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Abstract: Advances in semiconductor technology and wireless sensor networks have permitted the
development of automated inspection at diverse scales (machine, human, infrastructure, environment,
etc.). However, automated identification of road cracks is still in its early stages. This is largely owing
to the difficulty obtaining pavement photographs and the tiny size of flaws (cracks). The existence of
pavement cracks and potholes reduces the value of the infrastructure, thus the severity of the fracture
must be estimated. Annually, operators in many nations must audit thousands of kilometers of road
to locate this degradation. This procedure is costly, sluggish, and produces fairly subjective results.
The goal of this work is to create an efficient automated system for crack identification, extraction, and
3D reconstruction. The creation of crack-free roads is critical to preventing traffic deaths and saving
lives. The proposed method consists of five major stages: detection of flaws after processing the input
picture with the Gaussian filter, contrast adjustment, and ultimately, threshold-based segmentation.
We created a database of road cracks to assess the efficacy of our proposed method. The result
obtained are commendable and outperform previous state-of-the-art studies.

Keywords: image processing; crack detection; 3D reconstruction; machine learning; crack characterization;
crack classification

1. Introduction

Governments throughout the world are concerned about road safety. According to
the United Nations, around 1.35 million people are killed in road accidents each year [1].
Traffic safety is a multifaceted issue that is influenced by several factors. Road safety is
influenced by infrastructure, cars, and road users, as detailed in [2]. Road condition is
one of the top 10 causes of accidents in Saudi Arabia [3]. Road cracks, ruts, faulting, and
punchout deteriorate road safety and driving comfort [4]. Road maintenance should be
carried out at scheduled intervals. Road conditions are determined using laser technology.

The automatic processing of road pavements [5] is one of the areas that has benefited
from the technological contribution in terms of image processing [6,7]. However, the speci-
ficity of the application complicates the task of extraction to arrive at very precise solutions
adapted to the nature of the road surfaces examined. These surfaces can change from
one region to another or even from one road to another. Buildings and other structures
are constantly in motion, yet the majority of these movements are imperceptible. Defects,
ground movement, failed foundations, and deterioration of the building’s structure are all
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possible causes of movement. A structure is liable to crack if it cannot handle this move-
ment. Landslides, vibrations, earthquakes, the deterioration of soft clay brick, chemical
contaminant-induced concrete erosion, and other factors can all result in cracks. Buildings,
bridges, roads, pavements, railroad tracks, cars, tunnels, aircraft, etc. can all fracture or split
into two or more pieces, completely or partially. If left untreated, distortions and cracks
can compromise the structure’s integrity, safety, and stability in addition to being unsightly
and unsettling to the occupants.

Understanding the causes of cracking is necessary before any effective remedy can be
applied. Then a plan for repair can be put into action. Currently, no automated system meets
Tunisian requirements and conditions. That is why manual inspection in the laboratory
remains the only solution. Often around the world, it remains the most widely used
method as heavily textured pavements are increasingly common on global road networks.
So, a reliable and automatic method of detecting these defects is the object of research
of many teams around the world and more particularly in Tunisia. The maintenance of
the road network requires knowing these degradations and their evolutions as soon as
possible in order to repair them at a lower cost. Currently, in Tunisia, several thousand
kilometers of national roads are examined visually each year. The idea is then to “bring
the road to the office”, i.e., to eliminate visual input directly on the road at low speed and
to gradually automate the work of road network agents, which consists of detecting and
then classifying pavement surface damage. The pavements effectively crumble under the
impact of excessive traffic and environmental variables. The various surface faults that
appear are one of the state indicators of the evolution of the structure of these pavements.
Road network maintenance demands early detection of these degradations and their
development in order to lower the cost of repairs. Many countries currently visually
examine thousands of kilometers of national roadways each year, which is both costly and
time-consuming. Potholes may now be identified and categorized automatically thanks to
machine learning algorithms and IoT technologies.

