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Abstract: Precise pedestrian positioning based on smartphone-grade sensors has been a research
hotspot for several years. Due to the poor performance of the mass-market Micro-Electro-Mechanical
Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors, the standalone pedestrian
dead reckoning (PDR) module cannot avoid long-time heading drift, which leads to the failure of
the entire positioning system. In outdoor scenes, the Global Navigation Satellite System (GNSS) is
one of the most popular positioning systems, and smartphone users can use it to acquire absolute
coordinates. However, the smartphone’s ultra-low-cost GNSS module is limited by some components
such as the antenna, and so it is susceptible to serious interference from the multipath effect, which
is a main error source of smartphone-based GNSS positioning. In this paper, we propose a multi-
phase GNSS/PDR fusion framework to overcome the limitations of standalone modules. The first
phase is to build a pseudorange double-difference based on smartphone and reference stations, the
second phase proposes a novel multipath mitigation method based on multipath partial parameters
estimation (MPPE) and a Double-Difference Code-Minus-Carrier (DDCMC) filter, and the third
phase is to propose the joint stride lengths and heading estimations of the two standalone modules,
to reduce the long-time drift and noise. The experimental results demonstrate that the proposed
multipath error estimation can effectively suppress the double-difference multipath error exceeding
4 m, and compared to other methods, our fusion method achieves a minimum error RMSE of 1.63 m
in positioning accuracy, and a minimum error RMSE of 4.71 m in long-time robustness for 20 min of
continuous walking.

Keywords: PDR; GNSS; fusion positioning; multipath mitigation; smartphone-grade sensors

1. Introduction

The Location Based Service (LBS) is one of the daily applications for smartphones, and
pedestrian positioning is the technical fundamental of LBS. Pedestrians can use several
smartphone sensors to determine their location outdoors; for example, they can use GNSS
to obtain latitude and longitude, or MARG sensors to achieve relative positioning. However,
the current mass-market GNSS is limited by its ultra-low-cost hardware, such as antenna,
RF front-end, etc., and the quality of its observation is at a huge disadvantage compared
to professional receivers [1,2]. Moreover, GNSS is also subjected to multipath interference
in a complex pedestrian scene such as a crowded city street, which leads to the severe
degradation of GNSS single-point positioning accuracy, usually, 3 to 10 m [3,4]. Similarly,
smartphone-grade MEMS MARG faces the challenge of long-time drift, which is quite
difficult to solve. Compared with professional devices, smartphone-grade sensors have
great advantages in size, power consumption, and price; as a result, they enhance the
user experience of LBS, but these advantages are built upon the sacrifice of performance.
Therefore, outdoor users cannot obtain satisfactory positioning results by relying on GNSS
or MARG alone. To combine the advantages of different sensors and to improve the overall
performance, sensor fusion has received extensive attention from scholars [5–7].
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MEMS MARG includes a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magne-
tometer, where the first two are part of the Inertial Measurement Unit (IMU). Compared
with industrial- or tactical-grade MEMS IMU, the smartphone-grade IMU has a huge per-
formance gap [8,9]. Therefore, smartphone IMUs are not able to implement a Strap-down
Inertial Navigation System (SINS), as with professional IMUs. SINS calculates the position,
velocity, and attitude by integrating the observations of IMU, but the measurement error of
the smartphone’s IMU is so large that it is amplified in the integration process, failing SINS
in a very short time. However, in some applications, such as pedestrian navigation, MEMS
IMU produces regular signals due to the characteristics of human walking, so PDR was
invented [10–12]. PDR extracts the high-level behavior features from the raw data, and it
avoids too many integration operations to effectively reduce the error drift, but the essence
of PDR is still dead reckoning; this means that accumulated errors are still inevitable.

The embedded GNSS module in early smartphones was able to output only position-
ing coordinates, so scholars were unable to implement complex positioning algorithms
based on a smartphone’s GNSS, such as Difference GNSS (DGNSS). Android OS has
granted users access to GNSS raw measurements, which prompted research on the high
precision measurements of the mass-market GNSS chipset to spring up [13,14]. Nowadays,
the GNSS chipset can output both pseudorange and carrier phase observations, but the
quality of the carrier phase is too poor to be used for ranging [15,16]. At present, smart-
phones mainly adopt the single-point positioning of pseudorange observation to calculate
the receiver position, which is highly influenced by the multipath error and thermal noise,
thus significantly reducing the positioning accuracy. Fortunately, scholars have two feasible
ways to improve the accuracy of pseudorange positioning; one is to use the Continuously
Operating Reference Station (CORS) network to obtain the reference station data and to
construct double-difference positioning to eliminate most of the errors [17], and the other
is to make better use of other GNSS observations, such as the carrier-to-noise-density
ratio (CN0R).

The integrated navigation of GNSS and SINS is a very mature technology, and it has
proven to be successful in many fields, which reflects the fact that GNSS and IMU are
highly complementary [18,19]. Therefore, scholars associate to fuse GNSS and PDR, and to
try to borrow the design idea of GNSS/SINS integrated navigation. Although GNSS/PDR
fusion positioning can benefit from integrated navigation, it still faces many challenges:
(1) When GNSS and PDR can only use ultra-low-cost sensors, how do we deal with their
own measurement errors, such as GNSS multipath error? (2) The output data types of
GNSS and PDR are quite different in terms of the coordinate form and output frequency,
how should we unify them? (3) How do we design a fusion algorithm that minimizes
the long-time drift of PDR? In this paper, we propose a multi-phase GNSS/PDR fusion
framework based on smartphone-grade sensors. The first phase is to construct a Real-
Time Difference (RTD) model between the smartphone and the reference station to replace
traditional single-point positioning, the second phase is to propose a novel multipath error
estimation method, and the last phase is to propose the joint stride length and heading
estimation of the two standalone modules to improve the ability of the entire system to
suppress long-time drift by designing a unique Kalman Filter (KF). The contributions of
this paper are as follows:

• We adopt RTD instead of single-point GNSS in traditional fusion schemes, and propose
a multipath mitigation algorithm that can be implemented on smartphones based on
the MPPE and DDCMC filters, which exploits the CN0R and DDCMC observables;

• For the issue of different GNSS and PDR output formats, we design the coordinate
transformation to convert GNSS data into a dead reckoning form, and the data syn-
chronization to fix the results of PDR as periodic output;

• Before the conventional fusion filtering, we add the stride length and heading estima-
tion modules to suppress the long-time drift of the MEMS sensors, which smooths the
drift-free and noisy GNSS outputs with the drifted and low-noise PDR outputs.
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The rest of this paper is organized as follows. Section 2 introduces some early related
work. Section 3 presents the proposed fusion framework and positioning error analysis.
Sections 4–6 give detailed descriptions of PDR, GNSS RTD, and the fusion system, respec-
tively. Section 7 presents the setup and results of three different tests. Finally, Section 8
concludes our paper.

