed through SVM algorithm. In addition, the
overall accuracy obtained by SVM is 88%. In a related paper [100], the authors discussed the
problem of overlapping weed and carrots leaves. In the initial stage of plant development,
the color of both plant and weed are the same, which makes it more challenging to identify
the weed and plant. Therefore, the 3 step procedure has been proposed to improve the
detection or identification of plants and weeds. Initially, images are segmented using
k-means clustering. Then, features are extracted from these segments by using HoG, which
is then fed to SVM to acquire an improved accuracy of 92%.

In [103], the objective of this research is to propose a very accurate identification of
weeds against crops using robots. The similarities between the shape of a plant and a weed
make it challenging to identify plants precisely from weeds. For that reason, they tried to
add different shapes to make a pattern for the individual range of the plants and tried to
detect weeds based on these patterns using SVM and ANN to achieve maximum accuracies
of 95% and 92%, respectively. Moreover, in [104], the authors compare the performance
of several ML algorithms to detect the Canadian Thistle weed, particularly from a limited
sample size of 30 images. The intent of the authors is also to demonstrate that, with the use
of enhanced IP techniques, it can be possible to attain comparable performance with ML
algorithms. Hence, the authors compare the performance of NBG, DT, KNN, SVM, and
ANN algorithms with an IP technique in which they initially convert the image to grayscale,
remove it from the green channel (in RGB), binarize it, and then perform morphological
erosion to detect weed. In fact, this is not a new IP algorithm but rather a sequence of N/M
IP techniques. The authors show that this IP method achieves comparable accuracy (98%)
to the ML algorithms (97%, 96%, 96%, 96%, and 96%, respectively).

In [106], the authors have focused on developing a system that caters to the effect
of using multiple image resolutions in the weed detection process. The authors employ
enhancements of feature extraction, codebook learning (a clustering technique), feature
encoding, and image classification as IP techniques. Particularly, the system takes an image
as an input with 200 × 50 resolution, then feature extraction is performed by combining
fisher encoding with codebook to cater to the limitation of feature extraction by using 2-level
image representation. Then the image representation vectors got from feature extraction are
given to the SVM algorithm for classification to achieve an overall accuracy of 89%. Finally,
in [107], the authors focused on feature engineering, i.e., selecting the best set of features
from gray-scale images by using HoG and LBP techniques. The extracted features are fed
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to two ML algorithms, i.e., ERT and RF, both of which give below-par accuracy of 52.5%
and 52.4%, respectively, with a training time of 83 s and a limited customized dataset.

7.1.3. DL.CNN Papers

In [33], the authors introduce the concept of positive (weed present) and negative
(weed not present) images. They employ drone-acquired images of ‘black-grass‘ and
‘common chickweed‘ for the positive class and ‘wheat,‘ ‘maize,‘ and ‘sugar beet‘ for the
negative class. They pre-process images to avoid overfitting because of a small range of
datasets and use the traditional (vanilla) CNN architecture with three combinations of
convolution and max pooling layers to extract filters through the former and reduce size
through the latter, followed by the one-dimensional fully-connected layer and a single
output neuron for classification. The authors achieve an accuracy of 97%. Moreover, in [83],
the authors employ transfer learning techniques to reuse the GoogleNet CNN that was
previously trained on IARA datasets to classify three types of weeds, namely littleseed
canarygrass, crowfoot, and jungle rice. The authors achieve an average accuracy of 98%
across these three weeds.

In [85], the authors detect weeds from images of carrot fields to enhance the perfor-
mance of an existing CNN architecture (with one convolution and max pooling layer only)
through the use of GPUs. Although the accuracy remains exactly the same, the authors can
attain a maximum speed-up of 2.0× (976 min on GPU as compared to 1895 min on CPU). In
another application [31], the authors propose using CNNs to localize and classify weeds
simultaneously from carrot field images acquired through robots to replace their current
lengthy solution of multi-stage weed detection process through image segmentation. They
experiment with both YOLO and GoogleNet to acquire a weed detection accuracy of 89%
and 86%, respectively, which is a significant performance improvement over their image
segmentation framework.

