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Abstract: The study of data quality in crowdsourcing campaigns is currently a prominent research
topic, given the diverse range of participants involved. A potential solution to enhancing data quality
processes in crowdsourcing is cognitive personalization, which involves appropriately adapting or
assigning tasks based on a crowd worker’s cognitive profile. There are two common methods for
assessing a crowd worker’s cognitive profile: administering online cognitive tests, and inferring
behavior from task fingerprinting based on user interaction log events. This article presents the
findings of a study that investigated the complementarity of both approaches in a microtask scenario,
focusing on personalizing task design. The study involved 134 unique crowd workers recruited
from a crowdsourcing marketplace. The main objective was to examine how the administration of
cognitive ability tests can be used to allocate crowd workers to microtasks with varying levels of
difficulty, including the development of a deep learning model. Another goal was to investigate if task
fingerprinting can be used to allocate crowd workers to different microtasks in a personalized manner.
The results indicated that both objectives were accomplished, validating the usage of cognitive
tests and task fingerprinting as effective mechanisms for microtask personalization, including the
development of a deep learning model with 95% accuracy in predicting the accuracy of the microtasks.
While we achieved an accuracy of 95%, it is important to note that the small dataset size may have
limited the model’s performance.

Keywords: crowdsourcing; cognitive abilities; human-computer interaction; microtask design;
personalization; task fingerprinting

1. Introduction

The international classification of functioning disability and health (ICF) encompasses
the classification of health information [1]. Studies have been conducted to improve this
information, regarding the transparency and reliability of the process of linking health
information to the ICF [2]. In recent years, the ICF has been employed to categorize
cognition-related information, including cognitive-communication disorders, which entail
several challenges in terms of terminology, assessment, and sociocultural context. In this
regard, the usage of ICF can lead to significant therapeutic interventions for individuals
suffering with this kind of disorder [3]. Gauthier and colleagues [4] described mild cog-
nitive impairment (MCI) and provided a conceptual background on this impairment, the
pathophysiology, the tools typically used for the diagnosis, some procedures and statistics
regarding the management per patient, and what can be used to prevent it. Dementia in
the stage of serious decline can be considered as a mild cognitive impairment, and the
worldwide costs are enormous, unevenly distributed, and increasing. Since 2010, dementia
costs have reached USD 818 billion globally, an increase of 35% [5]. Technology benefits
people with MCI, by providing a means of support [6]. Nowadays, technology can be
used to support cognitive rehabilitation by maintaining or even improving an individual’s
mental state. Braley and colleagues [7] conducted a study to evaluate the feasibility of
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constructing smart home systems to help people with dementia in quotidian activities
through the use of auto-prompts. The feasibility was validated, and factors such as positive
reinforcement, training, and research related to human interaction were identified as neces-
sary for developing these types of systems. Another article proposed a model for assistive
technology, joining physical and cognitive rehabilitation [8]. This approach is interesting in
merging both approaches and prescribing rehabilitation, giving therapists opportunities to
customize the best rehabilitation exercise for their patients.

Furthermore, this approach also comprises a social feature, including collaborative
exercises. Another fact that must be taken into consideration regarding technology that
supports cognitive rehabilitation is the level of dependency of the user. In a systematic
review based on technology-based cognitive rehabilitation for individuals with cognitive
impairment, most of the identified studies featured the direct help of a therapist for the
participant [9]. The direct help could bias the result or also mean that a design in the form
of personal help is essential when developing cognition-aware technology [10]. However,
if technology is neither well designed nor cognition-aware, in the case of individuals with
MCI, they can commit errors in terms of accuracy and miss the default time windows in
tasks, with the latter being problematic, for example with cash machines [11]. Drawing
together the findings from prior literature, numerous scholars have argued that the proper
design of technology must take into consideration the user’s cognitive abilities.

Cognitive abilities are wider than specific abilities and belong to the group of general
mental ability (GMA). As a construct, GMA obtains significant correlation outcomes with
occupation level and performance in job training. Even job historical performance has a
weaker correlation when compared with GMA. With this framing, workers with a higher
GMA acquire more and faster job knowledge, which translates to higher levels of job
performance [12]. Cognitive abilities, which include but are not restricted to working
memory (managing and storing information at the same time [13]) and executive functions
(cognitive processes involved in behavior towards goal accomplishment [14]), can predict
performance in most jobs and situations. In Web-based unsupervised environments, the
potential for faking non-cognitive and cognitive ability measures underlines the need for
caution and there is an ongoing discussion about their harmful effects [15]. In [16], the
authors provided an updated taxonomy for cognitive abilities and personality domains.
Cognitive abilities can be measured remotely, with potential for the administration of
self-reported tools for assessing capabilities in cases where there is a significant personality
bias [17]. With this in mind, the utility of the tool is questioned. This reinforces the usage of
online tasks (e.g., microtasks in the context of crowdsourcing), including cognitive tests
to assess cognitive abilities, instead of using self-measurement tools that are biased by
nature. Moreover, IQ can be used to predict a worker’s job satisfaction, as well as expected
job performance, while personality type can moderate the previous relationship [18]. It is
also worth noting that cognitive abilities can be improved when emotional intelligence is
promoted [19]. In this sense, besides cognitive abilities, social-cognitive factors contribute to
remarkable differences in technology task performance. In the elderly, computer proficiency
can be predicted from scores in cognitive ability tests. Specifically, predictions can be made
using sense of control, psychomotor speed, and inductive reasoning [20]. Among the
most promising techniques enabling a more personalized experience with online digital
labor platforms, this work opens a new perspective for using crowdsourcing in assessing
the cognitive abilities of each worker based on cognitive tests, with the ultimate goal of
matching tasks and crowd workers’ individual capabilities.

