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Abstract: Machine learning (ML) has transformed neuroimaging research by enabling accurate
predictions and feature extraction from large datasets. In this study, we investigate the application of
six ML algorithms (Lasso, relevance vector regression, support vector regression, extreme gradient
boosting, category boost, and multilayer perceptron) to predict brain age for middle-aged and older
adults, which is a crucial area of research in neuroimaging. Despite the plethora of proposed ML
models, there is no clear consensus on how to achieve better performance in brain age prediction
for this population. Our study stands out by evaluating the impact of both ML algorithms and
image modalities on brain age prediction performance using a large cohort of cognitively normal
adults aged 44.6 to 82.3 years old (N = 27,842) with six image modalities. We found that the
predictive performance of brain age is more reliant on the image modalities used than the ML
algorithms employed. Specifically, our study highlights the superior performance of T1-weighted MRI
and diffusion-weighted imaging and demonstrates that multi-modality-based brain age prediction
significantly enhances performance compared to unimodality. Moreover, we identified Lasso as the
most accurate ML algorithm for predicting brain age, achieving the lowest mean absolute error in
both single-modality and multi-modality predictions. Additionally, Lasso also ranked highest in a
comprehensive evaluation of the relationship between BrainAGE and the five frequently mentioned
BrainAGE-related factors. Notably, our study also shows that ensemble learning outperforms Lasso
when computational efficiency is not a concern. Overall, our study provides valuable insights into the
development of accurate and reliable brain age prediction models for middle-aged and older adults,
with significant implications for clinical practice and neuroimaging research. Our findings highlight
the importance of image modality selection and emphasize Lasso as a promising ML algorithm for
brain age prediction.

Keywords: brain age prediction; machine learning; multi-modality MRI; UK Biobank

1. Introduction

As the world’s population ages and the prevalence of dementia rates rises, early
detection, prevention, and treatment of neurological aspects of aging, such as cognitive
decline and dementia, are becoming increasingly important. The degree of deviation from
the normal range is an indication of pathological brain aging. This has fueled a growing
interest in the development of methods to identify individuals deviating from a normative
brain aging trajectory. The concept of brain age, an estimated biological age from anatomical
and/or functional brain imaging data, has garnered significant attention in recent years [1,2].
Predictive deviations of brain age from chronological age have led to the development
of personalized biomarkers for describing healthy brain development, abnormal aging,
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and early signs of clinical neuropsychiatric issues [3]. Brain age prediction using machine
learning (ML) techniques can infer an individual’s brain age from neuroimaging data,
where brain age is roughly equivalent to the underlying biological age of the brain. Once
trained, the brain-age model can be used to assess brain health in independent samples.
Individuals with an estimated brain age below their chronological age have younger brains
than their age-matched, healthy contemporaries, indicating a greater resistance to pathology
and neurodegeneration. Conversely, accelerated brain aging occurs when predicted brain
age exceeds chronological age, suggesting the brain has been subjected to cumulative
insults or severe pathological impacts. The brain age gap estimation (BrainAGE) [4,5]
metric has been introduced as an alternative to determine the degree of neuropathology,
defined as the difference between the predicted brain age and chronological age. BrainAGE
research using neuroimaging data has yielded important insights into the pathology of the
brain in a wide range of neurological diseases such as Alzheimer’s disease (AD) [6], mild
cognitive impairment [6], traumatic brain injury [7], epilepsy [8], multiple sclerosis [9], as
well as psychiatric disorders such as schizophrenia [10], bipolar disorder [11], and major
depressive disorder [12].

Various ML algorithms, such as the last absolute shrinkage and selection operator
(Lasso) [13–15], relevance vector regression (RVR) [1,4,16,17], support vector regression
(SVR) [14,18–22], multilayer perceptron (MLP) [23], and extreme gradient boosting (Xg-
Boost) [24,25], have been employed for predicting brain age by using relevant features
extracted from neuroimages. One such feature is the gray matter (GM) density map, which
has been utilized in several studies to predict brain age. Franke et al. [4] developed a
brain age prediction system using a RVR approach based on preprocessed gray matter
(GM) density maps. Their system achieved a mean absolute error (MAE) of 4.98 years
after training on a cohort of 410 healthy adults aged 20 to 86 years. Similarly, Le et al. [19]
applied the SVR method to GM density maps from a larger cohort of 964 individuals
aged 18 to 60 years and obtained a similar MAE of 4.84 years. Varikuti et al. [15] took a
different approach, using non-negative matrix factorization (NMF) clustering and Lasso
regression analysis to develop a brain age prediction model based on GM density maps
from 693 older individuals (aged 55 to 75 years), achieving an impressive MAE of 3.6 years.
In addition to good performance, the model produced neurobiologically interpretable maps.
The combination of deformation fields with GM volume has been shown to improve the
accuracy of brain age prediction. For example, a RVR approach trained on a large cohort of
healthy individuals (aged 20–86 years) achieved better results (MAE = 6.90 years) than us-
ing GM volumetric information alone (MAE = 7.96 years). [16]. Transfer learning is another
approach that has been employed to improve brain age prediction accuracy. Lin and col-
leagues [26] utilized transfer learning to extract features from 594 healthy older individuals
aged 50 to 90 years, which were then used as input for RVR. This approach achieved an
MAE of 4.51 years. Diffusion tensor imaging (DTI) has been widely used to investigate WM
microstructure, providing important insights into brain aging. Mwangi et al. [17] applied
the RVR approach to a cohort of 188 participants aged 4 to 85 years using popular DTI
metrics and found that fractional anisotropy ageing patterns follow non-linear trajectories.
In addition to structural changes, alterations in brain structural and functional connectivity
have also been examined for brain age prediction. For example, Lin et al. [23] employed
MLP to predict brain age based on the structural connectivity network of 112 healthy
participants aged 50.4–79.1 years and reported a mean MAE of 4.29 years. Resting-state
functional MRI (rsfMRI) has also been utilized for brain age prediction. Vergun and col-
leagues [22] used a SVR algorithm trained on rsfMRI data from 117 healthy individuals
(aged 19–85 years) and found that SVR with a linear kernel performed better than a Gaus-
sian kernel. Multi-modal imaging, which combines different types of imaging techniques,
has been shown to provide complementary information and improve the accuracy of pre-
dicting brain age. For instance, Anatürk et al. [24] utilized T1-weighted MRI (T1), DTI, and
T2 fluid attenuated inversion recovery (T2) MRI to extract 1118 GM features and 245 WM
features from 537 participants aged 60.34 to 82.76 years. They applied the XgBoost model
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and achieved an impressive MAE of 3.32 years. De Lange et al. [25] further explored the
potential of multi-modal imaging for brain age prediction. They employed an XgBoost
algorithm trained on T1, DTI, and rsfMRI image modalities from 610 participants aged
60.34 to 84.58 years. Their results demonstrated that combining the three modalities was
superior to using a single modality. Moreover, Cole [13] adopted Lasso regression on six
image modalities (T1, T2, susceptibility-weighted imaging (SWI), diffusion-MRI (dMRI),
task fMRI (tfMRI), and rsfMRI) for the prediction of brain age. They have also verified that
multi-modality imaging is more accurate than single-modality imaging.