In [88], the researcher has used Mask R CNN for enhancement of accuracy in weed
detection for the following weeds: mayweed, chickweed, blackgrass, shepherd’s purse,
cleaver, fat-hen, and loose silky-bent. They employ Mask R CNN also for the segmen-
tation of weed images. In both applications, Mask R performs better than FCN through
a 100% accuracy in training and greater than 90% in the validation phase. In another
application [89], the authors compare the performance of CNN with the HoG image pro-
cessing method for weed detection. CNN application is conducted on hyperspectral images
with four convolutional layers, two fully-connected ones, while RGB images are used with
the HoG method. The results show that CNN can extract more discriminative features than
HoG and with better accuracy (88%), although the computational processing required by
CNN increases with the number of color bands.

Yet another comparison between CNN and IP techniques is done in [91], in which
the authors develop a low-cost weed identification system that employs CNN. In the
system, the data are initially collected and processed. Then, a relevant set of images is
sampled, followed by weed detection through CNN. The authors also employ HOG and
LBP approaches and achieve the best accuracy of 96% by initially employing LBP to extract
relevant features and then using them as input to CNN. In [30], the authors generate
synthetic datasets for weed classification based on real datasets by randomizing different
features such as species, soil type, and light conditions. They compare the performance
of weed detection over both synthetic and real datasets by using Segnet and Segnet-Basic
CNNs and show that there is no performance degradation with synthetic datasets with the
accuracy of 84% and 98%, respectively.

In [96], the authors indicate the limitations of detecting weeds with real-life images in
that whole image content has to be fed into deep learning architectures, which sometimes
makes it difficult to distinguish weeds from their background like soil. Hence, the authors
propose using pre-trained deep learning models, particularly ResNet-50 for classification
and YOLO for performance speed-up to achieve an accuracy of 99%. The authors cre-
ate a framework to utilize both these models for weed detection. In a related work [81],
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the authors experiment with three different deep CNN architectures for weed detection,
namely, DetectNet, GoogleNet, and VGGNet. They discovered that, for different types of
active turfgrass weeds, VGGNet demonstrated much superior performance as compared
to GoogleNet in different surface conditions, mowing heights, and surface densities. More-
over, DetectNet outperformed GoogleNet for dormant turfgrass weeds. The authors also
demonstrate that image classification is an easier solution for weed detection as compared
to object detection because the latter requires the use of bounding boxes.

In [101], the authors solve the tedious process of manually labeling image data at
the pixel level by proposing a 2-step manual labeling process. Here, the first step is the
segregation of foreground and background layers using maximum likelihood classification,
with manual labeling of segmented pixels of background occurring in the second step. This
setting can be used to train segmentation models which can discriminate between crops
and other types of vegetation. The authors experiment with this approach using a SegNet
model based on ResNet-50 and VGGNet encoder blocks, and UNet. The ResNet-50 SegNet
model can demonstrate the best result (99%). Furthermore, in [105], the authors employ
the AlexNet CNN architecture for weed classification in the ecological irrigation domain
by using three different combinations of weeds and crops as datasets, with both CPU and
GPU computing. They demonstrate a maximum accuracy of 99.89%. The authors validate
that through their AlexNet application, both multiple and single weeds can be detected
simultaneously, hence allowing enhanced irrigation control and management.

In [108], the authors developed intelligent software that is able to perform weed
detection on-the-fly on multi-spectral RGB + NIR images acquired from the BOSCH Bonirob
farm robot. For this, a lightweight CNN is initially used to extract pixels that represent
projections of three-dimensional points belonging to green areas or vegetation. Then, a
much deeper CNN uses these pixels to discriminate between crops and weeds. The authors
also propose a novel data summarization method that selects relevant subsets of data that
are able to approximate the original complete data in an unsupervised manner. The authors
are able to achieve a maximum mean average precision (mAP) of 95%. A similar work is
done in [110], where the authors use GoogleNet to detect weeds in the presence of a large
amount of leaf occlusion. The loss function is guided by the bounding boxes and coverage
maps of 17,000 original images collected from a high-speed camera mounted on an all-
terrain vehicle. The authors manually annotate these images (which is a time-consuming
activity) to achieve a precision of 86%, although the recall performance is poor (46%).