There are three basic reasons why automatic detection in pavement cracks is challeng-
ing: The size of the flaws to be recognized is rather small, the pavement texture varies
significantly, and outside acquisition settings frequently include uncontrollable elements. It
is important to remember that “crack” type faults are the most carefully scrutinized world-
wide. These pavements do in fact have a large amount of background noise. The issue with
this kind of pavement is that the cracks’ properties are, locally, quite similar to those of the
texture, particularly of the intergranulate region. Many challenges arise while analyzing
photos to find fractures in the pavement’s surface. In fact, uncontrollable elements such
as humidity, fluctuation in the reflection coefficient, and even coating texture affect how
the pavement appears in photographs. When creating such an analytical system, several
elements should be considered. The issue of crack visibility, which typically presents a
weak contrast with the texture of the pavement in which they are implanted, is added
to this context. Hence, it is challenging to discern pavement fractures. In Tunisia, this
type is the predominant defect. Images of Tunisian pavements are heavily textured as it is
outlined in Figure 1. Indeed, these pavements contain a significant noise brought by the
background texture.

Figure 1. Some examples of real road cracks.
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In this work, we are particularly interested in road cracks. We treat cracks of different
sizes, on different types of pavements. The focus of this work is on heavily textured
pavements. To demonstrate the methods’ effectiveness, a sizable dataset needs to be used
for training and testing machine learning algorithms. Following a survey of the literature,
we attempt to find a technique that enables the preprocessing step to account for the crack’s
shape. However, in order to distinguish the crack from noise, particularly that produced by
the inter-aggregate space, we search for a more accurate model of the crack. This allows us
to identify the class to which a given pavement image may belong. The extraction of their
distinguishing features is made possible by the 3D reconstruction of the detected crack.
The images were manually taken using a digital camera while we built our own database.
Thus, the linear camera is thought to be the best option for acquiring dynamic images at
high resolution.

The thresholding strategy provides the foundation for the approaches suggested for
the binarization phase, which delimits the two classes present in the images (crack and
background noise). Given the nature of the photographs, this procedure appears to be
the best course of action. In addition, it is quick and cheap to implement in terms of
calculation time. As the local thresholding findings nearly gave us the same threshold
for various regions of the grayscale image, we chose the global strategy. The OTSU
thresholding method produced good processing outcomes when applied to photos of
low-noise pavements. The goal is then accomplished by separating the pixels that might
be a part of a fracture from the background. The photographs we have been working on,
however, are of severely textured pavement. We had no choice but to discover another
thresholding method that was less noise-sensitive. The fuzzy C-threshold algorithm was
employed by us (FCM).

The contributions of the work are enumerated in the following bullet points.

• Creating an actual dataset of heavily textural road cracks that may be used to train
and test machine learning algorithms.

• Developing a technique for the automatic classification of cracks.
• Devising a method for 3D reconstruction of road cracks.

The manuscript is organized as follows. Section 2 reviews existing works of road crack
detection. Section 3 details the proposed technique for identification, reconstruction, and
classification. Section 4 describes the dataset and reports the efficiency of the technique.
Finally, Section 5 concludes this work and provides directions for future work.

2. Related Works

Image processing-based techniques for crack detection have gained wide acceptance.
This is due to the widespread accessibility of high-resolution cameras, including those
found on smartphones [8] and drones [9]. Two popular methods are used: operation-based
techniques and machine learning methods [10]. Earlier work developed techniques for
crack segmentation using conventional techniques such as recursive tree-edge pruning
with shadow removal [11], Gabor filter local binary pattern [12], morphological filters [13],
and edge detection algorithms [14].