In recent years, researchers have begun to investigate the impact of ML algorithms on
the prediction performance of brain age. Structural imaging features have been widely used
in brain age prediction studies due to their effectiveness in characterizing brain morphology.
Lombardi et al. [14] compared the performance of several ML strategies, including deep
neural networks (DNN), random forest (RF), SVR, and Lasso, based on the anatomical
features of 2168 participants. Their results showed that DNN outperformed the other
methods. Valizadeh et al. [27] applied multiple linear regression (MLR), ridge regression
(RR), neural networks (NN), k-nearest neighborhood (KNN), support vector machine
(SVM), and RF to various combinations of anatomical measures of 3144 participants (aged
7–96 years). They found that the NN and SVM models performed better than the other
models. In another study, Baecker et al. [18] investigated the impact of input type and model
choice on brain age prediction performance using regional and voxel-based anatomical
measures from 10,824 participants (aged 47–73 years). Their results showed that the input
type had a greater impact on performance than model choice and that SVR, RVR, and
Gaussian process regression (GPR) all performed similarly. Although these studies offer a
wealth of knowledge for anatomically based brain age prediction, the findings from these
studies cannot be simply extended to other imaging modalities or to a multi-modality
investigation. A recent study by Niu et al. [20] compared the performance of various ML
models, including RR, SVR, GPR, and DNN, using imaging features from three modalities
(T1, DTI, and resting-state functional MRI) in a cohort of 839 young participants. The author
found that GPR, using multi-modal features, achieved the highest prediction accuracy,
while the other three ML algorithms exhibited similar performance. They also suggested
that multi-modality imaging features may confer an advantage for age prediction. It should
be noted, however, that the study’s age span (8–21 years) limits the generalizability of the
results. When examining the effects of ML algorithms, age range is a critical consideration.
Brain age prediction models are typically developed for three age groups: childhood
through adolescence, middle age through old age, and all ages. The predicted brain’s
age can reveal how various diseases and cognitive activities have impacted the brain
throughout a person’s life, and prediction errors may vary among different age groups.
Infancy through adolescence is the most precise age range for prediction, followed by
middle age and old age, while the entire age range is the most challenging. In most studies
covering the entire age range, the majority of participants are young, with fewer middle-
aged and older individuals, making it easier to predict. Therefore, it is not appropriate to
directly compare the results based on different age groups or different age distributions
within full-age groups. In this study, we focus on predicting the brain age of the middle-
aged and senior age group, using a sizable dataset of over 10,000 individuals. To our
knowledge, this is the first comprehensive exploration of the relationships between ML
algorithms, imaging modalities, and brain age prediction in this age group.

To investigate the extent to which the algorithm, the imaging modality, and the
interaction between them impact brain aging prediction performance, we conducted a
comprehensive experiment using six ML algorithms (Lasso, RVR, SVR, XgBoost, category
boost (CatBoost), and MLP) and six imaging modalities (T1, T2, SWI, diffusion-weighted
imaging (DWI), tfMRI, and rsfMRI). Our study was designed to accomplish four goals. The
primary goal of this study was to determine which ML algorithm could most accurately
predict brain age. The second goal was to identify the imaging modality that is most
sensitive to predicting brain age. Third, we sought to determine whether there was any
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interaction between the ML approach and image modalities. The fourth goal was to assess
the interpretability of BrainAGE in multi-modal brain-age prediction.

2. Materials and Methods
2.1. Participant

UK Biobank (UKB) is a population-based prospective study of over 500,000 middle-
aged and older participants (https://www.ukbiobank.ac.uk, accessed on 11 January 2021).
UKB received ethical approval from the North West Multicenter Research Ethics Committee
(11/NW/0382), and the study described here was approved by UKB under application
number 68382. We excluded participants who had neurological or psychiatric diseases
according to the International Classification of Diseases, Tenth Revision (ICD-10). For
the remaining 388,721 participants, we selected individuals who had undergone brain
scans using all six modalities. In total, 27,842 individuals were included in the study. The
UKB participant inclusion chart is shown in Figure 1. The chosen samples were randomly
divided into a training set and a test set with a ratio of 1:1. The demographic information
for training and test sets was summarized in Table 1. The distributions of chronological
ages of the training, test sets, as well as the entire cohort, are shown in Figure 2. Five-fold
cross validation was applied to the training set for model validation.

