
Citation: Li, J.; Chavez-Galaviz, J.;

Azizzadenesheli, K.; Mahmoudian, N.

Dynamic Obstacle Avoidance for

USVs Using Cross-Domain Deep

Reinforcement Learning and Neural

Network Model Predictive Controller.

Sensors 2023, 23, 3572. https://

doi.org/10.3390/s23073572

Academic Editors: Rongxin Cui and

Zhouhua Peng

Received: 2 March 2023

Revised: 18 March 2023

Accepted: 24 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dynamic Obstacle Avoidance for USVs Using Cross-Domain
Deep Reinforcement Learning and Neural Network Model
Predictive Controller
Jianwen Li 1 , Jalil Chavez-Galaviz 1 , Kamyar Azizzadenesheli 2 and Nina Mahmoudian 1,*

1 The School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
2 Nvidia Corporation, Santa Clara, CA 95051, USA
* Correspondence: ninam@purdue.edu

Abstract: This work presents a framework that allows Unmanned Surface Vehicles (USVs) to avoid
dynamic obstacles through initial training on an Unmanned Ground Vehicle (UGV) and cross-domain
retraining on a USV. This is achieved by integrating a Deep Reinforcement Learning (DRL) agent
that generates high-level control commands and leveraging a neural network based model predictive
controller (NN-MPC) to reach target waypoints and reject disturbances. A Deep Q Network (DQN)
utilized in this framework is trained in a ground environment using a Turtlebot robot and retrained
in a water environment using the BREAM USV in the Gazebo simulator to avoid dynamic obstacles.
The network is then validated in both simulation and real-world tests. The cross-domain learning
largely decreases the training time (28%) and increases the obstacle avoidance performance (70 more
reward points) compared to pure water domain training. This methodology shows that it is possible
to leverage the data-rich and accessible ground environments to train DRL agent in data-poor and
difficult-to-access marine environments. This will allow rapid and iterative agent development
without further training due to the change in environment or vehicle dynamics.

Keywords: unmanned surface vehicle; deep reinforcement learning; collision avoidance; model
predictive control

1. Introduction

Unmanned Surface Vehicles (USVs) should be capable of detecting and avoiding
marine obstacles, including other watercraft, buoys, marine life, and more. Avoiding
dynamic obstacles is important for any autonomous deployment regardless of the domain
to avoid harm to others and the vehicle itself. However, the unique aspects of surface water
deployments present unique challenges due to the fluid environment. The viscous and
damping nature of water means that rapid direction and velocity changes or stops can not
be realized, creating a need for predictive-capable control. Furthermore, boats and water-
capable vehicles are typically underactuated, this limits the number of enactable paths that
can be followed to avoid obstacles. In international maritime shipping, these issues have
been resolved through a standardized set of avoidance maneuvers between ships called
COLREGS (The International Regulations for Preventing Collisions at Sea) [1] that can be
used for autonomous systems. However, these regulations are focused on operation and
avoidance at sea, and thus are only applicable to a subsection of the USV deployments.

Traditional motion planning algorithms exhibit some limitations in terms of reactive
behavior owing to the computational effort required to replan a navigation path [2]. More-
over, one key aspect in path planning is the representation of the map (e.g., grid-based,
polygon-based, . . .) [3]. When the scenario is substantially large, grid-based methods
will suffer from imprecise obstacle representations or big memory demands [4]. On the
other hand, geometric representations of the map can be more efficient in terms of memory
consumption while suffering from a high computational cost when representing obstacles

Sensors 2023, 23, 3572. https://doi.org/10.3390/s23073572 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073572
https://doi.org/10.3390/s23073572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3519-6405
https://orcid.org/0000-0003-2032-2296
https://orcid.org/0000-0001-8507-1868
https://orcid.org/0000-0002-3285-8234
https://doi.org/10.3390/s23073572
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073572?type=check_update&version=1

Sensors 2023, 23, 3572 2 of 19

with complex shapes. In addition, the traditional path planning algorithms may require a
fine-tuning stage of their parameters in order to adapt the algorithm to a previously unseen
scenario [5].

Traditional dynamic obstacle avoidance methods typically employ forward-looking
sensors to detect and predict the obstacle motion. Existing work on single-agent dynamic
collision avoidance can be broadly classified into Model Predictive Control (MPC) and
collision avoidance algorithms. Both methods turn fused environmental sensing inputs
(Lidar, radar, images, etc.) into actionable robotic commands through trajectory changes or
direct low-level vehicle actuation. Fused sensor data are utilized to provide obstacle tracks,
generate an action space of trajectories, and use fuzzy logic blocks to calculate collision risks
and refine the action space with respect to Time to the Closest Point of Approach (TCPA) [6].
In the ground domain, some collision avoidance approaches forgo path planning and path
following entirely, instead using a particle model to generate acceleration vector motion
plans for lower control levels to interpret into actuator commands [7].

Frequently used in marine settings, MPC uses a data-driven or numerical model to
relate control outputs to vehicle state changes relative to environmental and programmatic
constraints along with forcing from external forces and torque on the vehicle. The benefit
of MPC for obstacle avoidance is the ability to take future time states into account when
generating control outputs for a current state. Such MPCs have been implemented on
drones [8], and on USVs using COLREGs and custom cost functions [9]. A good example
of this is presented in [10], where a branching course MPC model is used to provide local
collision avoidance paths. A survey of collision avoidance on USVs has been previously
documented in [11].