Machine learning algorithms have reemerged in the last decade as an effective method
for handling computational science and data mining problems. This is primarily at-
tributable to advancements in silicon technology, the availability of billions of data-gathering
sensors, and the development of deep-learning methodologies as pointed out by Cubero-
Fernandez, A., et al. in [15]. A solution to the traditional method’s drawback is crack
detection using machine learning techniques. The method consists of four tiers: pre-
processing, noise removal, and a collection of representative datasets. The labeling of
datasets makes up the third tier. The machine learning model is trained in the fourth tier.
Model testing is addressed in the final stage. Deep neural network (DNN)-based real-time
crack detection has been proposed in Mandal, V., et al. [16]. The DNN’s accuracy was
increased by the authors Chun, P.J., et al. [17] by retraining the network using incorrectly
classified images.
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In some circumstances, road images are corrupted by noise or can be of a low-quality
which can lead to either false positives or false negatives (incorrect classification). To
counter this issue, a two-stage CNN (convolution neural network) has been devised by
Nguyen, N.H.T., et al. [18]. The first stage performs image denoising and incorporates any
possible cracks in a narrow area. The second stage identifies the cracks. An automated
system using drones and an optimized pre-trained CNN model (VGG-19) and linear
SVM (support vector machine ) classified has been reported by Samma, H., et al. in [19]
to detect road conditions. It has been suggested Hammouch, W., et al. in [20] to use
GPS/DGPS (global positioning system/differential global positioning system) and three
cameras mounted on a vehicle to detect longitudinal cracking and crocodile activity. With
the aid of transfer learning, VGG19 detects, and categorizes cracks.

3. Proposed Approach

In this section, we explain the different steps of our system of detecting and classifying
cracks in pavements which are presented in the block diagram of Figure 2.

Figure 2. Block diagram of the crack detection and classification system.

3.1. Image Processing

There are various challenges involved in image processing for the detection of pave-
ment fractures. The difference in the reflection coefficient, the humidity, or even the
roughness of the pavement all have an impact on how the pavement appears in the pho-
tographs. When creating such an analytical system, several elements should be considered.
The issue of crack visibility, which typically presents a weak contrast with the texture of
the pavement in which they are implanted, is added to this context. To solve these issues,
we first suggest that our method begin with a pre-processing stage that includes grayscale
conversion and image segmentation.

3.1.1. Grayscale Conversion

The pixel at the (x, y) location is converted to the gray level using (1).

Gray = 0.2989 × R + 0.5870 × G + 0.1140 × B (1)
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After the conversion stage, an image segmentation algorithm is used to separate the
crack pixel from the background pixel.

3.1.2. Images Segmentation

The segmentation process involves dividing the crack regions from the background
noise regions. The challenge with this step is that the pavement images we will use have a
lot of texture. The background texture in these images contributes a significant amount of
noise. As a result, separation techniques must be used to enable the isolation of the two
objects, crack and noise. Binarization and connection are the two components that make
up the segmentation phase. The connection is based on the presumption that the crack is
round, while binarization is based on the characteristic of the crack’s grayscale intensity.

• Step 1—Binarization: The image from a grayscale scan has two types of informa-
tion, the inhomogeneous texture of the backgrounds and the cracks which is weakly
contrasted with respect to the texture. To delimit these two classes, we adopted the
thresholding technique. The latter is used to reduce the information contained in the
image to keep only the useful pixels that represent the objects of interest which are the
cracks in our case. We propose the Fuzzy C-Means (FCM) thresholding algorithm [21].
It is an iterative classification method that classifies pixels according to C classes.
It calculates each time the centers of the classes and generates the membership matrix
U of the pixels in these classes.

• Step 2—Labeling of connected components: The second sub-step consists of grouping
the pixels obtained at the binarization step in order to remove the noise and find the
entire shape of the crack. This phase consists in extracting regions of connected pixels
having common properties using the value of each pixel and the interactions with
their neighboring.

• Step 3—Filtering by morphological operators: When there are no imperfections in the
photos, the black areas are scattered throughout the picture at random. In the image,
these areas appear as noise. We apply a morphological closure using the 8 × 8 disk
structuring element in order to connect neighboring pieces of cracks. It is noted that
the closure operation is expansion followed by erosion. Similarly, we reduced the
thickness of the defect by a skeleton search using the “Thin” filter of size 3 × 3 to
facilitate the extraction of parameters such as orientation for the characterization
phase. Indeed, the skeleton reduces dimensions. Before that, it is essential to fill the
small holes in the components in order to avoid noises on the skeleton. An illustration
is given in Figure 3.