Sensors 2023, 23, x FOR PEER REVIEW  4  of  21 
 

 

accurately predict brain age. The second goal was to identify the imaging modality that is 

most sensitive to predicting brain age. Third, we sought to determine whether there was 

any interaction between the ML approach and image modalities. The fourth goal was to 

assess the interpretability of BrainAGE in multi-modal brain-age prediction. 

2. Materials and Methods 

2.1. Participant 

UK Biobank (UKB) is a population-based prospective study of over 500,000 middle-

aged and older participants (https://www.ukbiobank.ac.uk, accessed on 11 January 2021). 

UKB received ethical approval from the North West Multicenter Research Ethics Commit-

tee (11/NW/0382), and the study described here was approved by UKB under application 

number 68382. We excluded participants who had neurological or psychiatric diseases 

according to the International Classification of Diseases, Tenth Revision (ICD-10). For the 

remaining 388,721 participants, we selected individuals who had undergone brain scans 

using all six modalities. In total, 27,842 individuals were included in the study. The UKB 

participant inclusion chart is shown in Figure 1. The chosen samples were randomly di-

vided into a training set and a test set with a ratio of 1:1. The demographic information 

for training and test sets was summarized in Table 1. The distributions of chronological 

ages of the training, test sets, as well as the entire cohort, are shown in Figure 2. Five-fold 

cross validation was applied to the training set for model validation. 

 

Figure 1. UKB participant inclusion chart. 

Table 1. Demographic information for participants included in the training and the test sets. 

Demographic Information  Training Set  Test Set  Total 

Number of participants  14,000  13,842  27,842 

Age (mean (SD))  63.8 (7.5)  63.9 (7.5)  63.9 (7.5) 

Sex (Male/Female)  6629/7371  6494/7348  13,123/14,719 

Figure 1. UKB participant inclusion chart.

Table 1. Demographic information for participants included in the training and the test sets.

Demographic Information Training Set Test Set Total

Number of participants 14,000 13,842 27,842
Age (mean (SD)) 63.8 (7.5) 63.9 (7.5) 63.9 (7.5)

Sex (Male/Female) 6629/7371 6494/7348 13,123/14,719
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2.2. Imaging Derived Phenotypes (IDPs)

The UKB Imaging Working Group (www.ukbiobank.ac.uk/expert-working-groups,
accessed on 11 January 2021) and a panel of brain imaging experts designed the imaging
protocols. The MRI provides multiple imaging modalities that offer complementary infor-
mation. To ensure data compatibility, three imaging centers are equipped with identical
scanners and fixed platforms (without significant software or hardware updates through-
out the study). Each center uses a 3T Siemens Skyra with software platform VD13 and
a 32-channel receive head coil for brain imaging (Skyra 3T, Siemens Healthcare Gmb H,
Erlangen, Germany). Table 2 summarizes the key acquisition parameters for each modality.
The order of acquisition was optimized to consider subject compliance, assuming that
subject motion might increase over the scan. Therefore, the T1 was acquired first due to its
central importance; for example, the processing pipeline cannot run without it. Further-
more, assuming subject wakefulness might decrease, the fMRI was also acquired early. The
order of acquisition is: T1, rsfMRI, tfMRI, T2, dMRI, SWI. Additional protocol details are
available at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367, accessed on 11 January
2021, and a more in-depth description of post-processing pipelines and data outputs can
be found at https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf, accessed
on 11 January 2021. To enhance the quality and scope of the image-derived phenotypes
(IDPs) produced, a variety of software tools were utilized in the data release’s processing
pipeline. All of these tools are freely available for use. While the FMRIB Software Library
(FSL) served as the primary source of tools for the pipeline, other methods and software
were also utilized. For example, one high priority is to adapt the Human Connectome
Project pipelines to provide cortical surface modeling. The goal is for non-imaging ex-
perts to be able to use the IDPs directly without becoming experts in the complexities of
data processing.

In the current study, IDPs [28] created by UKB were employed. They were chosen
by looking through the data showcase (http://biobank.ctsu.ox.ac.uk/crystal/index.cgi,
accessed on 11 January 2021). The preprocessing details of those IDPs were described in
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf, accessed on 11 January
2021. Table 2 provides a brief summary of the definition of IDPs. The IDPs from six
modalities were divided into seven feature sets, two of which (Freesurfer-based and FSL-
based) were derived from T1 MRI.

www.ukbiobank.ac.uk/expert-working-groups
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
http://biobank.ctsu.ox.ac.uk/crystal/index.cgi
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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Table 2. Description of IDPs.