Recent advances in computational power have enabled the application of Deep Rein-
forcement Learning (DRL) and Imitation Learning (IL) to achieve new capabilities beyond
those provided by classical navigation. DRL enables an agent to continuously improve
itself through experienced interactions with its environment and achieve human-level
control [12]. DRL has been successfully employed to solve obstacle avoidance problems
in different domains such as ground, air, and water. In the ground domain, a recurrent
neural network and novel Local-Map Critic (LMC) architecture has been built to overcome
the limited field of view (FOV) for mobile robot navigation [13]. In the air domain, Deep
Deterministic Policy Gradient (DDPG) was adopted to develop a mapless reactive naviga-
tion algorithm applied to multirotor aerial robots [5]. In the water domain, as an example,
a DRL-based controller using proximal policy optimization (PPO) was implemented on
a small-sized supply ship model equipped with a rangefinder sensor suite in a purely
synthetic environment [14]. Approaches based on IL [15] take examples of successful
navigational behaviors given by other agents (such as humans) and use them to learn
policies that result in behaviors that are similar to the examples. Most works use end-to-end
training and achieve good results for specific vehicles in certain scenarios. However, if the
vehicle dynamics change or the environment changes, the trained agent will not be able to
perform well directly because retraining will be needed. Unfortunately, techniques that
are based on RL typically are trained from scratch and depend on a significant amount of
training experience, whereas IL based techniques require an expert-level demonstration
carried out in the same kind of setting.

Therefore, it is preferable for a learning algorithm to use acquired knowledge to en-
hance performance on other tasks. Cross-domain transfer learning has achieved significant
success in Reinforcement learning applications [16,17]. UGVs have been under develop-
ment for decades [18] and are easier to deploy and control while USVs are susceptible to
wind and wave disturbances and are typically larger than ground vehicles, which makes
USVs difficult to deploy and train [19,20]. In this way, developing an obstacle avoidance
strategy for the ground domain and then transferring that knowledge to the water domain
is an ideal result. However, RL algorithms that can efficiently transmit policies from the
ground domain to the water domain have not yet been reported.

Sensors 2023, 23, 3572 3 of 19

This work builds on our previous work [21], where we proposed a multi-layer method-
ology for training a network to avoid static obstacles; then, the network was generalized
across domains without further training, thus, alleviating the data sparsity problem present
in the marine environment. However, it is difficult to achieve good performance with this
approach when the obstacles become dynamic. This is mainly because of the limitation of
the network structure and lack of further training in another domain. In this work, the re-
search effort is focused on the development of an efficient reactive navigation algorithm
able to deal with the aforementioned limitations, with particular attention to unknown
scenarios with dynamic obstacles, as shown in Figure 1. In summary, the key contributions
of this paper can be summarized as:

1. Building training and testing simulation environments where the moving obstacles
can be integrated in random order to better train the agent and better evaluate the
effectiveness of the trained agent;

2. Designing the DQN network architecture to enable the agent to avoid dynamic
obstacles. Specifically, we perform min pooling on input Lidar ranges to keep high
accuracy while low dimensionality. We use Long Short-Term Memory (LSTM) as a
building block to process the entire sequence of data to help the agent better capture
the motion of the obstacles;

3. Presenting a method that successfully enables cross-domain training and validation
of a DQN across domains, moving from data-rich and accessible environments to
data-poor and difficult to access environments;

4. Using a neural network to approximate the dynamics of USV system and imple-
menting NN-MPC waypoint tracker as a low-level controller for the DRL agent to
effectively avoid obstacles while rejecting disturbances that are not included during
DQN training.

Figure 1. Motion lapse images of a UGV and a USV avoiding a dynamic obstacle using the same
trained DRL agent. The trajectories of the vehicles are shown as dashed lines. The direction of the
instantaneous velocity of the obstacles is shown as purple arrows.

The remainder of this work covers the methodology utilized in DRL agent implemen-
tation, the software and hardware package utilized in real-world testing, and a description
of the robotic platforms used are detailed in Section 2. The results of the test in simulated
and real-world environments are presented in Section 3. Finally, the conclusions of the
paper and future work are presented in Section 4.

2. Methodology

The autonomy package of the USV presented in this work consists of two control
strategies and multiple sensors. Some of these sensors, such as IMU, GPS, and compass,
monitor the vehicle’s state. In contrast, other sensors such as Lidar and anemometer enable
obstacle detection and wind rejection, respectively. During a regular course, when no

Sensors 2023, 23, 3572 4 of 19

obstacle is in range, a path planner and ILOS follower [22] have control of the USV, guiding
it through a path P of length L, which consists of a sequence of waypoints. To prevent
collisions, once an obstacle is detected, a DRL agent takes over the control of the USV,
generating a temporary waypoint located at (Ntemp, Etemp). This waypoint is obtained
based on the current state and the DRL agent’s prediction. Next, this temporary waypoint
is passed to a neural network model predictive controller (NN-MPC) that considers the
vehicle’s state and the disturbances to drive the USV through an obstacle-free trajectory.
A block diagram of the proposed scheme is shown in Figure 2.

Figure 2. Autonomy package including all the control levels and sensors.

To achieve precise control of the USV during obstacle avoidance, a motion model is
essential. As described in [20], a 3-DOF mathematical model of a USV can be described
as follows:

η̇ηη = RRR(ψ)vvv (1)

MMMv̇vv +CCC(vvv)vvv + DDD(vvv)vvv = τττ + τττw (2)

where ηηη = [N, E, ψ]T defines the USV’s pose in an inertial coordinate system as illustrated
in Figure 3. The speed vector vvv = [u, v, r]T consists of the linear velocities (u, v) in the surge
and sway directions and the rotation velocity. The thrust vector τττ contains the force and
moment produced by the port and starboard trolling motors uuuthrust = [up, us]T . The wind
disturbance τττw is produced by the wind speed www = [wu, wv]T measured in the surge and
sway directions of the USV. The matrix RRR(ψ) is the rotation matrix used to transform from
the body fixed frame to the earth fixed frame. MMM, CCC(vvv), and DDD(vvv) represent the inertial
mass matrix, the Coriolis centripetal force matrix, and the damping matrix, respectively.

With the 3-DOF mathematical model of the USV, we can accurately predict the motion
of the vehicle in response to various inputs. However, to operate the USV in an environment
with obstacles, and in presence of disturbances, we need to take into account the potential
for collisions. The following sections provide detail about autonomous navigation and
obstacle avoidance strategies.