2. Related Work

PDR was initially used in those GNSS-denied environments, such as indoor position-
ing. In the last decade, a lot of literature [20–22] involving PDR has been published, and
these previous works provided in-depth analysis and innovations, such as stride length
estimation and heading estimation. Due to the fact that GNSS observation open access
is a few years later than MEMS MARG integration into smartphones, early research on
GNSS/PDR fusion commonly used professional- or vehicle-grade GNSS receivers, such
as u-blox. Compared with bulky, high power consumption and expensive professional
receivers, the miniaturized smartphone-grade GNSS chip has more advantages in new
applications such as Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV).

Positioning based on smartphone-grade GNSS can not only use pseudorange observa-
tions but it can also use carrier phase observations to achieve a higher accuracy, such as
centimeter-level positioning, which has been widely explored in the GNSS community in
recent years [23–25]. However, there are still many difficulties in the smartphone-grade car-
rier phase that have not yet been resolved, such as frequent cycle slips, tracking loss under
weak signals, etc. Moreover, the characteristics of the carrier phase of different smartphones
are different, requiring specific analysis, which is very complex. At present, carrier-based
high-precision positioning is still in the exploration stage, and there is no mature solution.
Carrier-based positioning also requires the resolution of integer ambiguity, and currently,
the fixed time of smartphone-grade observations takes several minutes or even longer;
the long fixed time cannot meet the need for pedestrian positioning because pedestrians
cannot tolerate such a long waiting time. In addition, if the large multipath error in the
smartphone’s pseudorange cannot be eliminated, the integer ambiguity estimation based
on pseudorange and carrier phase combination cannot be promoted. Therefore, RTD posi-
tioning is adopted in this paper, which improves the accuracy compared with single-point
positioning, and reduces the waiting time compared with carrier-based positioning.

According to the above analysis, RTD is suitable for pedestrian positioning, but
smartphone-based RTD still suffers from severe multipath interference, partly caused by the
application environment and partly caused by its ultra-low-cost antenna. A Planar Inverted-
F Antenna (PIFA) is usually adopted in smartphones, and it is an omnidirectional, linearly
polarized antenna. Therefore, a pedestrian will receive Non-Line-of-Sight (NLOS) signals
from multiple directions, in addition to the Line-of-Sight (LOS) signal. Even worse, when
the direction of the phone held by the pedestrian changes, that is, the antenna is not facing
the zenith, then even the LOS signal will be blocked. These NLOS signals form constructive
or destructive additions at the RF level, thus leading to unpredictable multipath errors in
pseudorange observations. Conventional multipath mitigation methods include antenna
arrays [26], longer pseudo-random code [27], multi-channel Delay Lock Loop [28], the
statistical modeling of multipath electrical parameters [29], the 3D modeling of urban
environments [30], etc. The above methods are highly demanding on hardware resources
and power consumption, so that none of them can be applied to smartphones. In this paper,
we consider exploiting the relationship between multiple GNSS observations [31,32], which
can be implemented on smartphones at a lower cost, as detailed in Section 5.

Regarding GNSS/PDR fusion positioning. Hsu et al. [33] propose a framework of the
fusion algorithm based on PDR and 3D map-aided GNSS in urban environments. They
use a KF to process the inputs of the two subsystems, and the observations of the KF come
from 3D map-aided GNSS, while the real-time outputs of PDR are used to update the
state transition equation; this is because the trajectory of a pedestrian is very uncertain
and is difficult to be described using the linear state transition equation. Lan et al. [34,35]
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use a state constraint KF to fuse PDR and GNSS, and their key algorithm is called the
Error State Correction (ESC). Their analysis of PDR errors is very detailed and valuable
because it is based on MEMS device errors. They use the headings derived from GNSS
to assist with the heading estimation of the MEMS sensors, which improves the overall
accuracy of the heading estimation, but the noise in the GNSS heading estimation has not
been solved well, so that the initial stage of the pedestrian trajectory relies heavily on the
GNSS. Basso et al. [36,37] propose a fusion method called Multi-Rate Extended Kalman
Filter (MREKF), which is an event-triggered multi-rate size-varying KF. The data fusion is
designed to exploit the real-time estimates of heading and stride length, provided by the
PDR, with the position being obtained from GNSS. MREKF can work at each step with
reduced information from the sensors, thus covering both the case of poor satellite coverage
and the situation of different sampling rates for each source.

The main novelty of our proposed fusion method is the differentiated treatment of
multipath errors and long-time drift. We consider the different characteristics of these two
errors and think that it is inappropriate to fuse them directly with a common KF. In this
paper, the multipath errors are first eliminated in the RTD subsystem, then the GNSS and
PDR data are initially fused with the joint estimation to suppress the long-time drift, and
finally, the filtering of the noise and residual errors is completed in the data fusion KF.

3. Fusion Framework and Error Analysis
3.1. Implementations of the Fusion Framework

The GNSS/PDR fusion framework proposed in this paper is shown in Figure 1, which
mainly includes three parts: PDR module, GNSS RTD module, and fusion positioning
module. A brief introduction to them is as follows:

Figure 1. Block diagram of PDR and GNSS fusion framework based on smartphone-grade sensors.