Figure 3. Principle of morphological filtering. (a) Binarized Image, (b) Small hole filling results,
(c) Skeletonization result.
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After completing this stage, we were able to join discrete crack segments and eliminate
background noise in order to identify the complete crack shape. As a result, we obtain a
binary image containing groups of black pixels on a white background.

• Step 4—3D reconstruction: Image processing is an essential step to detect and extract
the region of interest. Figure 4 presents an example of 3D crack reconstruction from
the 2D processed image. The 3D representation of the image helps us to calculate the
depth of the crack which is considered an important primitive. This characteristic is
used to determine the type of crack if it is minor, moderate, or severe.

Figure 4. 3D reconstruction of diverse types of cracks.

3.2. Region of Interest Detection

We started by deleting any locations less than 32 pixels from which a component will
be regarded as a noise region since cracks can be fragmented. This is the ideal threshold
that produced satisfactory results for most of the database’s photos, including those with
and those without fractures. In order to detect the region of interest, which is the pavement
crack, we were able to reduce the number of inconsequential size regions for both types of
images with and without cracks, as shown in Figure 5b,d.

Figure 5. Region of Interest Extraction (a) Binarized transverse crack (b) Image without crack,
(c,d) Noise suppression.
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3.3. Characterization

Five attributes are extracted, four local (length, width, surface of a component, and
attributes of projections) and two global (Hough attributes). These two global attributes
allow us to determine if a related component is large enough to be directly considered as
a crack.

3.3.1. Length and Width

We have chosen the length and width of the bounding box of a component as the
length and width of the region of interest as mentioned in Figure 6.

Figure 6. Length and width of the crack. The approximate size of the crack is depicted in the red box
using a rectangle.

3.3.2. Crack Severity

This attribute is defined by calculating the ratio between the number of black pixels
present in the region and the total number of black pixels describing the crack in the image
(Figure 7). A ratio is used here for the purpose of normalizing the surface.

Figure 7. Crack severity.

3.3.3. Projection Attributes

According to our observations, the cracks first emerge as discontinuities and subse-
quently as a series of minor “portions” of the crack. We also employed horizontal and
vertical projections as features to identify the presence of cracks. Indeed, the distribution of
the regions is random if the image does not contain a fracture. According to the various
orientations, the resulting profiles do not exhibit particularly high peaks; however, if there
is a fracture in the image, at least one of the profiles will appear to have a high peak. Hence,
we identified the peak of the horizontal projection which is defined as the largest number
of white pixels to measure the thickness of the component. While the height of the vertical
projection determines the length. Figures 8 and 9 show the number of white pixels of the
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regions obtained for two images with and without crack chosen from our database. The
defect is clearly visible on the profile.

Figure 8. Determination of horizontal projection peaks.

Figure 9. Determination of vertical projection peaks.

3.3.4. Global Attributes in Hough Space

The Hough transform [22] makes it possible to extract the global orientation attributes
of the binary image as well as the entire length of the crack. The binary image obtained
after the segmentation step is projected in several directions (in our case in the following
8 directions 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦). We, therefore, apply a TSH
to the binary image with an angular resolution θ of 22.5 degrees, and a distance resolution
ρ = 1. Figure 10 presents an example of the result of the Hough transforms applied to a
longitudinal crack image.

The Hough transform result shown in Figure 10 reveals that the image contains a
single crack due to a single large cluster in the image. It is also closer to 0◦, which indicates
the presence of a vertical (longitudinal) crack. The use of this type of descriptor allowed us
to detect the presence of fine cracks in our pavement images; however, in the case of a very
thick crack, its Hough transformation will propose several one-pixel-wide lines next to each
other to actually represent the same line, but only one line is representative of this crack.
This problem comes from the fact that the pixels representing a crack are rarely aligned
and that if the straight line in question is several pixels wide, it actually corresponds to
several straight lines. A search for the maxima of the lines of the Hough transform is used
to overcome this problem and obtain signatures to determine the characteristics of the crack
(line colored in blue in the Figure 11b.