Sensors 2023, 23, 3572 5 of 19

Figure 3. The vehicle’s state in the inertial and the body fixed frame.

2.1. Path Planner

Path planning for marine systems generates curves to connect waypoints produced by
a high-level mission planner. In this work, during normal operation, a Dubins path planner
is responsible for generating a feasible path for the USV. The Dubins path generation
considers an initial and a final point in the configuration space of the vehicle. The goal
is to find the shortest smooth path connecting the initial and final configurations with a
curvature restriction 1

ρ . This problem was first solved by [23] showing that the solution
must be composed of three fundamental path segments following the sequence CCC or
CSC where C is an arc that can be either clockwise R or counter-clockwise L, and S is a
straight segment. This gives as result, an admissible set of possible paths, which are the
building blocks of the path P . Each waypoint in P is used as a reference input for the ILOS
path follower.

2.2. Path Follower

The process of path following involves guiding a vehicle to follow a predefined path
P in space, even in the presence of unknown disturbances. In the context of ships and
offshore platforms, the path following problem is often simplified to a 2-D path. A widely
used approach to solve the path following problem for marine systems is the Line Of Sight
(LOS) navigation due to its performance and simplicity; however, LOS guidance has some
limitations when the vehicle is in presence of unknown disturbances [22,24], caused mainly
by waves, wind or oceanic currents. To overcome the weaknesses of the LOS guidance law,
it is necessary to include an integral action to aid in the disturbance rejection and also in
the elimination of the steady-state error. This change to the LOS follower can be observed
in Equation (3).

φD = γP + tan−1
(
− 1

∆
ye − β̂

)
(3)

where φD denoted the desired bearing, γP the path tangential angle at the USV’s projected
position, ∆ the user-specified look-ahead distance, ye cross-track error, β̂ the adaptive
estimate of sideslip angle after integration Equation (4).

˙̂β = γβ
U∆√

∆2 + (ye + ∆β̂)2
ye, γβ > 0 (4)

Sensors 2023, 23, 3572 6 of 19

where U is the vehicle forward velocity and γβ is an adaption gain that weights the integral
component in the desired heading calculation.

2.3. DRL Agent

Using rangefinder sensors such as Lidar enables a relatively straightforward transition
from the simulated environment to the real world. The sensor requires a small angular
resolution to capture plenty of data, thus enabling the detection of small obstacles. However,
if the large sensor output is fed to the neural network directly, the training may suffer from
the curse of dimensionality [25]. To reduce the dimensionality while keeping the resolution,
min pooling is utilized. As shown in Figure 4c, the size of the sensor output is 96, with a
filter size of 4 and stride of 4. The output can be downsized to 24 samples.

(a) (b) (c)
Figure 4. Lidar ranges visualization. Ranges in red mean obstacles are detected. (a) Without min
pooling, the small object might not be detected with 24 samples. (b) The small object can be detected
with 96 samples. (c) Using min pooling, the small object can be detected with 24 samples.

The neural network architecture used to generate Q-value estimation is shown in
Figure 5. To capture the motion of dynamics obstacles we define a new observation space
st as given in Equation (5). The observation space st consists of the readings of sensor sd,
relative position to the goal sg, and the robot’s current velocity sv. sd = [d1, d2, . . . , d24]

T in-
cludes the measurements from range finder sensors. The relative goal position sg = [g1, g2]

T

contains the distance and angle with respect to the robot’s current position. The observed
velocity sv = [v1, v2]

T includes the current translational and rotational velocity of the robot.
All of the observations are normalized to [0, 1] and finally, a sequence of 4 consecutive
samples [st−3, st−2, st−1, st] is fed into the Long Short-Term Memory (LSTM) layer.

ssst = [d1, d2, . . . , d24, v1, v2, g1, g2]
T (5)

LSTM [26] is a well-known architecture for recurrent neural networks. It includes a
memory unit c, a hidden state h, and three varieties of gates: an input gate i, a forget gate f ,
and an output gate o. These gates are utilized to regulate memory unit reading and writing.
For each time step t, LSTM receives an input ssst and the previous hidden state hhht−1, then
computes gate activation, and finally updates the memory unit to ccct and the hidden state
to hhht. The computation involved is as follows:

iiit = σ(WWWxissst +WWWhihhht−1 + bbbi),

fff t = σ(WWWx f ssst +WWWh f hhht−1 + bbb f),

ccct = fff t � ccct−1 + iiit � tanh(WWWxcssst +WWWhchhht−1 + bbbc),

ooot = σ(WWWxossst +WWWhohhht−1 + bbbo),

hhht = ooot � tanh(ccct)

(6)

where σ(x) = 1/(1 + exp(−x)) is a logistic sigmoid function, � denotes the point-wise
product, and W and b are weights and biases for the three gates and the memory unit.

Sensors 2023, 23, 3572 7 of 19

Figure 5. Architecture of the DQN model implemented in this work. This diagram shows the inputs
(sd, sg and sv) as well layers using as part of the overal DQN.

Due to LSTM’s ability to memorize long-range context information, it has been exten-
sively exploited to address a variety of problems concerning sequential data analysis. Here
we utilize LSTM to extract features from the sequence of states st of the USV.

R(ssst, at, ssst+1) =

+1 (Goal reward)
−1 (Collision penalty)
Rθ Rd + Ra (Position reward)

(7)

Rθ , Rd, and Ra are the heading reward, distance reward, and action reward respectively,
and are defined in Equation (8). θ is the yaw offset from the goal, dc is the current distance
to the goal, and dg is the initial distance to the goal.

