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Abstract: Microcontrollers (MCUs) have been deployed on numerous IoT devices due to their
compact sizes and low costs. MCUs are capable of capturing sensor data and processing them.
However, due to their low computational power, applications processing sensor data with deep
neural networks (DNNs) have been limited. In this paper, we propose MiCrowd, a floating population
measurement system with a tiny DNNs running on MCUs since the data have essential value in urban
planning and business. Moreover, MiCrowd addresses the following important challenges: (1) privacy
issues, (2) communication costs, and (3) extreme resource constraints on MCUs. To tackle those
challenges, we designed a lightweight crowd-counting deep neural network, named MiCrowdNet,
which enables on-MCU inferences. In addition, our dataset is carefully chosen and completely re-
labeled to train MiCrowdNet for counting people from an mobility view. Experiments show the
effectiveness of MiCrowdNet and our relabeled dataset for accurate on-device crowd counting.

Keywords: crowdcounting; tiny machine learning; computer vision

1. Introduction

Recently, microcontrollers (MCUs) are ubiquitously found on most electronic devices.
Microcontrollers are extremely small computers that can run relatively simple computations.
Because MCUs are targeted for a single application, MCUs are usually configured with
lower computational processors, making them cost-efficient. Due to its cost efficiency, the
MCU market is rapidly growing and is expected to grow to USD 58.2 billion by 2030 [1]. In
fact, more than 29 billion units were shipped by 2021 alone [2]. Due to the compactness and
ease of use, microcontrollers are being deployed from small devices (such as the Internet of
Things (IoT)) to bigger products (such as vehicles). MCUs can be combined with cameras,
inertial measurement units (IMU), and GPS sensors to collect various data that can lead to
new insights.

To change raw data to become meaningful, data need to be processed and analyzed.
In the past, due to resource constraints on MCUs, data were sent to servers to be processed
and analyzed. However, sending data to the server can create excessive communication
costs and invade privacy. Recently, efforts have been made to process data on devices to
tackle communication costs and privacy issues. As shown in Figure 1, MCUs suffer from
extreme memory and storage limitations. Typical MCUs are equipped with memory of
less than 1 MB. Due to these limitations, even a lightweight model that runs on an edge
device [3], such as MobileNet [4], is impossible to run on MCUs. Thus DNN applications
on MCUs have been limited to extremely simplified tasks, such as simple image and audio
binary classifications.

In this work, we explore a new practical application based on tiny DNNs. Our target
task is crowd counting, which counts the number of people on the image. We chose this task
since it brings practical value. Specifically, we can measure the city’s floating population,
and data can be used to understand citizen behaviors and facilitate urban planning and
management. For example, pedestrian data that represent the number of people on each
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street at a given time help improve public transportation planning, store locations, and
street walkability.

Cloud / Server
RTX 3090

Edge Device
Jetson Nano

Microcontroller
ESP32-S3

Memory 24 GB 4 GB 512 kB
Storage TB / PB 32 GB 4 MB

𝟖, 𝟎𝟎𝟎× smaller

Figure 1. An illustration of the resource constraints of MCUs. MCUs are approximately 8000× and
48,000× more constrained in terms of memory and storage compared to Nvidia Jetson Nano and
RTX 3090, respectively.

The traditional methodology used for floating population measurements is based on
smartphone usage. Mobile network operators (MNOs) collect and analyze smartphone
locations based on the cellular base stations they are connected to. The value of such data is
demonstrated by the non-trivial subscription fees charged by MNOs, such as approximately
USD 25,000 for hourly, single-city data for a year, as offered by KT in the Republic of Korea.
However, since an MNO tracks smartphones instead of actual people [5], the accuracy
of floating population measurements through MNOs is limited, in that (1) it does not
differentiate between pedestrians and drivers and (2) only includes individuals subscribed
to a specific MNO. In this paper, we aim to provide a fresh eye on floating population
measurements by suggesting a novel floating population estimation system, utilizing MCUs
embedded in electric scooters (E-scooters), a new means of micro-mobility that is spreading
rapidly throughout many cities.