In [80], the author experiments with three CNN architectures, namely VGGNet,
GoogLeNet, and DetectNet, for the recognition of broadleaf weeds in turfgrass areas.
Through different experiments, the authors show that VGGNet demonstrates the best per-
formance in classifying several different broadleaf weeds, while DetectNet outperformed
the others in detecting one particular broadleaf weed. Furthermore, in [111], the authors
sought to categorize the weeds in aerial photographs obtained from a height of under
ten meters. The photos were taken using a 3024 × 4032 pixel resolution. Images were
captured at the Heidfeldhof estate near Stuttgart’s Plieningen. Using a mobile, pictures
were captured vertically at a height of 50 cm. The captured weed was in its early stages of
development, and [135] weed photos were utilized to evaluate the model using pixel-based
techniques. They use the CNN model and proposed two approaches, one is object detection,
and the second is pixel-wise labeling. The object-based approach was applied to three
different datasets, and the highest mAP achieved by this approach was 84.2%, and the
pixel-wise approach achieved 77.6% as the highest mean accuracy using FCN.

In [114], the authors combine DL with IP for the classification of crops and weeds.
Initially, a previously-trained CenterNet is used for detecting crops and drawing bounding
boxes around them. Then, green objects falling outside these boxes are considered to be
weeds, and the user can then focus only on crop detection with the reduced number of
training images and easier weed detection. Moreover, the authors employ a segmentation-
based IP method based on color indexing to facilitate the aforementioned detection of
weeds, with the color index being determined through Genetic Algorithm optimization.



Sensors 2023, 23, 3670 35 of 45

This setup achieved a maximum precision of 95% for weed detection in crop/vegetable
plantations.

In [116], the authors simply propose a framework for crop and weed classification
using deep learning in real-time. They use Dicot and Monocot weeds. Images are being
captured using a USB camera and processing of images has been done by using the OpenCV
library. For weed classification, SSD objection detection is used, which uses a pre-trained
VGG16 for mapping features from images and convolutional filter layers for the detection
of weed. For three different settings, i.e., when the weeds and crops are overlapping and
the weed size is smaller and larger than the crop size, the authors are able to acquire an
average weed detection accuracy of 20% only.

In [117], the authors employ graph-based DL architecture for weed detection from
RGB images which are collected from a diverse number of geographical locations, as
compared to related works carried out in a controlled environment. Initially, a multi-
scale graph is constructed over the weed image with sub-patches of different measures.
Then, relevant patch-level patterns are selected by applying a graph pooling layer over the
vertices. Finally, RNN architecture is used to predict weeds from a multi-scale graph with
a maximum accuracy of 98.1%. In a related work [118], the authors use a feature-based
GCN to detect weeds. They construct a GCN graph based on features extracted through
CNN and the Euclidean distance between these features. This graph uses both labeled and
unlabeled image features for semi-supervised training through information propagation
and labeled data for testing. By combining GCN with ResNet-101, the authors were able to
acquire accuracies of 97.80%, 99.37%, 98.93%, and 96.51%, respectively, on four different
datasets, outperforming the following state-of-the-art methods: AlexNet, VGG16, and
ResNet-101, with a reduced running time of 1.42 s.