Rθ = 0.05
(

1− 2
π
|θ|
)

(8)

Rd = 2
dc
dg (9)

Ra =

−0.01 (Hard turns)
+0.01 (Go straight)
0 (Others)

(10)

To improve real-world applications, a deep neural network is used as a function
approximator (Q(s, a)) to give a Q-value for any input state-action pair; such a deep neural
network is referred to as a DQN. Thus the goal of agent training is to train the neural
network to accurately approximate Q-values using the following updating rule:

Q(ssst, at)← (1− α)Q(ssst, at) + α
[
r + γ maxat+1 Qtarget(ssst+1, at+1)

]
(11)

where t denoted the current timestep,α the learning rate, r recorded rewards, γ the the
discount factor. During agent operation, the DQN follows the same principles as Q-
Learning: it observes the state, chooses an optimal or uniform random action as dictated by
ε-greedy policy, transitions to the next state, and receives a reward. The agent stores its
interactions with the environment in an experience replay buffer. During training, these
interactions—in the form of (ssst, at, ssst+1, R(ssst, at, ssst+1))— are randomly extracted in batches
and replayed for the DQN, which predicts the Q-value of the state action pair Qθ(st, at).

Sensors 2023, 23, 3572 8 of 19

With the predicted value and a target reward (Equation (11)), Mean Squared Error (MSE)
loss, and an RMSprop optimizer; the DQN model can be iteratively trained. As experience
is gained, and training progresses, the DQN network improves its performance, making
it capable of better selecting an optimal action that maximizes the sum of all discounted
future rewards.

The larger action spaces have a cost of more complex networks and longer training
time. Training time and neural network complexity can be reduced by restricting the system
to a small action area. A small action space A = {ai}5

i=1 is selected. The DQN’s action space
is comprised of five discrete actions that are aimed to follow one of five different waypoints
and the action is chosen by the ε-greedy algorithm. Though the agent has a discrete action
space, using a waypoint tracker such as MPC, it can still generate a smooth path. All of
these waypoints lie on a circle of radius D centered at the vehicle’s current position (N, E),
and are separated by an angle d. In ground domain tests D = 3 m d = 0.52 rad(30◦).
In water domain tests D = 8 m and d = 0.26 rad(15◦) because the BREAM USV [27] has
a larger turning radius. By finding the adequate action ai we can determine the target
heading φtemp (see Equation (12)), and then a waypoint located at (Ntemp, Etemp) that is
given as a goal to the NN-MPC to avoid obstacles.

φtemp = ψ + (3− i)d (12)

Ntemp = N + cos(φ)D

Etemp = E + sin(φ)D

A UGV and a USV in Figure 6 are used to train the DRL agent. Instead of directly
training the agent on the USV, initial training is carried out on the UGV because the ground
environment is less computational expressive to simulate, and the agent can have more
interactions within same amount of time compared to the water domain due to the UGV is
more agile and the environment can be more compact. Next, the policy developed from the
ground domain is transferred to the water domain and is further trained.

(a) (b)
Figure 6. USV and UGV vehicles used in cross-domain DRL training. (a) Turtlebot in simulation.
(b) BREAM in simulation.

2.4. NN-MPC Tracker

The DQN agent’s state used in this work does not consider disturbances; therefore,
we propose a neural network model predictive controller to follow the waypoint located at
(Ntemp, Etemp) generated by the DQN agent while rejecting wind disturbances.

We used the truncated simulation error minimization approach described in [28] to
train a modelN f (·; θ) that describes the vehicle’s motion. This approach has the advantage
of including unmodelled dynamics of the system and does not require estimating individu-

Sensors 2023, 23, 3572 9 of 19

ally the parameters of Equation (2). In this way, we can calculate the acceleration of the
USV as follows.

ˆ̇vvvt = N f (v̂vvt, uuuthrust
t , wwwt; θ) (13)

v̂vv0 = vvv0

This network estimates the linear and angular accelerations of system state ˆ̇vvvt, given
the known initial condition vvv0, the current estimated state v̂vvt, the measured wind speed wwwt,
and the current control input uuutrhust

t . The following equations are used to update the pose ηηη
and velocity vvv of the system:

v̂vvt+1 = ˆ̇vvvt∆t + v̂vvt (14)

η̂ηηt+1 = RRR(ψ̂t)v̂vvt∆t + η̂ηηt (15)

MPC as a model-based technique requires an accurate way to determine the system’s
state based on calculated outputs within a time horizon window T. To have better control
over the system states, the state space of the USV is defined to include velocity, and position
xxxt = [vvvT

t , ηηηT
t]

T ∈ X . The future relative wind velocity cannot be measured, thus we assume
the wind speed is constant in the global frame during prediction. We can obtain the
relative wind velocity by multiplying the initial wind speed by a transformation matrix
using the predicted heading. The control output uuuthrust ∈ U corresponds to the thrust
generated by the two trolling motors. In this way MPC is configured to solve the following
optimization problem:

xxx∗1:T , uuuthrust∗
1:T = arg min

xxx1:T∈X ,uuuthrust
1:T ∈U

T

∑
t=1

Ct(xxxt, uuuthrust
t) (16)

subject to xxxt+1 = f (xxxt, uuuthrust
t , wwwt), xxx0 = xxxinit

where the cost function is defined in terms of the augmented state vector αααt = [xxxT
t , uuuthrust

t
T
]T,

the augmented goal state ααα∗ = [xxx∗T , 000]T, and the goal weight vector gggw = [ku, kv, kr, kN , kE, kψ]T

as follows:

Ct(xxxt, uuuthrust
t) =

1
2

αααT
t DDD(gggw)αααt − (

√
gggw ◦ ααα∗)Tαααt (17)

where DDD(gggw) is a diagonal matrix including the goal weights, and can be adjusted to achieve
the desired behavior of the system, and also to penalize large control actions. With the
optimization problem defined, the procedure can be repeated to obtain the optimal control
output over the time horizon.