Application scenario. The E-scooter-sharing market is rapidly growing since E-scooters
are cheap to rent and easy to park and drive in crowded cities [6,7]. The volume of the
global E-scooter-sharing market is expected to reach USD 40–50 billion by 2025 [7]. Now
that E-scooters are pervasive in many cities, if each parked E-scooter periodically measures
the number of people around it and reports the information to the E-scooter vendor, the
vendor can obtain floating populations in these cities. In addition, floating populations
measured by E-scooters are uniquely valuable, i.e., they can focus on pedestrians, regardless
of which MNO they use.

On the other hand, E-scooter vendors are willing to obtain their own floating popula-
tion data, not only because the data are valuable, in general, but also because these vendors
have their practical target applications, i.e., E-scooter relocation. An E-scooter-sharing system
requires high charging and management costs, which account for 62% of the revenue [7].
To maximize their profit, E-scooter-sharing companies must improve the efficiency of their
E-scooter management systems. As shown in Figure 2, one representative way is to locate
E-scooters at places with more potential customers so that customers can easily find an
E-scooter nearby when they need it. Without its own data, however, an E-scooter company
purchases the floating population data from an MNO, which is not only expensive but also
not optimal for E-scooter relocation since the data include drivers who are not potential
customers. Overall, when E-scooter vendors gather their own floating population datasets
that focus on pedestrians, this allows these vendors to improve E-scooter relocation, remove
expensive data subscription fees, and make data-related businesses based on the data.

To this end, we devised an entire system architecture for E-scooter-based floating
population measurements, called MiCrowd. As illustrated in Figure 3, an E-scooter takes
a picture of the street nearby. Second, the picture is fed into MiCrowdNet, the deep
neural network (DNN) for MiCrowd, to calculate the number of people appearing in the
picture. Lastly, only population value and the E-scooter location are sent to the central
server to minimize communication costs and privacy violations. With information from
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many E-scooters around the city, a city-wide floating population map can be derived.
Note that our proposal can be applied to various types of mobility, such as bicycles, and
public transportation.

Challenges. Crowd counting, despite its value and practicality, is a relatively difficult
task and it needs to count people in a noisy outdoor environment. Typically, the model
becomes heavier and more complex. In this manner, most of the recent works adopted
deep neural networks (DNNs) owing to their capability of understanding complex scenes
and remarkable performances. As mentioned above, MCUs have extremely strict memory
and storage constraints, which are not ideal for running DNNs on them. Various types
of alternative sensors can be combined with MCUs, such as wireless transceivers (e.g.,
Bluetooth and Wi-Fi) and passive infrared (PIR) sensors. However, they are not viable
options for crowd counting in outdoor environments because the signals are frequently
interrupted by various noises or security settings. Sending images to the server cannot be
an alternative since the communication costs are too high and it can cause privacy issues.

(a) Relocation process.

Well relocated Poorly relocated

(b) Relocation results.

Figure 2. An illustration of E-scooter relocation. As collecting and relocating many E-scooters from
various places requires significant costs, an E-scooter vendor should carefully determine where and
how many E-scooters to relocate to improve the usage ratio to compensate the relocation costs.

Capture

× 16 ∑

MCU

SERVER

Over LTE

E-Scooter

Figure 3. An overview of MiCrowd. E-scooters predict floating populations from their camera images
using MiCrowdNet. The predicted population is sent to the server wirelessly and aggregated for
visualization.

Approach. To address the resource constraints, we devised a lightweight crowd-counting
DNN, MiCrowdNet, and applied patch-based training and inference to keep image resolution
with low memory usage. In addition, we deliberately selected Person Re-identification in
the Wild (PRW) dataset [8] since existing datasets for crowd counting contain congested
crowds or are taken from high places [9–12], which was not the case in our mobility-based
scenario. Moreover, we completely relabeled the dataset because PRW was originally not for
crowd-counting tasks. As a result, MiCrowdNet achieves 1.12 in the mean absolute error
(MAE) (comparable to state-of-the-art DNNs) with a 4× smaller model size compared to
the existing lightest model [12]. It runs on Espressif ESP32-S3, a high-end microcontroller
unit (MCU) of 240 MHz clock, 512 kB SRAM, and 4 MB flash.
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Contributions. We summarize key contributions as follows:

• Our MiCrowd system provides a novel and practical application scenario: on-device
floating population measurements with low communication/hardware costs and
privacy preservation.

• To the best of our knowledge, MiCrowdNet is the first attempt to run a vision-based
crowd-counting DNN on resource-constrained MCUs.