Modality Imaging Protocol Description of IDPs UKB ID IDPs N

T1
FSL Three-dimensional scrambled phase gradient

echo sequence, image matrix
208 × 256 × 256 mm3, TI/TR = 880/2000 ms,

voxel resolution 1 × 1 × 1 mm3

anatomical measures of
brain structures

25000~25024,
25782~25920 164 40,680

Freesurfer 26501~27772 1272 43,075

DWI

Planar echo imaging, image matrix
104 × 104 × 72 mm3, TE/TR = 92/3600 ms,

voxel resolution 2 × 2 × 2 mm3. Two b values
(b = 1000, 2000 s/mm2), 100 different directions

in total, multi-band acceleration factor of 3

the integrity of
micro-structural tissue

compartments and
structural connectivity

between pairs of
brain regions

25056~25730 675 39,022

SWI

3D dual-echo gradient echo sequence,
TE1/TE2/TR = 9.4/20/27 ms, image matrix

256 × 288 × 48 mm3, voxel resolution
0.8 × 0.8 × 3 mm3

venous vasculature,
microbleeds or aspects of

micro-structure
25026~25039 14 35,937

T2

Liquid decay inversion recovery sequence, image
matrix 192 × 256 × 256 mm3,

TI/TR = 1800/5000 ms, voxel resolution
1.05 × 1 × 1 mm3

the volume of
WM lesions 25781 1 39,898

rsfMRI

Planar echo imaging, image matrix
88 × 88 × 64 mm3, TE/TR = 39/735 ms, voxel

resolution 2.4 × 2.4 × 2.4 mm3, total
490 time points

the apparent connectivity
between pairs of brain

regions, and the
amplitude of

spontaneous fluctuation
within each region

25754~25755 76 40,594

tfMRI

Planar echo imaging, image matrix
88 × 88 × 64 mm3, TE/TR = 39/735 ms, voxel

resolution 2.4 × 2.4 × 2.4 mm3, total
332 time points

the strength of response
to the specific task within

a given brain mask

25040, 25042,
25044, 25046,
25048, 25050,
25052, 25054,
25761~25768

16 35,499

total / / / 2218 27,842

2.3. Non-Imaging Derived Phenotypes (Non-IDPs)

During the visit, UKB participants were asked to complete a touchscreen questionnaire,
participate in a verbal interview, and undergo a series of physical measurements to provide
sociodemographic, lifestyle, and health-related information. Four sub-categories of data
(recruitment, touchscreen, verbal interview, and physical measurements) collected were
regarded as non-IDPs (Table 3), which included 814 non-IDPs. These non-IDPs were auto-
matically curated using the FMRIB UKBiobank Normalisation, Parsing And Cleaning Kit
(https://git.fmrib.ox.ac.uk/fsl/funpack, accessed on 8 November 2022) software, which
automatically sorts variables into hand-curated groups and ensures that quantitative vari-
able codings are parsed into monotonically meaningful values while separating categorical
variables into multiple binary indicators. The resulting numeric vectors for all non-IDPs
(quantitative and categorical) enabled easy calculation of correlation coefficients. Non-IDPs
that were not related to the participant characteristics (such as seating box height, UKB
ID 3077) were eliminated, and categorical non-IDPs that could not be recoded as ordered
variables were also removed. Additionally, non-IDPs that were not gathered during image
acquisition were excluded. Missing data were also addressed, and non-IDPs with more
than 20% missing data were removed. For non-IDPs with less than 20% missing data, mean
imputation was used to fill in the missing values. Finally, a total of 217 non-IDPs were
retained for the upcoming statistical analysis.

https://git.fmrib.ox.ac.uk/fsl/funpack
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Table 3. Description of non-IDPs.

Non-IDPs Description

Recruitment Contains information about a participant’s arrival at the assessment
center and the locations from which they were recruited.

Touchscreen

Contains information from the touchscreen questionnaire completed
at the assessment center and is divided into several sub-categories
(sociodemographics, lifestyle and environment, early life factors,

family history, psychosocial factors, health and medical history, and
sex-specific factors).

Verbal interview

Contains information based on a verbal interview conducted by
trained staff at the assessment center and is divided into several

sub-categories (early life factors, employment, medical conditions,
medications, and operations).

Physical measures

Contains information from physical measurements performed at the
assessment center and is divided into sub-categories based on the type

of physical measurement performed (blood pressure, carotid
ultrasound, hearing test, hand grip strength, anthropometry,

bone-densitometry of heel, spirometry, ECG at rest, and 12-lead ECG).

2.4. ML Models

Chronological age and the combination of IDPs were regarded as the dependent
and independent variables, respectively, for each ML prediction model. Participant age
was rounded to the nearest full month. A grid search with five-fold cross validation was
employed for the hyper-parameter search.

2.4.1. Lasso

Lasso is a regression method proposed by Tibshirani [29] to address the problems of
over-fitting and multicollinearity in ordinary least square regression (OLS). The penalty
regularization parameter alpha in Lasso is responsible for regulating the penalty’s severity.
The higher the value, the stronger the penalty for each parameter, which results in greater
shrinkage of the coefficient sizes. The grid search space for the parameter alpha was
specified as (0.001, 0.01, 0.1, 1, 10, 100).

2.4.2. RVR

RVR [30] is a Bayesian framework for learning sparse regression models. In practice,
RVR has better generalization capabilities and is more resilient to outliers because it employs
fewer support vectors than SVR [31]. RVR uses a Bayesian framework to automatically
optimize hyper-parameters, so no hyper-parameter tuning is required [5].

2.4.3. SVR

The SVM [32] algorithm creates a hyperplane with the largest gap between positive
and negative instances in the feature space. For data that can be linearly separated, linear
SVM is frequently employed. The SVR is a regression analysis model based on the SVM. C
is used to set the level of regularization. The grid search space for the parameter C was
defined as (2−7, 2−5, 2−3, 2−1, 20, 21, 23, 25, 27).