Sensors 2023, 23, 3578 9 of 19

Figure 10. Hough Transformation for an example of crack.

Figure 11. Choice of the best Hough line (a,c) No line detected, (b) Hough line. The green box
illustrates the shape of the crack approximated using a rectangle.

The Hough attributes allow us to analyze the alignment at the global level since its
representation completely preserves the original data of the image and also eliminates
the noise; however, they remain difficult to implement for the analysis of attributes at the
local level (on an area or on each related component), especially when the cracks are not
very straight. Since the θ and ρ coordinates are represented in the x and y coordinates of
the Hough transform, respectively, the position and orientation can be identified easily.
Therefore, we determined the parametric values of the straight lines of each component
based on the parameters of the Hough MA Accumulation Matrix (ρ, θ).

The length of the crack (L: length of the maximum Hough line) is defined as the length
of the adjacent side of a rectangular triangle (OÂB) (Figure 12). The length is therefore
determined by Equation (2)

L =
√
(x1 − x2)2 + (y1 − y2)2 (2)

To determine the value of the orientation of the crack (β), we started with the fact that
the sum of the angles of the rectangle is equal to 180◦. Then, we applied (3) with the angle
of the maximum Hough line.

β =
π

2
− θ. (3)

The determination of these two characteristics such as length and orientation by the
Hough method allowed us to identify the crack and locate its location in the image.



Sensors 2023, 23, 3578 10 of 19

Figure 12. Determination of attributes by the Hough transform.

3.3.5. Parameter Normalization

To facilitate the recognition step, we first started by normalizing the parameters
extracted during the characterization phase. As these primitives are initially expressed
in pixels, it is, therefore, necessary to obtain standardized attributes in order to make
them comparable to other values of the same domain to make them more significant and
useful for the classification phase. To achieve this, we performed the normalization of the
parameters of the characteristic vectors in the interval [0, 1] according to Equations (4)–(10)
with a and b being, respectively, the height and the width of the binarized image, and D is
the length of the diagonal of the image.

D =
√

a2 + b2 (4)

Height =
Height bonding box

a
(5)

Width =
Width bonding box

b
(6)

Surface Region =
Number of white pixel in the region
Number of white pixel in the image

(7)

Segment length =
Maximum length projection

a
(8)

Segment depth =
Maximum horizontal projection

b
(9)

Crack length =
Length of the maximum Hough line

D
(10)

A morphological study of the different images from our database mentioned above
shows that the primitives linked to each of the classes of cracks present a significant
interclass variation (Figure 13) and a weak intraclass variation (Figure 14).
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Figure 13. Variation of interclass primitives (X-axis: Primitives associated with each class of crack;
Y-axis: Percentage).

As shown in Figure 13, the attributes are characterized by very high normalized
attribute values close to 1 that represents the crack regions while the other regions, i.e.,
those characterized by low relative parameters (the closest to 0) are considered to be a
background texture (noise).

Figure 14. Variation of primitives for a transversal crack. The red, blue, and green colours represent
three samples from the same transversal class to prove the intraclass variations of the primitives.

3.4. Machine Learning and Crack Classification

The classification consists of assigning a given crack shape to one of the predefined
classes. In our case, the cracks are classified as longitudinal, transverse, cracking type, or
other shapes, depending on the primitives previously extracted. This recognition phase
combines the two tasks of learning and decision. Learning involves automatically the
decision rules based on a set of already classified examples. The outcome of the decision
is an “opinion” on whether the form belongs to one of the classes based on the learning
models. The classification phase is highly dependent on the result of the segmentation,
especially on the importance of the noise at this stage and the degree of discontinuity of the
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segmented cracks. In reality, these crack portions are considered to be continuous cracks
(real image). Whereas in practice, the cracks present discontinuities which translate that
the crack is a set of portions of cracks (Figure 15e).