• We built a testbed to evaluate on the MCU. Our results show that MiCrowdNet is
exceedingly smaller but competitive with previous models in the PRW dataset [8].

• We envision that MiCrowd can serve as a valuable floating population data source for
other business and/or research uses.

2. Background and Related Work

Vision-based crowd counting involves counting people in an image with machine
learning. In contrast to well-known object detection tasks, where each object in an image is
labeled with a bounding box and its class name, the crowd-counting task usually utilizes a
density map as a label for an image [12–14]. In a density map, a person’s head is represented
using a circular Gaussian kernel instead of a bounding box. The center pixel of a Gaussian
kernel has the highest value and neighboring pixels have lower values as their distance
from the center increases. The sum of all values in a Gaussian kernel is one, representing
that there is one person in an image.

Crowd-counting models can be categorized into two groups: (1) multi-column CNN-
based models, and (2) single-column CNN-based models. MCNN [12] is a representative
and initiative multi-column CNN-based model. It proposes a multi-column network with
three branches, each of which has various sizes of CNN kernels. Following MCNN, a
variety of CNN-based networks have emerged. For example, SANet [14] uses a similar
multi-column network but adopts an encoder–decoder architecture, which leads to a state-
of-the-art performance. On the other hand, there are single-column networks, such as
CSRNet [13] and SFANet [15]. Single-column networks achieve high performance especially
in congested crowd datasets as they use deeper backbone networks, such as VGG16 [16].
CSRNet, using VGG as the backbone, adopts dilated convolution to increase the receptive
field. SFANet utilizes attention-based network architecture to emphasize head regions from
the images.

To the best of our knowledge, the proposal in this work, MiCrowd, is the first vision-
based crowd-counting system that both runs on the MCU and considers E-scooter-specific
characteristics.

3. MiCrowd
3.1. Design Principles

Vision-based Crowd Counting. In MiCrowd, an E-scooter takes a picture, which is fed
into MiCrowdNet, a vision-based DNN. In fact, several sensors can be considered for
crowd counting. For example, since smartphones have Bluetooth Low Energy (BLE) radios,
counting the number of beacons received nearby may represent the number of pedestrians.
However, smartphones broadcast BLE beacons only when requested by the user for security
reasons, which makes smartphones unviable for crowd counting. A passive infrared (PIR)
sensor array might be another option since it has been used for counting occupants [17,18].
However, PIR-based techniques work only in delicately designed indoor environments
since the raw PIR signal is notoriously noisy [19]. For these reasons, we chose images as
our data sources, which contain dense data and do not suffer from the aforementioned
issues in alternative sensors.

On-MCU Inference. Our target scenario expects E-scooters to periodically capture photos
on the street while being parked. However, sending photos that capture pedestrians without
their consent not only raises privacy concerns but also results in significant communication
overhead. Thus, our primary goal in devising a DNN is to make it lightweight enough to
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support on-MCU inference to mitigate those issues. As our target-embedded platform, we
selected Espressif ESP32-S3, one of the widely-used high-end MCUs that runs at 240 MHz
with 512 kB SRAM and 4 MB flash, considering previous work on E-scooters that utilized
ESP32 variants [20,21].

3.2. Dataset Considering Mobility View

Constructing a proper dataset for training and testing is essential to generate a DNN
that works for practical applications. In MiCrowd, we assume that (1) pictures are taken
at a mobility view (i.e., from 1∼1.5 m in height), and (2) pictures contain a sparse crowd
(i.e., at most 10–20 people). Existing datasets for crowd counting [9,10,12] do not fit the
application scenario because they have a significantly dense crowd (e.g., hundreds of
people) or are taken from an aerial view, as illustrated in Figure 4. Instead, we chose the
Person Re-identification in the Wild (PRW) dataset [8], which consists of pictures that are
taken from a human-eye view (similar to the mobility view) and contain 3.64 people, on
average, and 19 people, at maximum (i.e., sparse crowd).

Dense crowd

Aerial view

Sparse crowd
Mobility view

Figure 4. Qualitative analysis of the difference between existing datasets and our target datasets
(Person ReID in the Wild).

Relabeling Process. For a crowd-counting task, it is necessary to create a ground-truth
density map for each image, which requires detecting each person’s head position and
applying a Gaussian kernel at its center point. However, the PRW dataset, originally built
for pedestrian detection and person re-identification, contains bounding boxes of people
(i.e., the entire body) but not those of their heads.