2.4.4. XgBoost

XgBoost, which has frequently appeared in winning solutions in Kaggle competitions,
is an implementation of gradient boosted decision trees [33]. To obtain the best XgBoost
model, grid-searching was performed on parameter combinations of learning-rate, maxi-
mum_depth of the tree, and number of estimators. The search range was (100, 300, 500,
1000), (2, 10, 1), and (0.01, 0.03, 0.05, 0.1, 0.3, 0.5) for the number of estimators, maximum
depth of the tree, and learning-rate respectively.
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2.4.5. CatBoost

CatBoost is also an algorithm for gradient boosting on decision trees [34]. It offers
a new strategy for handling categorical features that can address the gradient bias and
prediction shift issues. Grid-searching was used in learning-rate, maximum depth of the
tree, and number of estimators were estimated. The search range was (100, 300, 500, 1000),
(2, 10, 1), and (0.01, 0.03, 0.05, 0.1, 0.3, 0.5) for the number of estimators, maximum depth of
the tree, and learning-rate, respectively.

2.4.6. MLP

MLP is a feed-forward artificial neural network (ANN) that is trained using a back-
propagation algorithm [35]. An MLP is composed of input nodes at each layer that form
a directed graph between the output and input layers. An MLP is a neural network that
connects many layers in a directed graph, which means that the data signal is routed
through the nodes of the graph in only one direction. The MLP model in our study contains
four fully connected layers, and the number of neurons in the hidden layers is 1024, 512,
256, and 128 respectively. The search range was (0.00001, 0.00002, 0.00004, 0.00008, 0.00016,
0.00032, 0.00064, 0.00128, 0.00256, 0.00512) for learning-rate.

2.5. BrainAGE

The difference between Predicted age and chronological age is the BrainAGE score
(Equation (1)).

BrainAGE = Predicted age − chronological age (1)

2.6. Bias Correction in Brain Age Prediction

Predicted brain ages obtained from regression models are subject to the phenomenon
of “regression toward the mean” [36], which is an inherent statistical phenomenon that
leads to a bias in predicted brain age. This phenomenon can lead to an overestimation of
brain age for younger individuals and an underestimation of brain age for older individuals
in relation to chronological age. Several previous studies [13,37,38] have reported a negative
correlation between the difference between predicted brain age and chronological age. To
address this issue, corrected brain age was calculated using Equation (2) [39].

Predicted agecorrected = Predicted ageraw − β − α ∗ Chronological age (2)

where Predicted ageraw is the predicted brain age, and α and β are the slope and intercept
of the regression line indicting the relationship between BrainAGE and chronological age
obtained from the training set. Applying Equation (2) to the test set results in the corrected
predicted brain age, which is Predicted agecorrected.

2.7. Ensemble Learning

This study employed ensemble learning, a ML technique that combines multiple
models to improve prediction performance. Six multi-modality image-based bias-corrected
brain ages were averaged to create the final predicted brain age, which utilizes the strengths
of each individual model to reduce the effects of bias and variance in the predictions.

2.8. Statistical Analysis

Statistical analysis was performed using the SPSS 26 software (SPSS, 1989; Apache
Software Foundation, Chicago, IL, USA). One of the primary analyses we conducted was
a two-way ANOVA, which allowed us to examine the impact of the feature set, the ML
algorithm, and the combination of the feature set and the ML algorithm on the classification
performance of uni-modality brain age prediction models. Additionally, we used one-way
ANOVA to compare several ML algorithms for the multi-modality brain age prediction
model. The statistical significance level was set at p < 0.001.
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To further understand the potential relationships between the non-IDPs and the
bias-adjusted BrainAGE, we computed Pearson correlations between the bias-adjusted
BrainAGE and 217 non-IDPs. To address the issue of multiple comparisons, we employed a
false discovery rate (FDR) of q < 0.01. Only non-IDPs with a certain correlation (r2 ≥ 0.25%)
with BrainAGE were retained based on the correlation coefficient.

The interpretability of brain age models relies on retaining more interpretable com-
ponents in the BrainAGE variance and filtering out noise. However, different machine
learning models obtain BrainAGE with different variances, and the BrainAGE from a model
that is highly correlated with more non-IDPs does not guarantee better interpretability
of the model. This may be due to the model retaining more noise while preserving more
interpretable components. If the signal-to-noise ratio in BrainAGE is low, this may lead
to some false positive results. Therefore, we included some non-IDPs that have been
repeatedly identified in BrainAGE studies, such as diastolic blood pressure [13,40,41],
systolic blood pressure [42–44], alcohol intake [45–47], a diabetes diagnosis [48–50], and
smoking status [51–53], in the comparison to observe the model’s interpretability of these
typical findings.

3. Results
3.1. Brain Age Prediction Models

We applied six ML models to uni-modality and multi-modality brain imaging features.
Table 4 provides a summary of the performance of the predictions. The Freesurfer-based
features from T1 have the highest performance, followed by the DWI features and the FSL-
based features from T1. SWI’s prediction performance was the worst among all the features.
When ML models from six modalities were compared, MLP produced the greatest results
in FSL, T2, rsfMRI, and tfMRI. Lasso had the best performance in Freesurfer. The best DWI
performance was obtained by SVR. In SWI, the MAE was 6.253 years for Lasso and SVR.
We found that the performance of multi-modality models was overall superior to that of
any model trained with uni-modal data. Incorporating IDPs from six modalities, Lasso had
the highest prediction accuracy (MAE = 2.741 years). Using multi-modal brain imaging
features, the prediction accuracy of RVR (MAE = 2.767 years), SVR (MAE = 2.860 years),
CatBoost (MAE = 2.970 years), and MLP (MAE = 2.857 years) was close to that of Lasso.

Table 4. Prediction performance of six ML models.