Figure 15. Location of the crack: (a): Original image; (b): Binarized image; (c): Denoising of the
binarized image; (d): Skeletonization; (e): Crack detection.

Considering the fact that the segmented components can be continuous or not in the
resulting image of the segmentation, we have divided the classification operation into
two levels. A step concerns the characterization of the defect, that is to say, to specify the
type of the connected component and a step specifies the type of the crack. To achieve
this, we used the SVM approach for the two classification sub-steps [23]. The benefit of
using the SVM algorithm to select such a decision function is that the resulting solution
corresponds to the convex function’s optimum. With a wide choice of kernels, SVMs allow
great freedom in the form of classes (with control by regularization). It, therefore, does
not have several local optima as for neural networks (in their classical formulation), but a
global optimum. This optimum corresponds to the minimization of the structural risk and
therefore to the search for a hypothesis with good generalization capacities from a given
space of hypotheses. In addition, the space assumptions depend on the choice of the kernel
function. This method is also characterized by a very fast learning method with a relatively
limited number of examples provided by the relevance check. In addition, it is also less
sensitive to the imbalance between positive and negative examples. For each image of
cracks in the database, we define an SVM architecture to which we teach both the good and
the bad answers (among the whole of the supervised learning database). The system learns
all the vectors of primitives of the images chosen for the learning phase. Once trained, the
model thus constructed makes it possible to decide whether to belong to one class rather
than another for any new pavement image submitted to the system. Once our training
and validation files have been built, the only parameters to set remain those of the SVMs.
Thus, we applied our algorithm following a preliminary study and practical considerations,
such as:

• Due to the number of support vector machines to manage and the number of classifiers
to estimate, we opted for the “one against all” classification strategy which allows us
to manage a minimal number of classifiers.

• We opted for the Gaussian kernel RBF (radial basis function) as it is the kernel fre-
quently used in the literature and which has demonstrated the best performance in
terms of pavement image classification. The kernel parameter σ was set to 6 (this value
was selected experimentally to provide the optimum accuracy and performance).

• The trade-off C is used to fix the trade-off between minimizing the learning error
and maximizing the margin. The higher the value of C, the more the capacity of the
classifier is optimal. In our case, the value of C has been fixed in a heuristic way. We
opted for a value of C = 1000. To accelerate the learning of SVMs and improve their
performance, we used the SMO (sequential minimal optimization) method. Indeed,
the SMO algorithm segments the initial optimization problem into sub-problems for
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which we have an analytical solution. Its implementation is easy to implement since
it does not require the use of a particular optimization library.

The system learns all the vectors of primitives defined for each component then it
will predict the classification results of the regions according to the learning base created.
The next step is used to specify the nature of the crack (transverse, longitudinal, cracking,
etc.) in the overall image. To achieve this, we determined new characteristics based on the
results obtained at the end of the first classification step. Indeed, for each image of our
database, we determined the proportions of the appearance of the classes of the regions in
the totality of the image. We then defined four parameters P1, P2, P3, and P4 determined
using Equations (11)–(14). P1, P2, P3, and P4 represent, respectively, the proportions of
regions without cracks, horizontal, vertical, and other cracks in the input image and N
defines the total number of regions in the image.

P1 =
Number of regions classified free of cracks

N
(11)

P2 =
Number of regions with horizontal cracks

N
(12)

P3 =
Number of regions with vertical cracks

N
(13)

P4 =
Number of regions with cracks with other orientation

N
(14)

At this stage, we also adopted the SVM technique to classify the crack images into
the five classes described in Table 1. An example of a crack for each class is presented
in Figure 16.

Table 1. Crack classes.

Crack Class Label

No Crack 1

Transversal Crack 2

Longitudinal Crack 3

Cracking 4

Various 5

Figure 16. An example of a crack for each class.