To avoid relabeling all 11,816 images in the PRW manually, we adopted a simple
estimation of the head position. As shown in Figure 5, we auto-labeled the point at the
horizontal center and 1/10th of the height from the top as the center point of the head for
each bounding box containing a person. The intuition is that human heads are located
approximately 1/10th of the height and in the middle of the width of the entire body,
as shown in a statistical analysis [22]. After relabeling, input images were resized to
640 × 480 resolution, which many IoT cameras support. Density maps were also resized
into 160 × 120 resolution according to the MiCrowdNet architecture.

Adaptive Gaussian Kernel Sizes. One of the crucial challenges in crowd-counting tasks
is the variation in head sizes [23]; using a fixed Gaussian kernel for different head sizes
would be detrimental to the performance. This is because DNN would capture the size
variations of the heads through training, while a fixed Gaussian kernel does not have any
information about the size of each head. To address the issue, each head’s kernel width
should be proportional to the head size.
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𝒘

𝒘/𝟐

PRW Label 
Bounding Box

Estimated 
head box

Estimated 
center of head

Figure 5. An illustration of head approximation for the relabeling process.

In contrast to previous studies that estimated head sizes using unsupervised segmenta-
tion [24], we estimated the head size utilizing bounding-box labels for entire bodies, which
are given by PRW. Specifically, inspired by [22], which shows statistically that the human
head width is approximately 1/2 ∼ 1/3 of the body width, we created bounding boxes for
the heads accordingly. Figure 6 shows the density map with a fixed kernel size in Figure 6b
and adaptive kernel size in Figure 6c from the same input image in Figure 6a. With this
technique, the circles in the density map properly represent the actual head sizes in the
input image.

(a) (b) (c)
Figure 6. Ground-truth density maps for an image, with and without adaptive-sized kernels. The
adaptive kernels capture various head sizes better. (a) Image. (b) Density map (baseline). (c) Density
map (adaptive kernel—ours).

3.3. MiCrowdNet

We designed MiCrowdNet, which is optimized for running on the resource-constrained
MCU to obtain crowd counts from the mobility view. Figure 7 describes the architecture of
MiCrowdNet. Further implementation details are as follows.

Optimizing for Mobility View. In contrast to common crowd-counting scenarios that
utilize images taken from a high place, we aim to count people in images taken from
human-eye levels; conventional crowd-counting DNNs might not work in this particular
scenario. Specifically, the variations of head sizes are larger as pedestrians can be close to or
far from parked E-scooters. To capture the multi-scale features simultaneously, MiCrowdNet
has four branches of different kernel sizes. Compared to the popular MCNN [12], which
considers images taken from high places, MiCrowdNet has one more branch and bigger
kernel sizes since the heads in our target dataset (i.e., mobility view) are bigger. The biggest
kernel in MCNN [12] is a 9 × 9 kernel, whereas that in MiCrowdNet is 16 × 16.
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nxn, k, MV2
(MobileNetV2 Style Block)

n×n, 
Depthwise

convolution

1×1, 3k, 
Convolution 

1 × 1, k, 
Convolution 

Output

Input

Split into 
patches

Figure 7. Architecture of MiCrowdNet. An input image is sliced into patches. The dark gray blocks
represent the MobileNetV2 (MV2) style blocks [25]. MV2 consists of three sequential convolution
layers. After passing the network, slices of the density map are produced.

Minimizing the Model Size. For on-MCU inference, it is essential to reduce the size of
the model since the previous crowd-counting vision models are often too large to fit in the
MCU’s memory (Table 1). To this end, we leverage only three layers for each branch, which
is one layer fewer than MCNN, to capture multi-scale features with a smaller number of
parameters and peak memory usage. Our intuition is that the previous crowd-counting
models, including the original MCNN, are designed to detect a group of people who appear
small in high-resolution images, while our scenario involves counting people who appear
relatively larger and, thus, are present in smaller numbers. Therefore, we speculate that
our task requires less computation compared to the other crowd-counting models, and
removing a layer from MCNN may not significantly affect the model’s performance, but
potentially result in faster and more efficient crowd-counting.

To further reduce inference time, we adopt MobileNetV2 convolution block, motivated by
MobileNetV2 [25]. Lastly, both the weights and activations of MiCrowdNet are quantized
into 8-bit integers after training. We used TensorFlow Lite [26] to apply post-training
full quantization. These modifications contribute to the small number of parameters and
accelerate on-MCU inference.