MAE (Years)

Method
T1

DWI SWI T2 rsfMRI tfMRI All Modality
FSL Freesurfer

Lasso 3.945 3.127 3.587 6.253 5.301 5.281 5.969 2.741
RVR 3.947 3.149 3.682 6.267 5.301 5.279 5.953 2.767
SVR 3.957 3.180 3.576 6.253 5.288 5.286 5.955 2.860

XgBoost 3.999 3.480 3.955 6.261 5.276 5.368 5.975 3.222
CatBoost 3.930 3.265 3.742 6.256 5.272 5.300 5.956 2.970

MLP 3.883 3.287 3.600 6.264 5.267 5.248 5.941 2.857

Figure 3 shows the correlation matrix for chronological age and estimated brain age of
six imaging modalities via six ML algorithms. The best imaging feature sets (i.e., those with
the highest correlation with chronological age and the lowest MAE) are the Freesurfer-based
features from T1, followed by DWI features and FSL-based features from T1. Estimated
brain age based on features from T2, rsfMRI, and tfMRI only had a weak or moderately
positive association with chronological age. The models based on SWI features had the
worst performance. In Lasso, the predicted age is equivalent to a constant value, and the
variance of the estimated age is zero, so the correlation coefficient of chronological age
and estimated brain age becomes infinity. This is labeled as “?” in the correlation matrix.
Because models based on SWI, T2, rsfMRI, or tfMRI are weak predictors of brain age,
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the two-way ANOVA analysis only used three feature sets from T1 and DWI. Our study
employed a two-way ANOVA, which revealed a significant main effect of image modality
(F (2,10) = 1289.699, p < 0.001), a main effect of ML algorithms (F (5,10) = 45.997, p < 0.001),
and a significant interaction effect (F (10,10) = 11.429, p < 0.001). However, the effects of the
ML algorithm and the interaction effect were small, accounting for only 8.9% and 4.4% of
the variance explained by the feature set, respectively. Subsequent post hoc tests showed
that the ML models trained with the Freesurfer-based feature set outperformed those
trained with the FSL-based feature set (p < 0.001) or the DWI-based feature set (p < 0.001).
Similarly, the ML models trained with the DWI-based feature set also outperformed those
trained with the FSL-based feature set (p < 0.001).
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3.2. Leave-One-Modality-Out Analysis

To further explore the effects of different imaging modalities on brain prediction,
we removed one of the feature sets in multi-modal modeling. Here, each feature set
was removed once, and the six ML models were used to train and test the remaining
feature sets (Table 5). Removing SWI-, T2-, rsfMRI-, or tfMRI-based features almost had
no effect on model performance. The largest performance degradation was observed
when the Freesurfer-based features were excluded. It is worth noting that there is a slight
performance improvement for all models except Lasso, RVR, and CatBoost when SWI-based
features are excluded.

Table 5. Brain age prediction performance, leaving out single modality.

MAE (Years): Excluded Modality

Method
T1

T1 DWI SWI T2 rsfMRI tfMRI All Modality
FSL Freesurfer

Lasso 2.817 3.132 3.427 2.910 2.752 2.741 2.786 2.753 2.741
RVR 2.838 3.154 3.423 2.938 2.780 2.769 2.826 2.786 2.767
SVR 2.918 3.138 3.415 2.988 2.851 2.862 2.891 2.873 2.860

XgBoost 3.311 3.477 3.758 3.301 3.218 3.238 3.271 3.222 3.222
CatBoost 3.049 3.285 3.558 3.096 2.971 2.975 3.004 2.970 2.970

MLP 2.945 3.165 3.447 3.044 2.807 2.876 2.924 2.857 2.857

3.3. Brain Age Bias Correction for Multi-Modality Models

This gave the result of brain age bias correction (see Figure S1 in Supplementary
Material). After bias correction, the red line became closer to the gray line (the identity
line), which indicated the correction of the age-related bias.

Figure 4 shows the correlation matrix of chronological age and estimated brain age of
multi-modal images via six ML algorithms. The brain ages predicted by these ML models
are highly correlated not only with each other but also with chronological age.
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Table 6 shows the slope and R2 of the predicted brain age versus the actual age before
and after bias correction. Lasso and SVR had a slope of 0.98, RVR had a slope of 0.99. The
rest of the models had a slope of around 0.90. R2 estimates the proportion of the predicted
age variance that can be explained by chronological age. The explanatory power of R2 for
Lasso is 85%, followed by SVR, MLP, CatBoost, XgBoost, and RVR. The absolute errors
with different ML approaches were significantly different based on a one-way ANOVA (F
(5, 83,046) = 46.443, p < 0.001) followed by the Bonferroni post hoc test. The absolute errors
of the Lasso approach were significantly lower than all other ML models (p < 0.001). We
also averaged the corrected estimated brain ages of the six ML models, and the MAE was
2.338 years.

Table 6. Corrected slope vs. R2.

Model Corrected
Slope

Uncorrected
R2

Corrected
R2

Delta
R2

Uncorrected
MAE

Corrected
MAE

Lasso 0.980 0.787 0.850 0.063 2.741 2.450
RVR 0.990 0.784 0.847 0.063 2.767 2.476
SVR 0.980 0.770 0.830 0.060 2.860 2.577

XgBoost 0.890 0.704 0.798 0.094 3.222 2.708
CatBoost 0.860 0.747 0.800 0.053 2.970 2.673

MLP 0.910 0.767 0.810 0.043 2.857 2.647

3.4. BrainAGE Variance Explained by Non-IDPs

To facilitate interpretation of the BrainAGE, the relationships between the BrainAGE
and the non-IDPs are illustrated in Figure 5. There is a total of 128 non-IDPs in the
figure, and at least one of the seven models for those non-IDPs meets the FDR q < 0.01 and
r2 ≥ 0.25% requirement. The positive correlation between a non-IDP and BrainAGE implies
that accelerated brain aging is associated with higher levels of this non-IDP, suggesting that
the higher value of this non-IDPs is “bad” for brain maintenance.