Our system will predict the classes to which an image belongs based on the learning
models. At the end of this classification phase, we succeeded in arranging the test images by
assigning each of them to the most appropriate class. We applied our two-level classification
approach on the different test images.

4. Experimental Results
4.1. Dataset

The proposed system was tested by our own dataset. It contains 330 real pavement
images divided into five classes as shown in Table 2. Some examples of images are shown
in Figure 17.
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Figure 17. Examples of images from our dataset obtained in static mode.

Table 2. Dataset Composition.

Images without cracks 82

Images with transversal cracks 86

Images with longitudinal cracks 85

Images with cracking 60

Images with diverse cracks 17

Total 330

4.2. Execution and Learning Times

The average execution time is as follows (for a real image of size 640 × 480 pixels):

• Crack detection time: 998 ms,
• Crack characterization time: 331 ms, item Region classification time: 393 ms (depend-

ing on the number of regions),
• Crack classification time: 59 ms,
• Total: 1781 ms (18 s).

Learning times are:

• Region learning time: 421 ms (depending on the number of regions),
• Crack learning time: 171 ms.

4.3. Evaluation of the Crack Detection Phase

Figure 18 presents the different processing applied to the inspected image to detect
the crack and remove the noise of the background texture. The full valuation, based on
different images in the dataset, is shown in Table 3.

According to the results shown above, the method has been successful in localizing
the fracture in the majority of static picture acquisitions. By localization, we mean that
we are able to tell the difference between the crack and the bottom of the image and false
alarms. Images having a texture that is roughly smooth are best for our purposes because
they have the lowest false detection rates. However, for the hardest photos to analyze, the
probability of false detection is larger. There is a significant texture in these pictures. The
issue of items (aggregates) that do not match the fracture but appear with gray levels close
to those of the cracks is another issue in these photographs, as well as in all images.
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Figure 18. Crack detection system.

Table 3. Results obtained on sets of images with or without cracks.

Dataset Rate of Crack Detection Rate of False Detection

Images with crack 79% 21%

Image without crack 11% 89%

Detection percentage 84%

False Detection percentage 16%

4.4. Performance of the Crack Classification Phase

A thorough understanding of the retrieved primitives is necessary for the decision.
This phase is used to evaluate the performance of the system and to determine the overall
recognition rate of our detection system. The first interesting criterion for road network
managers is whether a portion of the road contains cracks or not, without necessarily
knowing their type. The database contains 330 pavement images of which 165 training
images are used to construct the classifier and the rest of the images in the database are
used to test the classifier and estimate its actual error rate.

The following table shows the percentages of defects detected on both sets of images
with and without cracks. The overall percentage of error gives the proportion of misclassi-
fied images, however, it is the proportion of undetected defects that must be minimized
to ensure that no defect images are ruled out during the pavement repair phase by road
managers. The results of classification by the SVM approach are presented in Table 4.

Table 4. Results of classification.

Dataset Percentages of Images
Classified with Cracks

Percentages of Images
Classified without Cracks

Images with crack 98.4% 1.6%

Images without crack 7.32% 92.68%

Error percentage 4.46%

Recognition percentage 95.54%

Table 5 shows the classification results of the overall images, we see that the cross-
sectional cracks are very well classified. Longitudinal cracks are less well detected with
18.2% non-detection, possibly due to the common labeling with cracking. The results on
flawless images give the highest recognition rate with an error rate equal to 7.3%.
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Table 5. Results obtained for different classes of the images.

Class of the Image Number of
Images Error Percentage of Images

Classified Correctly
Percentage of Images
Classified Correctly

1: Without crack 41 3 92.7% 7.3%

2: Transversal crack 42 4 90.5% 9.5%

3: Longitudinal crack 44 8 81.8% 18.2%

4: cracking 30 22 26.7% 73.3%

5: Other types 9 4 55.6% 44.4%

Total 166 41 75.3% 24.7%

Following the implementation of our approach, we have achieved our objective of
detecting and classifying crack-type defects in pavement images. To measure the quality
of our system and evaluate the robustness of the classifier, we determined the confusion
matrix for the five crack classes. The results obtained by this matrix are reported in Table 6.