• The inputs of PDR come from 9-axis MEMS MARG sensors, where the accelerometer
data are used for step detection and stride length estimation, and the gyroscope and
magnetometer data are used for heading estimation. Finally, the estimated stride
length µ and heading θ are fed into the location update module to obtain the 2D
coordinates (x, y) of the pedestrian.

• GNSS RTD refers to the short-baseline pseudorange double-difference, and so, by
receiving external CORS data to construct a double-difference model with the local
data, most of the observation errors can be eliminated. Due to the poor performance
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of GNSS hardware, careful raw data processing is required before using them. MPPE
and DDCMC filter are applied here to mitigate the multipath error, and the baseline
solution can be obtained by solving the double-difference observation equation;

• Before fusing the GNSS and PDR data, their coordinate formats and timestamps need
to be aligned, and these are performed in GNSS dead reckoning and PDR output syn-
chronization. Then, the stride length and heading of the two subsystems are fed into
their respective joint estimation modules. Finally, a KF is used to complete the fusion
filtering, and the fusion trajectory update module outputs the positioning results.

3.2. Error Analysis of the Fusion System

In the GNSS/PDR fusion system, there are mainly three kinds of errors: (1) stride
length and heading error in PDR: these two errors depend on the performance of the smart-
phone’s MEMS sensors; (2) double-difference pseudorange multipath error in RTD, this
error is mainly related to smartphone’s antenna and operational environment; (3) random
noise such as thermal noise in GNSS measurements.

3.2.1. Cumulative Error of PDR

The stride length and heading errors of PDR can be modeled according to the char-
acteristics of MEMS sensors; however, there are many MEMS error sources, so such an
analysis is extremely complex [35]. To simplify the analysis, we observe the effect of stride
length and heading errors on the final pedestrian trajectory. If the initial position is (x0, y0),
then the kth position update is as follows: xk = x0 + ∑k

i=1 µisinθi

yk = y0 + ∑k
i=1 µicosθi

, ∀k ∈ N+ (1)

We can see that the stride length and heading errors of each step are accumulated
continuously in the iterative process. If we know the stride length and heading errors
at each step, we can deduce the influence of the heading and stride length errors on the
final position from Equation (ER1), but this is still inconvenient. Therefore, we adopt an
experimental method called the control point test, to replace the mathematical analysis, to
observe the cumulative error of PDR. This test sets some control points (the coordinates
have been calibrated) in advance, and the stride length and heading of each step can be
fixed to a constant. Through the analysis of the real-time collected data, the characteristics
of the stride length and heading errors can be observed. From Section 7, we can find that
the errors of PDR increase with time, while the errors of GNSS are more similar to the
zero-mean Gaussian noise.

3.2.2. Influence of the GNSS Multipath on Observables

The multipath effect has different impacts on different GNSS measurements, such as
pseudorange, carrier phase, and CN0R. The pseudorange multipath error is particularly
important for the final positioning accuracy. Figure 2a shows the situation where a pedes-
trian encounters multipath, Figure 2b shows the orientation of the smartphone’s antenna,
and Figure 2c shows the IQ diagram of multipath signal in Phase Lock Loop (PLL). The
changes in NLOS signals compared with the LOS signal are mainly represented by three
parameters, which are:

• α: the ratio of the signal amplitude of NLOS to that of LOS,
• ψ: the phase shift of NLOS with respect to LOS,
• δ: an additional path length of NLOS with respect to LOS.

As an example, Figure 2c shows the IQ diagram of the composite signal, composed of
LOS and two NLOS signals in PLL; the amplitude of the LOS signal is A0, the amplitude of
NLOS]1 is A1 = α1 A0 and the phase shift is ψ1; the amplitude of NLOS]2 is A2 = α2 A0
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and the phase shift is ψ2. If the number of NLOS signals is n, the pseudorange multipath
error τ can be expressed using the above three parameters as [31]:

τ =
∑n

i=1 αiδicosψi

1 + ∑n
i=1 αicosψi

(2)

Besides, CN0R affected by NLOS can be expressed as [31]:

CN0R =
2BWn

fsTi
A0

[
1 +

n

∑
i=1

α2
i +

n

∑
i=1

αicosψi

]
(3)

where BWn is the noise bandwidth of the receiver, fs is the A/D sampling frequency, Ti is
the integral period, and A0 is the amplitude of the LOS signal.

Figure 2. Multipath scene. (a) In urban streets, a pedestrian’s smartphone receives not only LOS
from the satellite, but also NLOS]1 reflected from buildings and NLOS]2 caused by mobile vehicles.
(b) This figure shows the coordinate axis of the 3-axis MEMS sensors and the main lobe of the GNSS
antenna when a pedestrian holds the smartphone. (c) The composite signal in the IQ diagram of PLL.

4. Pedestrian Dead Reckoning
4.1. Step Detection

When a pedestrian walks, the output of the accelerometer is a periodic signal or a
regular pattern. Therefore, scholars exploit this property to determine whether a pedestrian
is taking a step. Traditional step detection methods include zero-crossing detection [38],
peak detection [39], auto-correlation detection [40], and spectrum analysis [41], etc. In this
paper, we adopt the dynamic threshold zero-crossing detection method [42]. This method
uses a low-pass filter with a cut-off frequency of 2.1 Hz to preprocess the raw data of the
accelerometer to reduce noise, and then uses a finite state machine to control the state
transition between walking and non-walking, which can achieve an accuracy of 98%.

4.2. Stride Length Estimation

After the pedestrian step is detected, there are several models [43–45] to estimate the
stride length, such as the empirical model, linear model, non-linear model, and machine
learning model. The stride length model used here is a binary linear regression model, and
the expression is as follows [45]:

µ = β1νs + β2σ2
a + β3 (4)
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where νs is the stride frequency and σ2
a is the acceleration variance. Parameters β1, β2, and

β3 need to be determined using off-line training. Once determined, these parameters can
be used to estimate the stride lengths of different pedestrians in real-time applications.