2.5. Field Test Implementation

To test the ability of DRL agent to generalize across domains without additional
training in real-world environments, the trained agent is implemented on two custom-
made vehicles, one UGV (see Figure 7a) and one USV BREAM (see Figure 7a). To facilitate
the rapid low-cost deployment of machine learning approaches across multiple domains
an autonomy package has been developed. The entire package is contained within a splash-
proof container that can be seamlessly integrated into the UGV or USV. The autonomy
package includes two Raspberry Pi 4B and an Nvidia Jetson Nano capable of running
the DQN. These computational engines are operating together in a distributed processing
environment managed by the Robotic Operating System (ROS) [29]. Each processing
module operates at a different level of vehicle abstraction. The package’s two Raspberry
Pis operate as a frontseat-backseat duo, while the Jetson provides prediction and insight
into the vehicle’s changing environment.

Sensors 2023, 23, 3572 10 of 19

(a) (b)
Figure 7. USV and UGV vehicles built for use in cross-domain DRL development. (a) UGV.
(b) BREAM.

To provide observation space (Equation (5)) values, a Hokuyo UTM-30LX-EW Lidar
module [30] is connected to the system for this series of tests. The Lidar provides a
scanning range of 270◦ and 30 me with an angular resolution of 0.25◦ per step at up to
40 Hz. The Lidar system may be affected by variations in the orientation and movement of
a vehicle in moving water with a high wind speed and flow. To address this issue, the Lidar
is mounted on a Zhiyun CRANE-M2 gimbal stabilizer to sustain the pitch angle, allowing it
to continuously scan horizontally. This can eliminate variations in the Lidar measurements
and keep the system’s obstacle detection and avoidance capabilities.

The low-level control and reference tracking system implemented on the frontseat
computer uses an onboard digital compass and GPS data to guide the USV along a desired
compass bearing and velocity. This is achieved using two PID controllers to calculate the
necessary rotational and linear velocity. Meanwhile, the path planner and follower system
implemented on the backseat computer, generate a Dubins path based on a commanded
mission profile of GPS waypoints and times. The ILOS path follower then uses this path to
generate the necessary control output to guide the USV through each waypoint of the mission.

When an obstacle in the environment is sensed by the trained DRL agent (Equation (5)),
the agent will provide an action from the action space. The waypoint tracker interprets
the DRL agent action into a temporary waypoint (Ntemp, Etemp) which is followed until no
obstacle is detected; thus navigating away from the nominal path and avoiding the obstacle.
The temporary waypoint (Ntemp, Etemp) used to avoid the obstacle is updated after every
prediction of the DRL agent at a rate of 1–2 Hz. The process is described in Algorithm 1.

Algorithm 1: DRL Path Augmentation for Obstacle Avoidance

initialization;
mission = [[initialization point], [n waypoints of type (N, E)]];
current_path = path between mission waypoints;
while mission not over do

take in DRL observation space (Equation (5));
if minimum returned Lidar distance ≤ safety threshold then

counter ++;
if counter mod 5 == 0 then

DRL agent prediction using the ε-greedy algorithm;
create a temporary waypoint based on action and vehicle state
(Equation (12));

inject temporary waypoint into mission;

track temporary waypoint utilizing NN-MPC (Equation (16));

else
calculate ILOS for path following (Equation (3));

low-level vehicle actuation;

Sensors 2023, 23, 3572 11 of 19

3. Results

In this section, we describe the implementation of the proposed method and the results
obtained in simulation and real-world experiments. Section 3.1 shows the implementation
details of the different simulation environments used for training and testing of the DRL
agent. The training results of the DRL agent in environments without wind disturbances
are presented in Section 3.2. Section 3.3 presents the training and validation of the DRL
agent moving from simulation to field experiments. Finally, Section 3.4 shows the failures
caused by wind when NN-MPC is not implemented, then presents the development of the
NN-MPC waypoint tracker.

3.1. Simulation Environments

The obstacle avoidance strategy aims to train a DRL agent to generate waypoints to
avoid obstacles. Two simulated training environments are built in Gazebo, one for the
UGV and one for the USV, as illustrated in Figure 8a,b, respectively. These environments
do not include environmental disturbances such as wind to accelerate the training. There
are eight different waypoints in total. During the training, the robot needs to follow the
waypoints 1 to 8 clockwise while avoiding the obstacles, then 7 to 1 counterclockwise and
repeat the pattern to better explore the state space. The obstacles have different shapes,
sizes, and movement patterns and are placed between mission waypoints. The movement
patterns include head-on, crossing, oblique approach, circular, and Brownian motion as
shown in Figure 8c. The DQN model is trained during the execution of the waypoint
navigation tasks. If a collision occurs, the robot will be reinitialized at the last reached
waypoints, the obstacles will be shuffled and another training episode begins.

The simulation is given appropriate sensors for environmental and position feedback,
specifically a 2D Lidar, GPS, and IMU. In the ground domain, a TurtleBot is used to train
the DRL agent. The course is a 4 m by 4 m square. The obstacle sizes range from 0.3 to
0.5 m and the max obstacle velocity is 0.5 m/s. The Lidar scan range is 3 m. In the water
domain, the environment is adapted from the Virtual RobotX (VRX) simulator [31] and the
BREAM USV in Figure 6b are used. Additionally, Gazebo “buoyancy” and “USV dynamics”
plugins are used to simulate the marine environment and dynamic behavior of the vehicle.
Due to the different physical properties of UGV and USV, a larger course and obstacles
are set up. The obstacles’ average size is 4 m. The max obstacle velocities are increased to
5 m/s. To sense the obstacles early in the path, the max Lidar scan range is increased to
15 m for the USV.

(a) (b) (c)
Figure 8. DRL agent training in Gazebo simulation environment and obstacle avoidance mission
setup for the DRL agent training. (a) UGV training environment. (b) USV training environment.
(c) Obstacle motion types.

3.2. DQN Network Architecture

The DQN network was trained on a desktop computer with a GeForce 2080 GPU and
an Intel Core i7-8700 CPU. The real-world test is carried out on an NVIDIA Jetson Nano
with a 128-core Maxwell GPU and an ARM Cortex A57 CPU. After 2500 training episodes

Sensors 2023, 23, 3572 12 of 19

with a learning rate of 0.0001, batch size of 32, and epsilon delay rate of 0.99, the episodic
reward reaches approximately 50 when trained on a UGV as shown in Figure 9.