Table 6. Confusion matrix of the classification of crack images.

Class 1 2 3 4 5
1 (Without Crack) 92.68 2.44 2.44 2.44 0.00
2 (Transversal Crack) 0.00 90.48 2.38 7.14 0.00
3 (Longitudinal Crack) 2.27 6.82 81.82 9.09 0.00
4 (Cracking) 3.33 20.00 50.00 26.66 0.00
5 (Other Types) 0.00 22.22 22.22 11.11 44.44

As we see in Table 6, images without cracks are very well ranked with a good recogni-
tion rate (TBR) equal to 92.68%. Whereas, images of transverse and longitudinal cracks are
less well detected with lower good detection rates, respectively (90.48% and 81.82%). For
the “earthing” and “other” classes, it is clear from the confusion matrix that these images
are classified as “longitudinal” or “transverse” because of the existence of the majority of
longitudinal or transverse cracks in these images.

In addition, our system makes strong confusion with a rate of 50% between the images
of cracking type and the images of longitudinal cracks. Figure 19 shows an example of
the processing results for a cracking image. Figure 19c clearly demonstrates the strong
confusion between the cracking class and the longitudinal crack class. This confusion may
be due to the common labeling between these two types of classes.

Figure 19. Example of false classification of cracking defect.

Indeed, the result of extraction of relevant primitives of these two classes gives a strong
resemblance to the level of length and width of the segments constituting the crack as well
as the orientation. The results on these types of defects show the limits of our method
because the cracking types are not well localized. This type of problem can be solved by
eliminating the K-means filtering phase for only this class.
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The recognition rate for each class is shown in Figure 20. Following the implementation
of our proposed approach, we recorded an honorable recognition rate. We obtained
promising results compared with the results found in the literature. Table 7 compares the
performance of the proposed method to recent ones, in which NA means not available.

Figure 20. Recognition rate for each class of crack.

Table 7. Comparison with recent works.

Reference Dataset Classification 3D
Reconstruction Run-Time Accuracy

[17] Private-3D mobile
mapping system CNN No NA 94%

[18] Public
and private

two-stage
CNN No NA 91%

[19]
private and
SDNET2018

(public)

pre-trained
VGG-19 No NA 96.4%

[20] Private CNN No NA 93.45%

This
work private SVM Yes 51 ms 95.54%

5. Conclusions

We succeeded in developing a new method for the automatic detection of cracks
on different types of pavement, especially on heavily textured pavements. This is a big
challenge because it is a problem detecting a very thin object on a noisy background.
We started our approach by converting the original image into a grayscale image. Then,
the binarization of the grayscale image is performed using the FCM (fuzzy C-means)
thresholding method. After that, we extracted the regions belonging to a crack from the
classification of the latter using the K-means method. Then we extracted the relevant
characteristics which make it possible to describe the whole shape of the crack in order
to classify the cracks according to their types. We used the shape feature to describe the
crack. We have chosen the length and width of the bounding rectangle of a component
as the length and width of the crack. We also used horizontal and vertical projections
to determine the severity of the defect. A crack is characterized by its orientation. The
extraction of rectilinear structures and therefore of cracks is then obtained by applying the
Hough transform. At the recognition level, an approach based on SVMs was adopted and
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an RBF-type kernel was retained. Our approach was validated on a database containing
330 pavement images showing the different types of cracks.

Improvements are possible for these methods, especially for the detection of cracks,
by replacing the global thresholding method with a two-level binarization method. Other
possible improvements to the presented work include:

• Increasing the size of our database to improve processing results.
• Taking into account a local threshold determined at the level of each region of the

image instead of a global threshold applied to the image. This type of thresholding
can solve the problem of false detection and thus allows the detection of other types
of degradations in addition to cracks.
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