To further evaluate the interpretability of the BrainAGE, we investigated its sensitivity
to five non-IDPs commonly identified in BrainAGE research. We ranked the performance of
seven ML algorithms based on their correlation coefficient (r) with these variables, as shown
in Figure 6. We then calculated a comprehensive ranking to provide an overall assessment
of each model’s performance. Notably, we observed varying degrees of sensitivity to these
non-IDPs, among the ML models, suggesting that their impact on the BrainAGE is not
uniform. Our results indicate that Lasso regression and ensemble learning models achieved
the highest rank in the comprehensive evaluation.
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4. Discussion

In this study, we aimed to investigate the impact of the ML algorithm, image modalities,
and the interaction between the two on the performance of brain age prediction. To achieve
this, we employed imaging data from six modalities to create 2218 IDPs. We evaluated a
total of seven ML models, including six individual models and one ensemble model. Our
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study had several objectives: first, to identify the ML method that could estimate brain
age most accurately; second, to determine which imaging modality was most effective in
predicting brain age; third, to examine how different ML algorithms interact image features
on brain aging prediction; and finally, to assess the interpretability of BrainAGEs generated
by various ML models.

4.1. Image Modalities and ML Approaches

While all imaging modalities do demonstrate some ability to predict brain aging, they
are not equally effective. T1 and DWI were determined to be the most relevant image
modalities for brain age prediction. We found that changes in gray matter morphology and
WM microstructures, particularly cortical thickness measurements, are the most critical
imaging features. This conclusion was also supported by the leave-one-modality-out exper-
iment. There are two reasons for the superior performance of T1 and DWI in predicting
brain age. First, cognitive impairment in older adults is often related to brain atrophy and
myelin degradation, as demonstrated by clinical and neuropathological studies [54,55].
T1-weighted images offer high anatomical resolution, allowing for detailed visualization of
brain structures. Meanwhile, DWI images are sensitive to microstructural changes in white
matter, providing information on white matter connectivity and integrity, which decline
with age. This makes T1 and DWI-based IDPs particularly relevant for predicting brain age.
Second, compared to the other modalities, T1 (N = 1436) and DWI (N = 675) had consider-
ably more IDPs. Increasing the number of features in an imaging modality has been shown
to improve the predictive ability of ML models. This is because a greater number of features
can capture more detailed information about the biological and pathological processes
underlying the imaging data, which can improve the accuracy of the model’s predictions.
However, it is also important to consider the potential for overfitting when using large
feature sets, as this can lead to reduced generalizability and poorer performance on new
data. The other four modalities were only able to explain a small amount of variance in age,
particularly the SWI and tfMRI. Among seven feature sets, the FSL-based and Freesurfer-
based feature sets had the highest correlation with predicted age (r ranging from 0.74 to
0.84 on six ML models). Our findings are consistent with the findings of previous studies,
which have shown gray matter morphology [4,15,19] or T1 integrity [25] to be reliable pre-
dictors of brain age. Surface-based features showed promise, with all ML models achieving
MAEs below 3.48 years, and the lowest MAE being 3.127 years. Surface-based features
have several advantages over volumetric measures in assessing age-related changes in the
brain. Surface-based features are more accurate and precise than volumetric measures in
capturing age-related changes in the brain [56,57]. Additionally, surface-based features
are better at detecting local changes in brain morphology and handling partial volume
averaging [58]. Furthermore, surface-based features have a higher sensitivity to age-related
changes and are a reliable predictor of chronological age [59]. The performance rankings of
several ML methods for a given set of image features are relatively similar, and the imaging
modality is more important than the choice of ML models. The results of this study were
based on cognitively normal participants. However, under disease conditions, the imaging
modality might play a more critical role. For example, in patients with WM disease, a
DWI-based brain age is more meaningful than a cortical thickness-based brain age.

Even though features from T1 or DWI have shown promising results, adding addi-
tional modalities may lead to a more efficient prediction than any single modality [13],
despite their noticeable collinearity. When different ML algorithms were applied to con-
struct predictors using the features from all imaging modalities, the multi-modal models
outperformed those trained with uni-modal models. One potential confounding factor in
age prediction models is the shared variance between chronological age and BrainAGE.
To address this issue, an age bias adjustment approach was used to remove the shared
variance between chronological age and BrainAGE. After correction, there was a strong
positive correlation between the predicted ages from different models (r ranging from 0.93
to 1). High positive correlations between chronological age and predicted age (r ranged
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from 0.88 to 0.92) were also observed. These models contributed almost 75% of the variance
in the test data, with a corrected MAE of less than 2.71 years and a minimum of 2.45 years,
and a corrected R2 greater than 79.8% and a maximum of 85.0%.

In this study, the Lasso model outperformed other ML models in terms of prediction
accuracy, likely due to its ability to handle high-dimensional multi-modal IDPs, prevent
overfitting, and effectively select important features while removing irrelevant or redundant
ones, while also addressing collinearity among predictor variables. Our results show that
the performance of the Lasso model is comparable to or even better than that reported in
earlier studies (with MAEs ranging from 3.4 years to 5.99 years) [13–15]. Unlike previous
studies, we utilized six image modalities and a larger sample size (N = 27,842) in our
investigation. Ensemble learning is an ML technique that combines predictions from
multiple models to produce a more accurate prediction. In our study, the ensemble model
(MAE = 2.338 years) outperformed the single ML model, indicating the benefits of ensemble
learning. The improved performance of the ensemble model is attributed to its ability to
leverage the strengths of multiple models and mitigate their weaknesses, leading to overall
better performance. Additionally, ensemble learning enhances the stability of predictions by
reducing the variance of individual models and lowering the risk of overfitting, a common
issue in ML models.