In [119], the authors propose a semantic segmentation procedure for weed detection
with ResNet-50 as the backbone architecture. They employ a particular type of convolution
called hybrid dilation for increasing the receptive field and DropBlock for regularization
through random dropping of weights. They also optimize RGB-NIR bands into RGB-NIR
color indices to make the classification results more robust and employ an attention mecha-
nism to focus the CNN on more correlated regions along with a spatial refinement block for
fusing feature maps of differing sizes. The authors test their complicated approach on Bonn
and Stuttgart datasets and compare the weed detection performance with UNet, SegNet,
and FCN, along with performance over two other semantic segmentation algorithms, i.e.,
PSPNet and RSS [12]. For both datasets, they achieve better accuracy than the above five
algorithms of 75.26% and 72.94%, respectively.

In [121], the authors employ the SSD to detect weeds in rice fields which employs
VGG16 to extract features from images. Such a setting gives a maximum accuracy of 86%
over different image resolutions, by using multi-scaled feature maps and convolution filters.
The authors mention that the accuracy achieved with VGG16 (before re-usage) was 99%.

Finally, in [122], the authors employ the YOLOv3 CNN to discriminate between crops
(sugar beet) and weeds (hedge bindweed). They use a combination of synthetic and real
images and a K-means algorithm to estimate the anchor box sizes for YOLOv3. A test run
on 100 images shows that synthetic images can improve the overall mean average precision
(MAP) by more than 7%. The system is also able to demonstrate better performance and
trade-off between accuracy and speed as compared to other YOLO variants.

Moreover [123], the researchers compared the performance of pre-trained classification
algorithms such as VGG16, ResNet50, and Inceptionv3 for weed classification. Cocklebur,
foxtail, redroot pigweed, and gigantic ragweed are four weeds commonly seen in corn and
soybean fields in the Midwest of the United States. They also used YOLOv3 object detection
to locate and classify weeds in an image dataset. VGG16 outperformed all pre-trained
models with an accuracy of 98.90%. They also compare Keras with Pytorch, finding that
Pytorch takes less time to train models and has higher accuracy than Keras.

The authors in [124] examined the performance of single shot detector (SSD) and
Faster RCNN in terms of weed detection utilizing images of soybean fields recorded with a
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UAV in this study. Both the single shot detector and the quicker RCNN object detection
algorithms were compared to the patch-based CNN model. According to the authors,
Faster RCNN outperformed the SSD Model. Furthermore, faster RCNN outperformed
patch-based CNN.

The authors of [125] research proposed a vision-based classification method for weed
identification in spinach, beet, and bean. CNN was used for classification. UAV was
used to capture the images used in this section. Precision was used to measure model
performance, and beet received the highest precision of 93%. Additionally, The researchers
in [126] attempted to construct a precision herbicide application using DCNN and its
various variations such as VGGNet, DetectNet, GoogleNet, and AlexNet for the detection
of various weeds, such as dandelion, ground ivy, and spotted spurge in this work.

To make the algorithms more manageable for hardware with low resources while
still retaining accuracy, in this study [127] the authors used ensemble learning approaches,
transfer learning, and model compression. The suggested method was carried out in
three steps: transfer learning, pruning-based compression, quantization, and Huffman
encoding, and model ensembling with a weighted average for improved accuracy. Similarly
in [128], researchers presented a method for locating a specific area and applying herbicide
based on object detection in real-time as well as crop and weed classification. In this
study, two weed types—monocotyledon and dicotyledon—that are typically seen in cereal
crops were specifically targeted. They acquired 1318 photos using a Nikon 7000 camera
for field recording, trained CNN for classification under various lighting situations, and
trained YOLO for object detection. This [129] research study offered a novel deep-learning
technique to categorize weeds and vegetable crops. CenterNEt, YOLO-v3, and Faster
RCNN were employed in this approach. The YOLO-v3 model was the most effective in
identifying weeds in vegetable crops out of the three. For the pixel-by-pixel segmentation
of weed, soil, and sugar beet, [130] the author employed ResNet50 and U-Net. For 1385
photos, they employed these models as encoder blocks, and to deal with unbalanced data,
they also applied a unique linear loss function. CNN was primarily employed for the
classification and spraying of certain areas for herbicide application. The segmentation
accuracy in tiny regions was increased by using a bespoke loss function and balanced data.