4.3. Heading Estimation

Heading estimation is the most important step in PDR because the heading estimation
error will accumulate, resulting in a severe distortion between the estimated trajectory and
the groundtruth. The heading estimation usually uses the data from a gyroscope, magne-
tometer, or both of them [46,47]. Since the gyroscope generates a cumulative error during
integration, and the magnetometer is susceptible to interference from the surrounding
magnetic field, these two have obvious complementary characteristics. In this paper, we
combine these two different sensors to estimate the optimal heading [48].

5. GNSS Real-Time Difference
5.1. GNSS Pseudorange Double-Difference

GNSS raw measurements include pseudorange, carrier phase, and CN0R, etc. Among
them, pseudorange P and carrier phase Φ are expressed as follows:

P = ρ + c(δtu − δts) + I + T + τ + εP (5)

Φ = λ−1[ρ + c(δtu − δts)− I + T + φ] + Z + εΦ (6)

where ρ represents the real distance, δtu and δts represent the clock bias of the user’s smart-
phone and satellite, respectively, c is the speed of light in a vacuum, λ is the wavelength of
the carrier, I and T represent ionospheric and tropospheric delay, respectively, Z is the inte-
ger ambiguity of the carrier phase, τ and φ represent the multipath error of pseudorange
and carrier phase, respectively, and ε represents the sum of other errors dominated by the
thermal noise. The double-difference pseudorange is defined as:

∇∆Pij
ur =

(
Pi

u − Pi
r

)
−
(

Pj
u − Pj

r

)
= ∇∆ρ

ij
ur +∇∆τ

ij
ur +∇∆εP

(7)

where ∇∆ is the double-difference operator. The Earth-centered, Earth-fixed (ECEF) coor-
dinates of the reference station r are known, while the location of the user u is unknown.
Superscripts i and j denote the ith and jth satellites, respectively, where the jth satellite is the
reference satellite, and we select the satellite with the maximum elevation as the reference.
Note that RTD is a short-baseline double-difference model, so I and T in Equation (5) and
Equation (6) are considered common mode errors when constructing the double-difference,
and therefore are eliminated. Comparing Equation (5) and Equation (7), we can see that
the double-difference pseudorange has a more concise expression than the un-difference
pseudorange. In Equation (7), the residual errors are mainly multipath error ∇∆τ

ij
ur and

thermal noise ∇∆εP.

5.2. Double-Difference Code-Minus-Carrier

Similar to constructing the double-difference pseudorange using Equation (5) and
Equation (7), we use Equation (6) to construct the double-difference carrier phase, as follows:

∇∆Φ
ij
ur = λ−1∇∆ρ

ij
ur +∇∆Zij

ur +∇∆εΦ (8)

From above, we can see that the double-difference carrier phase mainly includes
unknown integer ambiguity ∇∆Zij

ur and thermal noise ∇∆εΦ, and because the integer
ambiguity of the smartphone has cycle slips and is difficult to be fixed, it is infeasible to
implement Real-Time Kinematic (RTK). Since the multipath error φ in Equation (6) is very
small, generally, at the centimeter level, it has little effect on improving the RTD solution,
so we ignore this term in Equation (8).
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According to Equations (7) and (8), we introduce a combined observation called
DDCMC, as follows [49]:

∇∆CMC = ∇∆Pij
ur − λ∇∆Φ

ij
ur

= ∇∆τ
ij
ur − λ∇∆Zij

ur +∇∆ε
(9)

5.3. Multipath Partial Parameters Estimation

Since the parameters α, ψ, and δ in Equation (2) are difficult to obtain, it is not possible
to calculate the multipath error directly. However, we find that Equation (3) contains α and
ψ, but it only lacks δ in Equation (2). Because CN0R is a direct output and the pseudorange
observations contain multiple errors including multipath error, we propose a parameter
estimation method called MPPE, which uses CN0R to estimate the multipath parameters
α and ψ. Suppose that within a very short time window, α is a constant and remains
unchanged, while ψ and δ change with time. Compared with ψ and δ, the change of α is not
particularly important for multipath estimation and can be simplified. The time-varying
expression of ψ can be modeled as follows:

ψi(t) = ωit + γi (10)

where ωi is the angular frequency and γi is the initial phase.
If we use K to replace the constant term 2BWn

fsTi
A0 in Equation (3) and substitute

Equation (10) into Equation (3), then we have:

CN0R(t) = K

[
1 +

n

∑
i=1

α2
i +

n

∑
i=1

αicos(ωit + γi)

]
(11)

For the CN0R time sequence in Equation (11), we apply FFT to it and transform it to
the angular frequency domain. Then, the amplitude of the zero frequency component is
extracted and recorded as Â0, and all other peaks in the spectrum are sorted in descending
order of amplitude. The largest n peak amplitude values Âi with corresponding angular
frequency ω̂i and phase γ̂i are selected; in order to avoid noise, the choice of n is related
to a threshold, and the threshold requires that the sum of the energy of the selected peaks
should exceed 95% of the total non-zero frequency energy.

Finally, we can estimate the time-varying parameters α and ψ(t) using the above
known quantities. The detailed derivation of MPPE is provided in Appendix A.