Minimizing the Input Size (Patch-based Operation). To enable on-MCU inference, it is
necessary to reduce not only the model size but also the input image resolution. Thus, we
propose dividing the image into smaller patches and feeding them to MiCrowdNet one by
one; both training and inference are based on a patch rather than an entire image. In our
case, the resolution of an original image is 640 × 480, and it is split into non-overlapping
80 patches where each patch is 64 × 64 in resolution. Although complex patch-based
techniques can improve accuracy [27], we adopted a simple slicing technique that could
run on the MCU.

Table 1. Performance of various crowd-counting DNNs on the PRW dataset. Models were trained
and tested using patches of 64 × 64 from 640 × 480 images.

Model Number of Params. Model Size MAE

P2PNet [28] 6.86 M 82.4 MB 1.00
CSRNet [13] 16.26 M 65.1 MB 1.14
MCNN [12] 0.13 M 543 kB 1.57

MiCrowdNet (float) 0.07 M 309 kB 1.08
MiCrowdNet (quantized) 0.07 M 137 kB 1.12
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3.4. Testbed for On-MCU Inference

We built a testbed to measure the on-MCU inference performance of MiCrowdNet,
as illustrated in Figure 8. Since an MCU cannot store the whole test dataset locally, we
implemented the server that stored the test dataset and sent the images to the MCU one by
one for inference. Specifically, the testbed operates for each test image as follows: (1) The
server sends a test image to the MCU wirelessly (Wi-Fi). (2) The MCU divides the image
into smaller patches. (3) The MCU loads each patch into memory and performs inference.
(4) The MCU produces the result for the entire image by accumulating inference results
for all patches. (5) The MCU sends the final result for the image to the server wirelessly.
(6) The server evaluates the prediction results for the image.

Image

Ground 
truth

Batch

Batch × 16 ∑

SERVER MCU

Wi-Fi

❶ ❷

❸

❹
❺

Figure 8. Our testbed to validate inferences on the resource-constrained MCU (ESP32-S3).

4. Evaluation

We evaluated the MiCrowdNet performance on PRW, using 5704 images for training
and 6112 images for testing, as in [8]. When training images and test images, we followed
the official training and test data separation from the PRW dataset. We used the mean
absolute error (MAE) as the accuracy metric, which intuitively tells how close the prediction
value is to the ground truth. Formally, MAE is defined as:

MAE =
1
N

N

∑
i=1
|yi − ŷi|,

where N is the number of test samples, yi is the ground truth count, and ŷi is the predicted
count from the model on the image. For example, if the model has an MAE of 1, the
prediction count of the model is off by one on average. For the embedded platform, we use
ESP32-S3, which has a 240 MHz clock, 512 kB SRAM, and 4 MB flash.

Comparison with Baselines. To compare MiCrowdNet with existing crowd-counting mod-
els, we selected baselines for our experiment: CSRNet [13], P2PNet [28], and MCNN [12],
all trained on PRW for 64 × 64 patch-based inference. Table 1 shows the results in terms of
the number of parameters, model size, and MAE.

As shown, MiCrowdNet is significantly smaller in size compared to the baselines,
600× smaller than the heaviest P2PNet and even 4× smaller than the lightest MCNN. With
this compact architecture, MiCrowdNet provides 1.12 MAE, is 29% more accurate than
MCNN, and is comparable to other much heavier models (P2PNet and CSRNet). This
verifies the effectiveness of our design choices for MiCrowdNet: one more kernel and one
less layer than MCNN, MobileNetV2 blocks, and quantization. Qualitative analysis of
MiCrowdNet in Figure 9 also shows that MiCrowdNet can detect people and generate
density maps accurately.

Impact of Quantization. Given that our target application scenario involves MCUs, it is
critical to consider the limited resources of these devices. As most MCUs lack floating
point units, floating point operations are typically emulated, which creates a significant
processing burden. To address this issue, we applied quantization to the model, which
reduces the precision of the model’s weights and activations.
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Figure 9. Qualitative analysis of MiCrowdNet. MiCrowdNet accurately creates density maps (second
row) from the images (first row).