Figure 9. Total reward across training episodes for different training strategies. The black curve
shows the reward of a USV being trained for 3000 episodes. The orange and red curve shows the
reward of hybrid training. The orange curve is a UGV being trained for 2500 episodes and then the
red curve is a USV transferring the policy from the UGV and keeping training for 500 more episodes.

Once the DQN network reaches a reward of approximately 50, the DRL agent can finish
the square course with eight waypoints two to three times without collision. The trajectory
of finishing one loop is visualized in Figure 10. This model is then loaded on a USV and is
trained for 500 episodes in simulation. Then the final reward reaches 100. The total training
time is 72 h. Compared to the cross-domain training, the agent only trained on a USV for
3000 can only receive a reward of around 30 with a total training time of more than 100 h.

(a) (b)
Figure 10. Simulated obstacle avoidance mission showing mission waypoints as red squares, obstacles
in different colors, vehicle trajectories in blue when the DRL is activated and trajectories in red when
the DRL is activated. The trajectory runs counter-clockwise starting from waypoint 1. (a) UGV
evaluation in simulation. (b) USV evaluation in simulation.

Sensors 2023, 23, 3572 13 of 19

3.3. Cross Domain Training and Validation

To validate the trained model in real-world scenarios, the model is integrated into
the UGV, Figure 7a and tested using a different mission. The course is comprised of two
waypoints. The distance between these two waypoints is 20 m. The UGV is required to
navigate from one waypoint to another while avoiding one walking human in crossing and
head-on scenarios. The robot and the human GPS coordinates were recorded and plotted
for the crossing scenario in Figure 11a and the head-on scenario in Figure 11b.

(a) (b)

Figure 11. Real-world UGV obstacle avoidance experiment. (a) Cross scenario. (b) Head-on scenario.

The trajectory has a mean cross-track error of 0.92 with respect to obstacle size. The ob-
stacle size is the average person’s stride length of 0.7 m. The trajectory plots show that the
UGV is able to navigate through an environment with dynamic obstacles without collision
and find a path to its goals.

To test the DRL agent’s ability in the water domain, evaluation tests have been per-
formed in both simulated and real water environments Virtual RobotX (VRX) simulator [31]
and the BREAM USV in Figure 6b are used.

After loading the trained agent, the USV is able to finish the waypoint navigation task
without any collisions. The average cross-track error is 0.89 of obstacle size, a maximum de-
viation from the optimal path of 1.74 of obstacle size. The trajectory is shown in Figure 10b.
The obstacle size is 0.4 m.

To verify obstacle avoidance in a real water environment a mission with two waypoints
is created. These two points are at a distance of 100 m from each other. The DRL agent
tested in real-world experiments does not have any further training. The mission course is
run a total of 15 times to avoid a dinghy in heads-on and crossing scenarios, as illustrated
in Figure 12a,b, respectively. Only two runs are shown for visual clarity. Throughout the
test shown the average cross-track error is 0.93 with respect to the obstacle size, a maximum
deviation from the optimal path of 1.72 with respect to the obstacle size. In this test scenario,
the obstacle size is the length of the dinghy boat 2.1 m.

Sensors 2023, 23, 3572 14 of 19

(a) (b)
Figure 12. USV avoiding a dynamic obstacle in real-world experiments in crossing and head-
on scenario. (a) Crossing scenario. (b) Head-on scenario.

3.4. NN-MPC Waypoint Tracker

Due to strong environmental disturbances such as wind, a simple waypoint follower
may be unsuccessful in attempting to reach the temporary waypoint generated by the
DRL agent even when the correct prediction from the DRL has been made. As shown in
Figure 13a, a collision occurs in the head-on scenario when the wind blows from the North
while the agent generates a waypoint that requires the vehicle to go against the wind. This
failure occurs because the controller is not able to efficiently track the temporary waypoints.
As explained in Section 2.4, NN-MPC is used to reject the wind disturbance so that the USV
can avoid collision by better following the waypoints.

However, NN-MPC still has some limitations [32,33]. NN-MPC is computationally
expensive. Moreover, even with a highly accurate model, there may be uncertainty or
disturbances that are not accounted for in the model. This can lead to suboptimal control
actions and reduced system performance. To tackle these limitations, we first fine-tune the
MPC parameters and simplify the neural network model to find a good trade-off between
performance and speed. Next, we use a multi-stage data collecting technique to train
the neural network to make sure the control actions generated by NN-MPC are robust to
uncertainties and disturbances.

Sensors 2023, 23, 3572 15 of 19

(a)

(b)
Figure 13. Performance of different waypoint trackers when a USV avoids an obstacle in head-
on scenario in simulation. (a) Collision happens without using NN-MPC. (b) Collision avoidance
using NN-MPC.

A dataset is built to train a neural network to estimate the system dynamics of the
BREAM USV. First, the USV is manually driven in the Gazebo simulator to collect data for
simple motions such as going straight, making turns, and going backward under different
wind disturbances including no wind, constant wind, and varying wind conditions. Then
a model is trained with this dataset. Next, the model is used by the MPC in the obstacle
avoidance environment to further explore the state space. Throughout this process, more
data are collected to augment the initial dataset and further refine the neural network model
to make it more robust to uncertainties and disturbances. The network is tested on an
unseen test set for around 100 s. The result is shown in Figure 14a. The mean errors of the
state estimation are [0.01 m/s, 0.02 m/s, 0.01 rad/s, 1.30 m, 6.62 m, 0.29 rad]. The position
errors become large if the prediction time window is too big due to the accumulation of
integration errors. However, the step size ∆t is 0.2 s and the time window is 10 steps for the
MPC thus the NN-based model is accurate enough. The network then is used as a system
model by the MPC solver to generate optimal control commands.