5.4. DDCMC Filter Design

It should be noted that Equation (2) is the expression of the un-difference pseudorange
multipath error, but we need to deal with the double-difference form in RTD. Let us review
Equation (7); it can be expanded as follows:

∇∆τ
ij
ur =

(
τi

u − τi
r

)
−
(

τ
j
u − τ

j
r

)
≈ τi

u − τ
j
u (12)

In practice, the reference station is usually built in an environment without interference,
such as setting the antenna at a high platform or adopting a survey-grade choke ring
antenna, which can basically avoid the impact of multipath on the observation of the
reference station. Therefore, there are τi

r ≈ 0 and τ
j
r ≈ 0 in Equation (12). In other words,

only the multipath errors of the user’s smartphone need to be considered.
MPPE is able to estimate two parameters of the pseudorange multipath error, which

are α and ψ. However, δ in Equation (2) cannot be obtained from the CN0R sequence.
Therefore, we also need to estimate δ, and thus, obtain the estimation of the double-
difference pseudorange multipath error in Equation (12).
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From Equation (A4), we obtain κi(t) corresponding to the ith NLOS, so that the vector
κ consisting of n NLOS is as follows:

κ =
[
κ1 κ2 · · · κn

]> (13)

Similarly, the unknown vector δ of n NLOS is as follows:

δ =
[
δ1 δ2 · · · δn

]> (14)

Considering the relationship between Equation (2), Equation (9), and Equation (12),
we design a KF called the DDCMC filter to estimate the unknown δ corresponding to
τi

u and τ
j
u, denoted by δu,i and δu,j, respectively. The observed quantities of the DDCMC

filter are ∇∆CMC, while the state quantities are δu,i and δu,j, as well as the unknown

double-difference integer ambiguities ∇∆Zij
ur. The design details of the DDCMC filter

are shown in Appendix B, and we note that its state transfer is required for the control
input; see Equation (A8). Finally, we can obtain the estimation of the pseudorange double-
difference multipath error by substituting the outputs δu,i and δu,j of the DDCMC filter into
the following:

∇∆τ
ij
ur = κ>u,iδu,i − κ>u,jδu,j (15)

where κu,i and κu,j correspond to τi
u and τ

j
u, respectively.

6. Methodology of GNSS/PDR Fusion
6.1. GNSS Dead Reckoning

By solving the pseudorange double-difference equation constructed by ∇∆Pij
ur, we

obtain the baseline solution b in the ECEF frame. Assuming that the ECEF coordinate of
the reference station is r, then r+ b is the real-time ECEF coordinate of the user smartphone.
The ECEF coordinates can be easily converted to Latitude-Longitude-Height (LLH) or
East-North-Up (ENU) coordinates. Because PDR only considers 2D coordinates, the ECEF
coordinates output by RTD need to be converted to ENU coordinates. In order to unify the
GNSS outputs (ENU coordinates) and the PDR outputs (stride length and heading), we
convert GNSS outputs into dead reckoning mode and define the GNSS heading and stride
length. Assuming that (Ek, Nk, Uk) and (Ek+1, Nk+1, Uk+1) represent the ENU coordinates
of two adjacent epochs k and k + 1, then the GNSS stride length is calculated as:

µk+1 =

√
(Ek+1 − Ek)

2 + (Nk+1 − Nk)
2 (16)

and the GNSS heading is calculated as:

θk+1 = arctan
(

Ek+1 − Ek
Nk+1 − Nk

)
(17)

6.2. PDR Output Synchronization

PDR updates its coordinates only when it detects a step, so that PDR outputs are burst
and unpredictable. However, GNSS outputs the position solution at a certain frequency;
for example, the highest update rate of GNSS observations in smartphones is 1 Hz. In order
to fuse these asynchronous data in real-time, it is necessary to make the update frequency
of the two systems consistent.

Figure 3 shows a schematic diagram of data synchronization, and the basic idea of
data synchronization is to merge the burst PDR outputs into periodic outputs. According
to the characteristics of pedestrian walking, there are two cases in one GNSS interval: (1) no
PDR output; (2) at least one PDR output. The former is called a slow step, and the latter
is called a fast step. When a person walks normally, he can usually complete at least one
step within 1 s. If he cannot, it is more likely that he does not make a decision for the next
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step. In general, people take fast steps when they are walking continuously, and slow steps
happen occasionally. Note that most fast steps have only one or two PDR outputs within
1 s. In addition, if there are no steps for a long time, we call this case a stop. As shown in
Figure 3, there are s PDR outputs between GNSS epoch p− 1 and p, and q is the first PDR
output that exceeds GNSS epoch p. Then, we can calculate the PDR stride length at GNSS
time p as follows:

µp =

√√√√(s−1

∑
i=0

µq−isinθq−i

)2

+

(
s−1

∑
i=0

µq−icosθq−i

)2

(18)

and the PDR heading at GNSS time p is calculated as follows:

θp =
1
s

s−1

∑
i=0

θq−i (19)

Figure 3. Schematic diagram of PDR and GNSS output synchronization.

6.3. Joint Stride Length and Heading Estimation

Traditional GNSS/PDR fusion algorithms are usually based on KF or EKF, but these
algorithms do not make good use of the difference between the GNSS and PDR errors. They
simply feed the outputs of the two subsystems into the filter in the same way; therefore,
the final filtering results often retain some characteristics of the GNSS or PDR errors. The
fusion algorithm proposed in this paper also needs to design a unique KF to complete the
filtering fusion, but before sending the data into KF, we first implement the joint stride
length estimation and the joint heading estimation, respectively.

Joint heading estimation:θJOINT
k+1 =

Θk+1
M

+
M− 1

M

(
θJOINT

k + θPDR
k+1 − θPDR

k

)
Θk+1 = w1θGNSS

k+1 + (1− w1)θ
PDR
k+1

(20)

where M is the smoothing coefficient and w1 is a weighting factor. M should not be set to
be too large or too small; if it is too large, the tracking of the heading becomes dull, and if it
is too small, the filtering effect is not good, so it is usually set to 30 to 50. w1 usually takes a
value of from 0.6 to 0.9. Equation (20) is an iterative equation and it is designed to use a
PDR heading with low noise power to smooth the GNSS heading with high noise power,
and only the difference of PDR headings is used, so the cumulative error in the final joint
heading estimation is also suppressed.

Joint stride length estimation:

µJOINT
k+1 = w2µGNSS

k+1 + (1− w2)µ
PDR
k+1 (21)

where w2 is a weighting factor. According to the test results later, we find that the stride
length accuracy of PDR estimation is better than that of GNSS estimation. Therefore,
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Equation (21) is a simple weighting formula, and the joint stride length is more dependent
on the PDR, so w2 is generally set to 0.1.