7.1.4. ML.DL.CNN Papers

In [28], the authors compare the performance of SVM, ANN, and CNN for discrim-
inating between crops and weeds, specifically four different crop types and Paragrass
and Nutsedge weed types. They employ median and Gaussian filters for identifying the
relevant areas in images and also extract shape features for both crops and weeds. SVM
is assessed over two kernel functions, i.e., radial basis and polynomial, while ANN is
evaluated with one hidden layer containing six neurons, with the output layer containing
two neurons (one each for weed and crop detection). The CNN contains the traditional con-
volutional and maxpooling layer (with ReLU activation) followed by the fully connected
layer. The authors show that, in the best result, ANN is the best classifier for both weed
and crop classes, followed by SVM and then CNN.

In [86], the authors use SVM and ResNet-18 classifier to discriminate between weeds
and crops from unsupervised (unlabeled) images collected from a UAV. They extract deep
features from the images and employ a one-class classification approach with the SVM
classifier. Hough transform and SLIC are used to detect the crops’ rows and segment the
images into superpixels, which are used to train the SVM. It is found that the performance
of SVM is comparable with the performance of a ResNet-18 CNN which has been trained
through supervised learning (maximum 90%).

In [87], the authors focus on broad-leaf weed detection in pasture fields through an
application and comparison of both ML and DL algorithms, namely, SVM (with linear,
quadratic, and Gaussian kernel), KNN, Ensemble subspace discriminant, Regression and
CNN consisting of six convolutional layers and alternating max-pooling and drop-out
layers and three fully connected layers. Local binary pattern histogram (LBPH) is used to
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extract information from grayscale and RGB images. The authors demonstrate that CNN
outperforms all ML variants by giving a maximum accuracy of 96.88%.

In [102], the authors employ CaffeNet (a variant of AlexNet) for grass weed and
broadleaf weed detection in soybean crop images captured from the Phantom DJI drone
and compare its performance with SVM, Adaboost, and RF algorithms. SLIC was used
to extract superpixels for input to all algorithms. Although CaffeNet achieved the best
accuracy of 99%, SVM, Adaboost, and RF also achieved similar results with 97%, 96%, and
93% accuracy, respectively.

In [109], the authors address the particular problem of manually annotating and/or
segmenting a large number of UAV/drone images for a supervised weed detection task.
They propose an automated unsupervised method of weed detection based on CNNs.
Initially, they detect crop rows using Hough transform variations and SLIC. The output is a
set of lines identifying the center of the crop rows, i.e., around which the crops are growing.
Applying a blob-coloring algorithm on these lines to represent the crop regions, anything
that falls outside the blob area (crop vegetation) is a potential weed. These weeds are then
labeled autonomously and form the dataset for CNN, i.e., ResNet-18. In the data of bean
fields, the best accuracy is obtained by ResNet (88.73%), followed by RF (65.4%) and SVM
(59.51%), while for the spinach field dataset, RF is the winner with 96.2% accuracy, followed
by ResNet-18 (94.34%) and SVM (90.77%).

Moreover, a thorough comparison between ANN and AlexNet CNN has been done
by the authors in [115], in which they develop an application to transmit drone-captured
images to a machine learning server. The results demonstrate that AlexNet is able to acquire
a maximum accuracy of 99.8% while the maximum achieved by ANN is only 48.09%.

In [120], the authors attempt to construct an automated weed detection system that can
detect weeds in their different stages of growth and soil conditions. For this, they employ
a set of pre-trained CNN architectures, namely Inception-Resnet, VGGNet, MobileNet,
DenseNet, and Xception, through transfer learning techniques to extract deep features.
Then, each of these feature sets is used for weed classification with a set of traditional ML
algorithms, specifically, SVM, XGBoost, and LR. The authors test the system on tomato and
cotton fields over black nightshade and velvetleaf weeds. The authors claim that the best F1
score of 99.29% is achieved by Densenet and SVM, while all other CNN-ML combinations
give an F1 score greater than 95%.