To evaluate the effectiveness of the quantization approach [26,29] and understand the
latency in different platforms, we conducted experiments using three platforms: Intel Xeon
Gold 5120 (CPU), Nvidia Tesla V100 (GPU), and ESP32-S3 (MCU). The results, presented in
Table 2, indicate that the MiCrowdNet (quantized) exhibited a significant improvement in
performance on the MCU compared to the MiCrowdNet (float) version. Specifically, the
MiCrowdNet (float) model took approximately 12.6 s to execute on the MCU, while the
MiCrowdNet (quantized) model was completed in approximately 5.7 s, representing a 2.2×
speedup. This highlights the effectiveness of quantization in optimizing the performance
of resource-constrained devices, such as MCUs.

Table 2. MiCrowdNet inference latency comparison between CPU, GPU, and MCU. For comparison,
we used the TensorFlow 32-bit float model and the quantized TensorFlow Lite 8-bit model. The input
size was set as a 64× 64 image.

CPU
Xeon Gold 5120

GPU
Nvidia V100

MCU
ESP32-S3

MiCrowdNet (float) 0.26 s 0.035 s 12.6 s
MiCrowdNet (quantized) 0.13 s - 5.7 s

Impact of Patch Sizes. Table 3 shows the impact of patch sizes on the MiCrowdNet
performance. Using the whole 640 × 480 image requires ∼10 MB in memory, far exceeding
the memory constraint of ESP32-S3. It verifies that patch-based inference is essential to
run MiCrowdNet on MCU. In addition, Table 3 shows that the larger the input size, the
slower the inference for each patch and the larger the peak memory. On the other hand,
input sizes that are too small could lead to severe performance degradation. Considering
the trade-off, we chose a patch size of 64× 64 for MiCrowdNet as in Section 3.3.

Table 3. Memory requirement and inference time of MiCrowdNet according to different patch sizes.
OOM represents out-of-memory (MAE is still reported by calculating at the server).

Patch Size
(Pixels)

Number of
Patchs

Peak Mem.
(kB)

Inference Time
(s/patch)

MAE

32 × 32 300 31.25 1.3 1.28
64 × 64 80 125 5.7 1.12

128 × 128 20 500 (OOM) 1.04

640 × 480
(Whole image)

1 9375 (OOM) 1.03
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Impact of Reordering Operations. When performing convolutional operations, the MCU
needs to allocate memory space for the input and output tensor to perform calculations.
Furthermore, when a tensor is reused for future operation, the tensor must be stored in
memory to perform calculations. The tensor can be removed only after no future operation
exists using the tensor. Figure 10a shows the order of operations when using MiCrowdNet
on TensorFlow Lite. The peak memory occurs when performing the DW Conv on Branch
4 MV2_2 block (operation 8-2 in Figure 10a. This is due to the greater output channel
(40) compared to other blocks. The tensors stored during peak memory for TFLite default
ordering (Figure 10a) are the input tensor, Branch 2 MV2_3, Branch 3 MV2_3, 1 × 1 Conv
(operation 8-1), and DW Conv (operation 8-2). The sum of these tensors equals 135.5 kB.

To reduce peak memory, we implemented a reordering operation algorithm based
on [30], which uses a dynamic programming algorithm to traverse the graph of operations
to optimize peak memory usage. The optimized ordering is shown in Figure 10b, which
further saves peak memory by 11.4%. On the optimized ordering, the peak memory
also occurs when performing the DW Conv on Branch 4 MV2_2 block (operation 11-2 in
Figure 10b). The tensors stored during the peak memory for memory-optimized ordering
are Branch 1 MV2_3, Branch 2 MV2_3, Branch 3 MV2_3, 1 × 1 Conv (operation 8-1), and
DW Conv (operation 8-2).

The difference between the two orderings is the execution order of Branch 4. In the
memory-optimized ordering, Branch 4 is executed last, after all other branches. However,
in the default ordering, Branch 1 needs to be executed after Branch 4. Therefore, for the
TensorFlow Lite default order, the input tensor needs to be in memory to execute Branch 1
(operations 10–12), which places a greater burden on memory. In the memory-optimized
ordering, Branch 1 is calculated before Branch 4, allowing the input tensor to be removed
from memory.
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Figure 10. Demonstration of the difference between the order of operation. The red numbers
labeled on the top left of each MV2 block indicate the order of operations. The numbers below the
blocks indicate the tensors stored in memory in bytes during the peak memory operation. The sum
of the tensors on memory demonstrates the peak memory. For a patch size 64 × 64, reordering
the operations reduces peak memory by 11.4%. For illustration purposes, some orders have been
simplified. (a) TensorFlow Lite default ordering (Peak memory: 135.5 kB). (b) Memory-optimized
ordering (Peak memory: 125 kB).