6.4. Fusion Filtering and Trajectory Updating

After the joint stride length and heading estimation, a KF is applied to filter out the
remaining noise. The observations of this KF are θJOINT

k+1 and µJOINT
k+1 , and the states of this KF

can be selected as (x, y) or (µ, θ), etc. Because it is difficult to predict pedestrian behavior,
the state transition is generally considered to be the state of the previous moment, or by
using other methods to predict behavior. For the KF design of PDR, please refer to [50,51].
Finally, the filtering results of KF are sent to the fusion trajectory update module, and the
pedestrian position is calculated according to Equation (1).

7. Experiments and Results
7.1. Experimental Setup

In this paper, we choose Xiaomi 8 UD as the test smartphone, whose GNSS chipset
is Broadcom BCM47755, the 6-axis MEMS IMU is Qualcomm ICM20690, and the 3-axis
magnetometer is akm ak0991x. BCM47755 supports both the GPS L1 and L5 dual-frequency
signals, but only the GPS L1 signals have been used in our experiments. We develop a
data collection APP using the Android APIs, and use our own post-processing code on
the computer to process and analyze the data, to verify the effectiveness of our proposed
method. By turning off the duty-cycle option, we can track the continuous GNSS carrier. In
addition, we adopt the Huace B5 survey-grade GNSS receiver as the reference station, and
use it to collect the static data. We also use the Huace i70II receiver and CORS to measure
some positions with RTK, the accuracy of which is centimeter-level.

In order to evaluate the performance of our proposed method, we designed three
tests, which are: (1) The control point test is used to analyze the error characteristics of a
standalone system (Only PDR or Only RTD); (2) The static multipath test is used to analyze
the suppression effect of the DDCMC filter on the pseudorange multipath error of the
smartphone; (3) The GNSS/PDR fusion test is used to analyze the positioning accuracy of
different standalone systems and fusion systems.

• Control point test: See Figure 4a,b; the trajectory of our selected control point test is a
rectangle (see ENV]1). There are markers on the ground, and the distance between the
two markers is 0.5 m, which also equals the stride length of each step. The long side
of the rectangle has 143 steps, and the short side has 14 steps. The four corner points
(A, B, C, and D) of the rectangle are measured using our RTK devices, so that we can
obtain the groundtruth of the heading for each edge. The reference station is set at R1.

• Static multipath test: See Figure 4a; this test constructs a pair of double-difference
observations, where the reference station is located at R1 and the test smartphone is
located at S. The groundtruth of these two locations are measured in advance using
RTK. R1 is located in the middle of the bridge, away from the reflector, so that the
reference station is almost unaffected by the multipath. S is near the surrounding
obstacles, such as the trees in the south, constituting a multipath reflector, and so the
test smartphone receives a more severe multipath impact.

• GNSS/PDR fusion test: See Figure 4a,c; the trajectory of our selected fusion test is a
standard 400 m track (see ENV]2). The reference station is set at R2.

7.2. Control Point Test

The tester walks three laps along the track, and the route of one lap is A-B-C-D-A. The
number of steps in one lap is 314, so the total number of steps is 942, and the whole test
time is about 15 min. At each corner point, the tester stands still for approximately 30 s and
completes a turn-in-place. The results are shown in Figure 5 and Table 1.

Figure 5a,b respectively show the estimated stride length and heading of standalone
PDR, in which the red line is the groundtruth and the blue line is the estimated results. We
can see the periodic pattern, which corresponds to the repeated results of three laps. The
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total number of the estimated steps is 937, so the success rate of the step detection is 99.5%.
After analysis, the main reason for some detection errors is that the step detection module
merges some fast steps into one step.

Figure 4. Experimental environments. (a) Two test sites. (b) The track used for control point test.
(c) The track used for GNSS/PDR fusion test.

Figure 5. Results of control point test. (a) PDR stride length estimation. (b) PDR heading estimation.
(c) GNSS heading estimation.

Table 1. Results of three-lap control point test for two standalone methods.

Evaluation Index Lap 1 Lap 2 Lap 3

Detected steps 311 309 316
Detection success rate (%) 99.1 98.4 99.4
PDR stride length error (m) −0.02 0.04 0.09
PDR heading error (◦) −16.5 −18.7 −33.5
GNSS heading error (◦) −2.9 −0.9 2.2

As we can see from Figure 5a, the stride length estimation of PDR is basically around
the groundtruth, but there are two unusual findings. One is that there are outliers with
large stride length estimation errors; for example, some steps are estimated to be more than
1 m, while some steps are zero. After analysis, we find that these outliers mainly appear at
the moment when the tester is about to stop or walk. Another is that the error of the stride
length estimation increases with time. When the tester walks continuously, the error of
stride length estimation is usually on the centimeter level. From Table 1, the average stride
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length estimation errors of each lap are −0.02 m, 0.04 m, and 0.09 m. It can be seen that the
stride length error of the third lap is 11 cm larger than that of the first lap.

The comparison between the heading estimation and the groundtruth of PDR is
shown in Figure 5b. We can see that the heading estimation is more accurate in the initial
stage, and that the error of the heading estimation gradually increases over time. Table 1
shows the average heading estimation error of three laps, which are −16.5◦, −18.7◦, and
−33.5◦, respectively. These heading errors are too large, which eventually leads to complete
trajectory distortion.

Figure 5c shows the heading estimation error of GNSS. Here, GNSS adopts RTD
positioning without multipath mitigation. Because RTD is a fixed frequency output, the
GNSS stride length is not shown here because it is meaningless and only meaningful
during fusion. The average heading estimation errors of the three laps are shown in
Table 1, which are −2.9◦, −0.9◦, and 2.2◦, respectively. It can be seen that there is no large
drift in GNSS headings; however, there are many outliers with the large errors shown in
Figure 5c, indicating that the GNSS results are susceptible to interference, mainly multipath
interference.

7.3. Static Multipath Test

In this test, the test smartphone is placed at S and the reference station is placed at
R1. They record the static data at the same time, including observation and ephemeris.
We verify the performance of the proposed multipath mitigation by observing a double-
difference pair composed of GPS G10 and GPS G32. Since the CN0R of G32 is always better
during the whole observation time, G32 is selected as the reference satellite. The total test
time is about 30 min.