7.1.5. AE Papers

In [92], the authors focus on the problem of designing an automated weed detection
system that can generalize to varying environments and soil conditions, as well as weed
and crop types. For this, they propose an autoencoder architecture, embedded within an
FCN, which generates two types of features through the downsample-upsample process.
First are visual features that are generated for each image through the visual code generated
after downsampling, and the second are sequential features that are generated through a
sequence code that aggregates data from a batch of images acquired from the Bonirob robot.
Both visual and sequence features are combined into a pixel-level label mask that is able to
distinguish between both crops and weeds distinctly. In comparison to a baseline method
and some previous approaches, the proposed approach demonstrates better precision and
recall for both crops and weeds over the Stuttgart and Bonn datasets.

In another paper by the same research group [93], the authors use a similar approach
to identify the actual stems of the weeds for mechanical control (e.g., pulling out) and also
a surrounding region for effective spraying. For this, they initially generate a visual code
for each image, which is then input to two different decoder networks, specifically, one
which outputs a pixel map related to weed stem detection and the other for crop detection.
This information is used to identify a bounding area around the stems for spraying. The
authors show that their system can achieve better average precision for identifying two
types of weeds (dicot and grass weed) than a baseline and other related systems.
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In [97], the authors employ two variants of the SegNet algorithm (SegNet 512 and
SegNet 256) to detect weeds from the CWFID dataset. They also make several architectural
changes to the original SegNet architecture to enhance the downsampling performance for
both SegNet 512 and SegNet 256, for instance, by adding or removing convolution and
batch normalization layers, changing the kernel size and the size of the hidden layers. As
the focus of the authors here is on the decoder’s performance, we have categorized this
paper under the DL.AE label. The validation and test accuracy over SegNet 512 is 92%
and 96% respectively, while for SegNet 256, the corresponding accuracy is 92% and 93%
respectively. The authors also show that the training, evaluation, and prediction time for
SegNet 512 is understandably twice as much for SegNet 256 because the former employs
twice as more upsampling and downsampling blocks as compared to the latter.

In [112], the authors conduct a performance comparison of DeepLab V3, U-Net, and
SegNet, which are all autoencoder-based CNN variants. Initially, patches or relevant
regions are selected from aerial images of sugar beet crops to generate the relevant set of
features, which are then input into the three variants. The results show that DeepLab V3
demonstrates the best AUC values for both crop and weed identification, while U-Net
performs better than SegNet. However, DeepLab V3 is computationally the most expensive,
followed by SegNet and then U-Net. The authors recommend generating smaller patches
over a larger training data size with an application of U-Net to achieve a balance of speed
and efficiency.

In [113], the authors employ the encoder-decoder architecture for semantic segmenta-
tion of weeds and crops. The encoder employs Atrous convolution (similar to DeepLab)
over four convolution layers and one pooling layer with an output code of size 1X1. This
code is then upsampled in the decoder twice with several low-level features (from the
atrous convolution output of the encoder) as input. Different image enhancement tech-
niques were compared and used for improving the quality of images and for making the
model to be robust against different lighting conditions. The results demonstrate that when
NIR color indices are used with these enhancement techniques, the weed identification
performance is significantly improved. However, without NIR indices, pure image en-
hancement techniques demonstrate an average performance even though they still improve
the quality of images under different lighting conditions.

8. Challenges and Future Research Directions

In this section, we answer RQ4: What are the tangible future research directions to
achieve further benefit from deep learning applications for weed detection? For this, we
identify and divide the directions of future research and challenges in the domain of deep
learning applications for weed detection into two parts: domain and technical.

8.1. Domain Challenges

• Missing integrated image databases: There is a need to create a general repository
of weed image datasets with specified associations to their respective crops, generated
with high-speed cameras (either mounted on UAVs/robots or taken manually), of an
agreed-upon high resolution, and categorized according to different modality types.
This will create proper benchmarks for any future weed detection experiments. For
instance, an experiment to detect Canadian thistles in some European countries can
employ the standard Canadian Thistle images as the baseline. The need arises from
the fact that almost all researchers generate their own datasets using different types of
cameras without any baseline images, which makes it difficult to determine the exact
impact of their work on the research community.