Impact of Camera Viewpoints. Next, we evaluate the importance of a dataset that reflects
the E-scooter view. We used ShanghaiTech [12], a popular dataset for crowd counting (high-
place view), and CSRNet [13], a heavy DNN for crowd counting. For ShanghaiTech, we
used 400 images for training and 316 images for testing, as in [12]. Since we focus only on
accuracy in this experiment, the models were trained and tested on full-resolution images.

In Table 4, both MiCrowdNet and CSRNet show significant performance degrada-
tion when trained on one dataset and tested on the other dataset. Although CSRNet is
480× heavier and can contain much more knowledge, its knowledge (learned from an
aerial view) becomes useless when the data domain is shifted at the test time. On the other
hand, when trained on our relabeled PRW, MAE is more than 100× reduced. This verifies
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that camera viewpoint does matter: a different viewpoint causes a significant data domain
shift, which impacts the test accuracy regardless of the model architecture.

Table 4. Evaluation results (MAE) with various test and training datasets that show the impact of the
domain shift.

Model Train Dataset Test on PRW Test on Shanghai B

CSRNet Shanghai B 99.86 10.67
CSRNet PRW 0.96 101.49
CSRNet Shanghai B + PRW 0.95 65.05

MiCrowdNet Shanghai B 113.24 18.92
MiCrowdNet PRW 1.03 103.33
MiCrowdNet Shanghai B + PRW 1.02 84.98

5. Discussion and Future Work

Optimal Camera Placement. As our focus is to measure the floating population with
a single camera attached to a scooter, proper camera placement is important to cover a
population of interest. Note that the effectiveness of camera placement largely depends
on the lens used. In this study, the OV2640 camera was considered, which has a coverage
range between 68◦ to 160◦.

Using multiple cameras could be an ideal solution for expanding the coverage at the
cost of purchasing and maintaining multiple cameras as well as inferencing multiple images.
Finding an ideal number of cameras and their placement in terms of the angle between
them and their height requires further investigation. To optimize camera placement, it is
essential to strike a balance between comprehensive monitoring and cost-effectiveness. The
results of this study can be used as a basis for future research on optimal camera placement
for effective monitoring via scooters.

More Realistic Dataset. We assume that the PRW dataset is similar to real-world data in
terms of the number of people, angles, and sizes of the heads. Nevertheless, real-world data
might have differences from the PRW dataset. For example, the PRW dataset covers limited
weather and time conditions. In future work, we will collect our own real-world dataset
to reflect more diverse outdoor conditions using E-scooters with low-cost IoT cameras
and MCUs.

Multi-scooter Collaboration. It has become increasingly common for E-scooters to be
parked in designated areas to avoid disturbing pedestrians. If the people counts from
E-scooters in the same location are similar, running MiCrowdNet on all of these E-scooters
may be redundant. Investigating this hypothesis could be an interesting area for future
research. If it is true, E-scooters can be clustered using GPS information and only a
representative of the cluster can run MiCrowdNet to reduce communication costs and save
the battery‘s lifetime. The cluster leader might also offload some patches to the cluster
members to run MiCrowdNet in parallel. Otherwise, if neighboring E-scooters report
different people counts, several cluster members that have different camera angles can be
selected to improve accuracy.

6. Conclusions

Floating population data are invaluable but hard to obtain because of their extensive
scales. This work is the first and novel attempt to gather floating populations using E-
scooters scattered over a city. We propose MiCrowd to tackle privacy, communication costs,
and resource constraints on MCUs. Specifically, we provide a dataset that is proper for E-
scooter viewing and an on-MCU crowd-counting DNN called MiCrowdNet. Experiments
show that MiCrowdNet improves MAE with a 4× smaller model size compared to MCNN,
the lightest DNN for crowd counting. We hope this work will provide a fresh outlook
on micro-mobility, as a new sensor for a smart city. Finally, it is important to note that
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although this paper mainly describes an E-scooter-based scenario, the essence of this work
is on-MCU vision-based crowd counting that is not bounded by the E-scooter application.
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