The NN-MPC is then tested in simulation to track different waypoints under different
wind disturbances. Figure 14b–d show the NN-MPC waypoint tracking performance.
Waypoints are created based on Equation (12). In the test, D and d are 8 m and 0.26 rad.
Then the PID waypoint tracker is replaced by the NN-MPC. As is shown in Figure 13b,
when the agent generates the same high-level action, the robust NN-MPC tracker is able to
reject the disturbances and help the vehicle avoid them.

Sensors 2023, 23, 3572 16 of 19

(a)

(b)

(c)

(d)
Figure 14. (a) is the testing result for the neural network giving initial state and future control inputs
and disturbances. The neural network system model is then used by MPC to follow the waypoint
under wind disturbance as shown in (b–d). The blue curves are the USV’s actual trajectories. The red
dashed lines are the trajectories generated by MPC. The red circles are the waypoints generated by
the DRL agent. (a) Measured output u,v,r (black) and model simulation û,v̂,r̂ (red) obtained by the
trained neural model. (b) Along the wind. (c) Perpendicular to the wind. (d) Against the wind.

Finally, the DRL agent with NN-MPC is evaluated in a similar test as Figure 10b
but with wind disturbance from the North. The wind speed is 6 m/s. The trajectory of
the whole mission is shown in Figure 15. Even though the agent has not been trained in
a windy environment, it is able to finish the mission without collision and the average
cross-track error is 1.07 of the obstacle size.

The validations show that the DQN agent is able to rapidly transfer and refine the
obstacle avoidance policy from the ground domain to the water domain. With the help
of NN-MPC, the agent can achieve good performance under environmental disturbances
without further training.

Sensors 2023, 23, 3572 17 of 19

Figure 15. Simulated USV obstacle avoidance mission. Mission waypoints are shown as red squares,
obstacles are shown in different colors, DRL agent augmented paths for avoidance in red, and the
vehicle trajectory following the mission path in blue. The mission starts from waypoint 1.

4. Conclusions

In this paper, a dynamic obstacle avoidance DRL agent for USVs using cross-domain
learning is presented. The generalized obstacle avoidance capability is achieved by utilizing
the model free agent that provides path augmentations and the vehicle-dependent tertiary
controller that follows the augmented waypoints. Compared to pure water domain training,
cross-domain transfer learning decreases the training time by 28% and increases the mean
episodic reward from 30 to 100 points. The obstacle avoidance ability of the methodology
is validated with a DQN on a UGV and USV simulation as well as on a real UGV and USV.
In each case, the DRL agent is able to avoid common dynamic obstacles successfully with a
mean path deviation of around 1 with respect to the obstacle size. The results show that the
prescribed methodology not only aids in transferring the obstacle avoidance policy from
ground to water domains but also helps the sim-to-real transfer. Additionally, NN-MPC is
built for the USV as a low-level controller to track temporary waypoints generated by the
DRL agent and avoid obstacles in an environment with wind disturbance of 6 m/s, which
allows the agent to achieve generalized performance in dynamic environments and can be
extended to reject other disturbances such as waves.

Future work on this project is extensive. The model-free DRL agent in this project
only avoids one obstacle at a time. However, it may fail when facing a situation in which it
needs to navigate around several moving objects. Thus, the agent can be trained in more
intricate settings to further improve the policy. The tests will be expanded to validate the
proposed methodology on more advanced DRL models such as Actor-Critic and Proximal
Policy Optimization (PPO) to generate continuously augmented waypoints and on higher-
dimension sensors such as 3-D Lidar and sonar. These more advanced methods and
sensors will be used to handle more complex navigational problems. The methodology
detailed in this work also shows promise in allowing the training of complex models in

Sensors 2023, 23, 3572 18 of 19

the underwater domain through aerial deployment and overall simulation to real-world
transfer. However, further investigation is required to verify the feasibility of transitioning
between the domains in more complex settings.

Author Contributions: Conceptualization, J.L., J.C.-G., K.A. and N.M.; methodology, J.L. and J.C.-G.;
software, J.L. and J.C.-G.; validation, J.L. and J.C.-G.; formal analysis, J.L., J.C.-G. and N.M.; investi-
gation, J.L., J.C.-G., K.A. and N.M.; data curation, J.L.; writing—original draft preparation, J.L. and
N.M.; writing—review and editing, J.L., J.C.-G., K.A. and N.M.; visualization, J.L.; supervision, K.A.
and N.M.; project administration, J.L. and N.M.; funding acquisition, N.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by ORN N00014-20-1-2085.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Reeve Lambert for the useful discussion and inspiration. We thank
Ajinkya Chaudhary and Miras Mengdibayev for helping with the field tests. We thank ORN for
the support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cockcroft, A.N.; Lameijer, J.N.F. Guide to the Collision Avoidance Rules; Elsevier: Amsterdam, The Netherlands, 2003.
2. Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface

vehicles I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306. [CrossRef]
3. Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]
4. Ferguson, D.; Stentz, A. Using interpolation to improve path planning: The Field D* algorithm. J. Field Robot. 2006, 23, 79–101.

[CrossRef]
5. Sampedro, C.; Bavle, H.; Rodriguez-Ramos, A.; de La Puente, P.; Campoy, P. Laser-based reactive navigation for multirotor aerial

robots using deep reinforcement learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1024–1031.