4.2. The Interpretability of BrainAGE

Brain age prediction is an important area of research, as it provides a biomarker for
cognitive aging and age-related neurological diseases. To translate this research tool into a
clinical application, it is crucial to identify the factors that underlie the BrainAGE biomarker
in an interpretable manner. Brain age prediction models strive to accurately estimate the
age of the brain while also providing a high degree of interpretability in the BrainAGE.
The MAE is a commonly used metric to evaluate the accuracy of brain age predictions.
Interestingly, as the predictive error decreases, there is an initial increase and then decrease
in the interpretability of the BrainAGE. If predictive error is zero, the BrainAGE is also zero,
indicating a perfect match between predicted and chronological age, but this also means
there is no interpretability. Thus, finding a balance between accuracy and interpretability is
crucial for developing effective brain age prediction models with practical applications in
clinical and research settings.

One possible approach to improve the interpretability of BrainAGE is to enhance the
signal-to-noise ratio by reducing unexplained variance while preserving explained variance.
However, this approach cannot be implemented in the error function as interpretability
is a population concept. To address this issue, we investigated the interpretability of
BrainAGE from two perspectives. Firstly, we conducted a correlation analysis between
BrainAGE predicted by seven ML models and 217 non-IDPs. Interestingly, we found
that the BrainAGE generated by CatBoost and XgBoost had closer associations with non-
IDPs, but they also had greater prediction errors in brain age prediction. However, a
closer relationship with a large number of non-IDPs does not necessarily indicate stronger
interpretability but may be due to a larger variance in BrainAGE, which can lead to
more false positive reports. Secondly, we investigated the association between BrainAGE
predicted by seven ML models and five non-IDPs previously identified in BrainAGE studies.
Our results showed that Lasso regression and ensemble learning models ranked highest in
the comprehensive evaluation of the relationship between BrainAGE and five non-IDPs. As
there is a non-linear relationship between model error and interpretability, reducing model
error may not always improve interpretability. Nevertheless, our study shows the critical
role of minimizing model errors in enhancing the interpretability of BrainAGE. Of the six
ML models evaluated, Lasso demonstrated the lowest model prediction error and ranked
highest in the comprehensive evaluation with the five BrainAGE-related factors. Therefore,
Lasso should be the preferred choice. A single ML model often has limitations and may not
perform well on all datasets. This was evident in the study where no single model showed
the strongest correlation with all five factors. In contrast, ensemble learning combines
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the predictions of multiple models to achieve a more robust and accurate prediction. By
using diverse models, ensemble learning can capture different aspects of the data, resulting
in a higher explainable variance. In the study, ensemble learning reflected the combined
ability of the models to explain the five factors, resulting in a lower model prediction error
than Lasso and comparable performance in the comprehensive evaluation. Moreover, the
ensemble learning model exhibited stable performance in terms of correlations for non-
IDPs, ranking in the middle of the pack of seven models. Therefore, we recommend the
use of ensemble learning when computational efficiency is not a major concern, given its
superior performance in the comprehensive evaluation and lower model prediction error
compared to Lasso, as well as its relatively stable performance with respect to non-IDPs.

4.3. Limitation

The present study has several significant limitations. Firstly, the study population
included both healthy individuals and those with diseases or risk factors, which may have
altered brain structure or function, and decreased sensitivity to aging. Secondly, this study
examines brain age prediction using data from the UKB database, specifically focusing
on individuals of white British ancestry. However, the generalizability of these findings
is limited by the study’s exclusive focus on this specific population. Further research is
necessary to understand how brain age prediction may vary across different ethnic and
national groups. Thirdly, it is important to note that all the study’s findings were based
on globally and locally customized imaging features from several free neuroimaging tools.
The deep learning-based framework can identify the optimal representation of features
from a high-dimensional image space, eliminating the need for domain knowledge in
feature engineering.

5. Conclusions

The present study conducted a systematic and rigorous evaluation of six ML algo-
rithms applied to the UKB dataset for the purpose of brain age prediction. Our findings
demonstrate that all six models examined are suitable for this task. Our analysis also
revealed that T1-weighted MRI and DWI are generally the most informative image modal-
ities for brain age prediction. Furthermore, our findings suggest that image modality is
more important than ML algorithm selection in determining the accuracy of brain age
prediction. While we observed interaction effects between the image feature set and the
ML algorithm, these effects were found to account for only a small variance and should
be interpreted with caution. As expected, the multi-modality model outperformed the
unimodality models. Among the six ML algorithms, the Lasso model was found to deliver
the best outcomes for MAE in multi-modality brain age prediction and ranked highest in
comprehensive evaluation with five widely proven BrainAGE-related factors. However,
our analysis also revealed that the ensemble learning model outperformed Lasso and
should be the choice when computational efficiency is not a critical factor. Overall, our
study offers valuable insights into the effectiveness of different ML algorithms in predicting
brain age among middle-aged and older adults. Our findings have significant implications
for future research endeavors aimed at enhancing the accuracy of brain age prediction and
deepening our comprehension of age-related changes in the brain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23073622/s1, Figure S1: Estimated brain age by chronological
age in the test set, with and without bias correction. The gray line is the line of identity. The red line is
the regression line of age on estimated brain age. The R2 is the predicted brain age versus the actual
age before and after bias correction.
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