• Lack of standards: The main challenge arising from implementing such a standard
repository is that weeds demonstrate significant diversity from each other, as do their
associated crops. Both weeds and crops can demonstrate different growth conditions
(size, density, etc.) with respect to weather and other external variables, and the effects
of shadows and illumination will require further classification (and hence complexity)
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of the resulting images. Moreover, manually annotating each image separately over
different classifications is a complex task. Catering to all of these requirements in
collecting weed and their associated crop images is a challenging task.

• Environmental Challenges: The environmental indicators such as soil temperature,
soil water potential, exposure to light, fluctuating temperatures, nitrates concentration,
soil PH and the gaseous environmental soils impact the composition of weed flora of
the cultivated area. Therefore, it is essential to understand the usage of soil profiling
and temperate can help predict early weed detection. However, creating a soil profile
is a time-consuming task because of the nature of the soil variant.

8.2. Technical-Related

We believe that our analysis of Table 7 provides a clear roadmap for practitioners
to derive multiple lines of future research with respect to the selection of algorithm to
detect a particular type of weed and/or associated crops or selection of weeds/associated
crops for detection. Moreover, from an algorithmic perspective, it is obvious that DL,
particularly with the use of CNN and its variants, has the power to generate satisfactory
predictive performance for weed detection. As this trend is prevalent and rising, we
expect it to continue in the near future. As more variants of CNNs are discovered, there
is a high probability that they will be soon applied for weed detection and its related
field. In our opinion, the distinction between the performance of ML and DL can only be
clarified after thorough experimentation of CNN/variants with more robust ML models,
particularly, SVM, Boosting variants (Adaboost, XGBoost, LightGBM), LR, and RF, over
different standard weed datasets. Although we have discussed such previous applications,
they do not demonstrate clearly that DL has a significant edge over ML applications, and
hence, these results cannot be considered comprehensive and generalizable in our opinion.

Furthermore, once we have some standard baseline repository of images as proposed
above, we propose an application of CNN on these baseline datasets to provide an actual
benchmark performance over different measures, specifically accuracy, precision, recall,
F1-score, and AUC score. The reason is that researchers are now focusing on improving
CNN’s performance further through the use of different variants, notably ResNet, VGGNet,
and SegNet. As this trend is increasing rapidly, we expect it to continue. Our proposed
baseline performance benchmarks will then provide a standard backbone to compare the
performance of any application of CNN variant over any weed type and to position the
paper with respect to its comparison with proposed baselines. In doing so, one can also try
to address the prevalent problems of natural light variation and weather effects.

Another research direction is to quantify the impact of using standard and well-
known IP techniques for both DL and ML algorithm applications, particularly feature
selection, BFS, image segmentation, cluster analysis, and different transformations, for the
exact problem of distinguishing the weeds from their respective crops in the same image.
Moreover, we have seen that very good results have been acquired in both DL and ML
applications without the use of any IP technique. So, there is a need to understand, quantify
and hence standardize the impact of these techniques for crop-weed discrimination and a
generalized perspective.

Moreover, it remains to be explored how ML and DL applications are impacting
related fields such as pest and disease detection and the impact of transfer learning of
CNN-based models from one domain to the other. Finally, we believe there is a need to
design appropriate software architectures for such a weed detection activity which could
be generalized for future applications.

9. Conclusions

This paper conducts the first SLR to review deep learning applications in depth for
weed detection. We adopt the standard SLR methodology and answer four concrete
research questions to thoroughly summarize the state-of-the-art research’s impact and
articulate domain and technical challenges for future research directions. Furthermore, we
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created a citation graph to understand the pattern of publications and researchers in this
area. We also compare our work with the eight latest literature reviews and demonstrate
our approach’s superiority and differences with these reviews.
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