Figure 6a shows the double-difference pseudorange, double-difference carrier phase,
and DDCMC. Comparing Equations (7)–(9), we can see that there is no ∇∆ρ

ij
ur in DDCMC,

so we can use DDCMC to separate the double-difference pseudorange multipath error
and the double-difference integer ambiguity directly. Figure 6b,c shows the reconstructed
CN0R of G10 and G32 using MPPE, respectively. The reconstructed CN0R extracts the
principal components of the raw CN0R and ignores the high-frequency noise components.
In addition, the fluctuation of the CN0R waveform reflects the severe multipath effect in
the current satellite observations.

Figure 6. Results of the static multipath test. (a) Double-difference observations. (b) Reconstructed
CN0R of G32 via MPPE. (c) Reconstructed CN0R of G10 via MPPE.

Figure 7 shows the comparison between the outputs of the DDCMC filter and
groundtruth, where Figure 7a is the double-difference pseudorange multipath estima-
tion and Figure 7b is the double-difference integer ambiguity. It is necessary to explain the
acquisition approach of the groundtruth, because the coordinates of R1 and S are known,
and the coordinates of the satellites are calculated via ephemeris, so ∇∆ρ

ij
ur in Equations (7)

and (8) is also known, and then the thermal noise term is removed via fine filtering, and
so the rest terms are the groundtruth of the double-difference pseudorange multipath and
integer ambiguity.

From Figure 7a, we can see that the proposed method is able to well estimate the large
offset in the multipath error, such as the range of (200, 300) and (1000, 1200). Figure 8 shows
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the result of multipath mitigation from the other side, in which Figure 8a is the PDF of
measurement errors before multipath mitigation, and Figure 8b is the PDF of measurement
errors after multipath mitigation. It can be seen that the PDF of multipath errors is usually
not Gaussian distribution; for example, errors that are larger than 4 m in Figure 8a are
outside of the Gaussian distribution fitting curve. After mitigation, the error PDF can better
fit the Gaussian distribution curve, and the energy of residuals that are larger than 4 m is
more concentrated near the expectation, so that the remaining error can be regarded as the
thermal noise of Gaussian distribution, and KF can be used for optimal filtering.

Figure 7. Outputs of DDCMC filter. (a) Multipath error estimation. (b) Integer ambiguity estimation.

Figure 8. Probability density function of double-difference multipath error. (a) Before multipath
mitigation. (b) After multipath mitigation.

Another outcome of the DDCMC filter is shown in Figure 7b; that is, double-difference
integer ambiguity. It does not directly affect multipath mitigation, but it reflects many
facts. By observing the groundtruth, as shown by the green line, we can see that the
groundtruth is not an ideal constant, but a stepped waveform. At present, the carrier
tracking of the smartphone-grade GNSS chipset is still imperfect, so we cannot apply
RTK directly. The estimated integer ambiguity is shown by the blue line; although there
is a large difference between the estimation and the groundtruth, it also basically tracks
the change of the groundtruth. In fact, it is more difficult to solve the integer ambiguity
than multipath estimation through smartphone-grade observations; therefore, RTD with
multipath mitigation is more practical than RTK, based on the performance of the current
ultra-low-cost mass-market GNSS chipset.

7.4. GNSS/PDR Fusion Test

The tester holds the smartphone in his right hand and walks counterclockwise for
three laps along the standard 400 m track. The start and end points are shown in Figure 4c,
and the total test time is about 20 min. At the same time, we set the reference station at
R2 and start the static recording. The results of this test are shown in Figures 9 and 10,
and in Table 2. Five methods are tested, which can be divided into two categories: one is
standalone systems, including Only PDR and Only RTD; and the other is fusion systems,
including our proposed algorithm, MREKF, and ESC.
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Figure 9. Results of three-lap GNSS/PDR fusion test of five pedestrian positioning methods. (a) Only
PDR trajectory. (b) Only RTD trajectory. (c) The trajectory of the proposed method. (d) MREKF
trajectory. (e) ESC trajectory.

Figure 10. Cumulative distribution function of three-lap GNSS/PDR fusion test of five pedestrian
positioning methods. (a) CDF of the first lap. (b) CDF of the second lap. (c) CDF of the third lap.

Table 2. Comparison of three-lap GNSS/PDR fusion test of five pedestrian positioning methods.

Methods
RMSE (m) CEP50% (m) CEP90% (m)

Lap 1 Lap 2 Lap 3 Lap 1 Lap 2 Lap 3 Lap 1 Lap 2 Lap 3

Only PDR 3.76 10.99 14.42 1.71 5.02 7.00 7.31 20.80 27.40
Only RTD 3.77 6.23 5.21 2.35 4.30 4.37 6.34 9.98 7.91
MREKF 2.37 3.02 4.81 1.57 3.99 3.94 3.69 6.33 9.19

ESC 2.70 7.15 8.21 1.34 3.10 6.88 4.73 13.13 13.28
Ours 1.63 3.19 4.71 1.12 2.29 2.67 3.27 5.83 7.19

Figure 9a shows the trajectory of PDR after three laps. The initial position and heading
of PDR are given by the priori true values. During the test, a total of 1938 steps are
detected, and the trajectory of the first lap is very close to the groundtruth; however, due
to the cumulative error in the heading estimation, the next two laps deviate far from
the groundtruth. Figure 9b shows the trajectory of RTD after three laps, where multipath
mitigation is not applied, and so multipath errors are reflected in the trajectory. For example,
the positioning errors at the two arc segments are much larger compared to the straight
segments; this is because some satellites are partially blocked by the orientation of the tester
at that time. In addition, the pseudorange observations of RTD are smoothed by using the
carrier phase observations, so the thermal noise has been reduced and the final trajectory is
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smoother compared to the single-point solutions. Compared with the first lap, the third lap
does not have significant drift.