6. Han, J.; Cho, Y.; Kim, J.; Kim, J.; Son, N.; Kim, S.Y. Autonomous collision detection and avoidance for ARAGON USV:
Development and field tests. J. Field Robot. 2020, 37, 987–1002. [CrossRef]

7. Gao, Y.; Gordon, T.; Lidberg, M. Optimal control of brakes and steering for autonomous collision avoidance using modified
Hamiltonian algorithm. Veh. Syst. Dyn. 2019, 57, 1224–1240. [CrossRef]

8. Lindqvist, B.; Mansouri, S.S.; Agha-mohammadi, A.; Nikolakopoulos, G. Nonlinear MPC for Collision Avoidance and Control of
UAVs With Dynamic Obstacles. IEEE Robot. Autom. Lett. 2020, 5, 6001–6008. [CrossRef]

9. Hagen, I.B.; Kufoalor, D.K.M.; Brekke, E.F.; Johansen, T.A. MPC-based Collision Avoidance Strategy for Existing Marine Vessel
Guidance Systems. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 7618–7623. [CrossRef]

10. Eriksen, B.O.H.; Breivik, M. Short-term ASV Collision Avoidance with Static and Moving Obstacles. Model. Identif. Control. A Nor.
Res. Bull. 2019, 40, 177–187. [CrossRef]

11. Zhang, X.; Wang, C.; Jiang, L.; An, L.; Yang, R. Collision-avoidance navigation systems for Maritime Autonomous Surface Ships:
A state of the art survey. Ocean Eng. 2021, 235, 109380. [CrossRef]

12. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

13. Choi, J.; Park, K.; Kim, M.; Seok, S. Deep reinforcement learning of navigation in a complex and crowded environment with a
limited field of view. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 5993–6000.

14. Meyer, E.; Heiberg, A.; Rasheed, A.; San, O. COLREG-compliant collision avoidance for unmanned surface vehicle using deep
reinforcement learning. IEEE Access 2020, 8, 165344–165364. [CrossRef]

15. Xiao, X.; Liu, B.; Warnell, G.; Stone, P. Toward agile maneuvers in highly constrained spaces: Learning from hallucination. IEEE
Robot. Autom. Lett. 2021, 6, 1503–1510. [CrossRef]

16. Joshi, G.; Chowdhary, G. Cross-domain transfer in reinforcement learning using target apprentice. In Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7525–7532.

17. Shukla, Y.; Thierauf, C.; Hosseini, R.; Tatiya, G.; Sinapov, J. ACuTE: Automatic Curriculum Transfer from Simple to Complex
Environments. arXiv 2022, arXiv:2204.04823.

http://doi.org/10.1007/s00773-020-00787-6
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.1002/rob.20109
http://dx.doi.org/10.1002/rob.21935
http://dx.doi.org/10.1080/00423114.2018.1563706
http://dx.doi.org/10.1109/LRA.2020.3010730
http://dx.doi.org/10.1109/ICRA.2018.8463182
http://dx.doi.org/10.4173/mic.2019.3.4
http://dx.doi.org/10.1016/j.oceaneng.2021.109380
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/ACCESS.2020.3022600
http://dx.doi.org/10.1109/LRA.2021.3058927

Sensors 2023, 23, 3572 19 of 19

18. Gage, D.W. UGV History 101: A Brief History of Unmanned Ground Vehicle (UGV) Development Efforts; Technical report; NAVAL
COMMAND CONTROL AND OCEAN SURVEILLANCE CENTER RDT AND E DIV SAN DIEGO CA: Fort Belvoir, VA,
USA, 1995.

19. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control
2016, 41, 71–93. [CrossRef]

20. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011.
21. Lambert, R.; Li, J.; Wu, L.F.; Mahmoudian, N. Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforce-

ment Learning. Front. Robot. AI 2021, 8, 739023. [CrossRef] [PubMed]
22. Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of

Drift Forces. IEEE Trans. Control Syst. Technol. 2015, 23, 820–827. [CrossRef]
23. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal

positions and tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]
24. Caharija, W. Integral line-of-sight guidance and control of underactuated marine vehicles. IEEE Trans. Control. Syst. Technol. 2014,

24, 1–20.
25. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
27. Lambert, R.; Page, B.; Chavez, J.; Mahmoudian, N. A Low-Cost Autonomous Surface Vehicle for Multi-Vehicle Operations. In

Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Biloxi, MI, USA, 5–30 October 2020; pp. 1–5.
28. Forgione, M.; Piga, D. Continuous-time system identification with neural networks: Model structures and fitting criteria. Eur. J.

Control 2021, 59, 69–81. [CrossRef]
29. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A.Y.; ROS: An open-source Robot

Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.
30. Hokuyo Automatic Co., Ltd. Hokuyo UTM-30LX-EW Scanning Laser Rangefinder. Available online: https://acroname.com/

store/scanning-laser-rangefinder-r354-utm-30lx-ew (accessed on 9 March 2023).
31. Bingham, B.; Aguero, C.; McCarrin, M.; Klamo, J.; Malia, J.; Allen, K.; Lum, T.; Rawson, M.; Waqar, R. Toward Maritime Robotic

Simulation in Gazebo. In Proceedings of the MTS/IEEE OCEANS Conference, Seattle, WA, USA, 27–31 October 2019.
32. Bujarbaruah, M.; Zhang, X.; Tanaskovic, M.; Borrelli, F. Adaptive stochastic MPC under time-varying uncertainty. IEEE Trans.

Autom. Control 2020, 66, 2840–2845. [CrossRef]
33. Ferreau, H.J.; Bock, H.G.; Diehl, M. An online active set strategy to overcome the limitations of explicit MPC. Int. J. Robust

Nonlinear Control. IFAC-Affil. J. 2008, 18, 816–830. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.arcontrol.2016.04.018
http://dx.doi.org/10.3389/frobt.2021.739023
http://www.ncbi.nlm.nih.gov/pubmed/34616776
http://dx.doi.org/10.1109/TCST.2014.2338354
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.ejcon.2021.01.008
https://acroname.com/store/scanning-laser-rangefinder-r354-utm-30lx-ew
https://acroname.com/store/scanning-laser-rangefinder-r354-utm-30lx-ew
http://dx.doi.org/10.1109/TAC.2020.3009362
http://dx.doi.org/10.1002/rnc.1251

	Introduction
	Methodology
	Path Planner
	Path Follower
	DRL Agent
	NN-MPC Tracker
	Field Test Implementation

	Results
	Simulation Environments
	DQN Network Architecture
	Cross Domain Training and Validation
	NN-MPC Waypoint Tracker

	Conclusions
	References