Figure 9c shows the trajectory of the proposed method; the RMSEs corresponding
to three laps are 1.63 m, 3.19 m, and 4.71 m, respectively. Figure 9d shows the trajectory
of MREKF; the RMSE corresponding to the three laps are 2.37 m, 3.02 m, and 4.81 m,
respectively. Figure 9e shows the trajectory of ESC, the RMSE corresponding to three laps
are 2.70 m, 7.15 m, and 8.21 m, respectively. Compared with the two standalone systems,
the three fusion methods are improved in different aspects. MREKF relies more on GNSS,
so the trajectory is distorted due to the multipath errors at two arc segments, while ESC
relies more on PDR, so it also drifts on the second and third laps. Meanwhile, our fusion
system avoids these negative impacts, and it can run well for a long time.

Figure 10 shows the CDF of five methods. In order to show the comparison of long-
time positioning performance, we present the results of each lap and put them in the same
picture. In the comparison of the first lap, as shown in Figure 10a, our proposed method has
the best performance, except when the CDF is less than 0.5, PDR works best here because
we provide it with very accurate initial values. The results of the first lap from best to worst
are the proposed method, MREKF, ESC, Only PDR, and Only RTD, respectively. As shown
in Figure 10b, on the second lap, the performances of ESC and PDR are severely degraded
because of the rapid growth of heading drift. The results of the second lap from best to
worst are the proposed method, MREKF, Only RTD, ESC, and Only PDR, respectively. As
shown in Figure 10c, on the last lap, our proposed method is still better than the other
methods, and the performances of MREKF and ESC are even worse than that of RTD. After
analysis, the performance of the MEMS MARG on the third lap has a greater impact on the
fusion system after a long time, which leads to significant performance degradation. The
results of the third lap from best to worst are the proposed method, Only RTD, MREKF,
ESC, and Only PDR, respectively.

8. Conclusions

In this paper, a multi-phase GNSS/PDR fusion framework based on ultra-low-cost
mass-market GNSS and MEMS MARG is proposed. Firstly, in order to achieve the data
fusion of two heterogeneous positioning systems, several engineering innovations have
been implemented, such as GNSS coordinate conversion, data synchronization, and the
application of RTD instead of traditional single-point positioning. Next, we illustrate
and analyze the main errors in the fusion system, including GNSS multipath errors and
MEMS cumulative errors, which are relevant to the application scenario of pedestrian
positioning and the performance of the ultra-low-cost sensors. For multipath errors, we
propose the CN0R-based MPPE and the design principle of the DDCMC filter, and thus, we
demonstrate the feasibility of multipath mitigation based on smartphone-grade low-quality
observations; the experimental result shows that the proposed method can effectively
mitigate the double-difference multipath error exceeding 4 m. Finally, we propose a novel
fusion algorithm for RTD and PDR, including joint stride length estimation, joint heading
estimation, and filter design, using the joint estimation before fusion filtering to minimize
the cumulative errors of PDR. The proposed fusion method achieves a minimum error
RMSE of 1.63 m in positioning accuracy and a minimum error RMSE of 4.71 m in long-time
robustness for 20 min of continuous walking in the comparative tests. CEP is also used
to quantitatively analyze the uncertainty of fusion positioning errors here. Specifically,
CEP50% of the proposed method is 1.12 m, 2.29 m, and 2.67 m; and CEP90% is 3.27 m,
5.83 m, and 7.19 m, corresponding to three laps of testing, respectively. These results
demonstrate that the proposed method is also superior to other fusion methods in terms of
CEP indicators.
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Appendix A

After determining Â0, Âi, ω̂i, and γ̂i (i = 1, 2, . . . , n), we can reconstruct the CN0R
as follows:

ĈN0R(t) ≈ Â0 +
n

∑
i=1

Âicos(ω̂it + γ̂i) (A1)

Comparing Equation (11) and Equation (A1), the following equations can be listed to
solve the unknown parameters in Equation (11), they are:

Â0 = K
(
1 + ∑n

i=1 α2
i
)

Âi = Kαi
ω̂i = ωi
γ̂i = γi

, ∀i = 1, 2, . . . , n (A2)

From Equation (11), the quantities to be solved are K, αi, ωi, and γi (i = 1, 2, . . . , n).
The latter two are obtained directly from Equation (A2), while K and αi require solving of
the first two equations in Equation (A2). Finally, we can obtain the following results:

K = 0.5
(

Â0 +
√

Â2
0 − 4 ∑n

i=1 Â2
i

)
αi = 2Âi

(
Â0 +

√
Â2

0 − 4 ∑n
i=1 Â2

i

)−1

ψi(t) = ω̂it + γ̂i

(A3)

According to αi and ψi(t) from Equation (A3), we construct an intermediate quantity
κ, as follows:

κi(t) =
αicosψi(t)

1 + ∑n
j=1 αjcosψj(t)

(A4)

Appendix B

The state x of the DDCMC filter contains the parameter δ that we need, and an
additional output, the double-difference integer ambiguity. It has the following form:

x =
[
δ>u,i δ>u,j ∇∆Zij

ur

]>
(A5)

The observation of the DDCMC filter is ∇∆CMC. According to Equation (9), we have
the following observation equation:

∇∆CMC = Hx +∇∆ε (A6)

H =
[
κ>u,i −κ>u,j −λ

]
(A7)

where H is the design matrix; κu,i and κu,j are obtained from Equation (A4).
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The state transfer of the DDCMC filter is determined by both the state value of the
previous moment and the control input uk, and the state transition equation is as follows:

x̂k|k−1 = xk−1|k−1 + uk (A8)

where uk consists of the estimated angular frequency ωi obtained in Equation (A2), the
relationship between δ and ω is used to predict the state at the next moment, and the state
∇∆Zij

ur remains constant. Hence, it is expressed as follows:

uk =
λ

2π

[
ω>u,i −ω>u,j 0

]>
(A9)

ω =
[
ω1 ω2 · · · ωn

]> (A10)

where ωu,i and ωu,j correspond to τi
u and τ

j
u, respectively.
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