Over the years, crowdsourcing has evolved, both from a technological point of view
and regarding research interest, with several literature reviews and surveys having been
published in the last decade (e.g., [21,22]). Since the term’s inception in the mid-2000s [23],
crowdsourcing has become increasingly prevalent in local and remote settings, where there
is a need to obtain timely information for solving simple to moderately complex problems of
varying nature and length. In fact, crowd-powered systems have gradually matured across
the world, and we can see examples of renowned pioneer companies (e.g., [23]) adopting
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crowdsourcing as part of their innovation strategy and business model. Considered an
important form of on-demand digital labor, crowdsourcing tasks require fewer skills and
less time to complete, giving a flexible job opportunity. In line with this, the evolution of
digital work has created conditions where people can overcome social and geographical
barriers in an inclusive setting, especially in the context of microtask crowdsourcing, due to
the ease of performing decomposed tasks. As a result, more and more opportunities arise
for supporting people with cognitive or physical impairments to perform remote work [24].
Considering microtasks, people can perform tasks with different levels of complexity via
Web or mobile applications, by doing something they are interested in (e.g., play games,
transcribe language, or label images) [25].

Task fingerprinting is a technique for identifying behavior traces from crowd worker
activity, to improve quality control techniques. The pioneer work conducted by Rzeszo-
tarski and Kittur [26] inferred behavior patterns in a crowd work context by analyzing
the user interaction log events, such as the click details and key presses. This method of
microtask fingerprinting develops prediction models based on machine learning (ML) to
identify the behavioral traits of workers. Aligned with this goal, various research works
have been conducted with the aim of developing this line of inquiry. For instance, a study
on quality control mechanisms proposed a set of indicators and a general framework
covering more types of microtask, including open-ended answers [27]. This work obtained
better outcomes when compared to the state-of-the-art methods, such as the traditional
analysis of historical performance in crowd work [28]. Furthermore, a supervised ML
model was proposed, where more types of crowd worker profile were detected, with a
higher granularity [29]. Additionally, a model was created to define behavior, motivation,
and performance from a general perspective. Fine-grained features were also analyzed in
another study, with the results corroborating their underlying benefits for quality control
mechanisms [30].

In addition to traditional quality control mechanisms and task fingerprinting, cognitive
personalization can be applied to microtask assignment arrangements. Goncalves and
colleagues [31] proposed a method for performing task routing, based on cognitive ability
tests. However, while the former was performed on a computer, the latter was administered
in pencil and paper. The positive results obtained in this study support the assessment
of cognitive ability for routing microtasks. In the following related work, Hettiachchi
and colleagues [32] transformed pencil-and-paper cognitive ability tests into microtasks
suitable for short crowdsourcing scenarios. However, the cognition-based task routing
was not performed in real-time. A thorough study was subsequently performed involving
574 crowd workers, and this time involving real-time task assignment. Predominantly, this
research concluded that short-length cognitive tasks supported better outcomes in the task
routing when compared to the conventional methods, including validated state-of-the-art
microtask assignment methods [33]. While these studies based on cognition-based task
assignment obtained excellent results, two pertinent questions arise: can cognitive tests
support personalization in the design of microtasks? Task assignment is important in
providing microtasks suitable for each crowd worker, but can any microtask be adapted
such that each crowd worker is sufficiently motivated to perform it? The answer to
these questions will allow an increase in the democracy in crowdsourcing settings, by
improving the microtask itself and taking into consideration the adaptation requirements
of the crowd worker. First, it is necessary to clarify the roles of personalization and
customization in technology. Personalization in computer systems is defined as the process
of adjusting the functionality or the interface to increase personal relevance from the user’s
perspective. Customization refers to providing customization options for the user to adjust
the technology in accordance with his/her preferences. A significant difference between
personalization and customization is that personalization is done implicitly by the system,
while customization is done explicitly by the user. Although personalization reduces
the user burden in the personal adaptation of the system, it can cause privacy-related
problems. One solution to tackle these privacy issues and reduce the user burden is to elicit
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user adaptation preferences and requirements through small interactive tasks [34]. This
can be applied and adaptated in the design of microtasks, through cognitive tests being
transformed into microtasks and complemented with task fingerprinting.

For this study, we recruited 134 unique crowd workers in four different conditions
(below median cognitive score, above or equal median cognitive score, microtasks without
personalization, microtasks with personalization), in order to answer the following research
questions (RQs):

• RQ1: How can the administration of cognitive ability tests, specifically in the evalua-
tion of executive functions, be used to allocate crowd workers to microtasks with or
without personalization?

• RQ1.1: Is a deep learning model able to allocate crowd workers to microtasks with
different characteristics of UI and complexities of the content presented?

• RQ2: Can task fingerprinting, based on the identification of behavioral traces, be used
to allocate crowd workers to microtasks with or without personalization?

To answer these questions, we deployed a set of batches comprised of cognitive tests
(based on cognitive abilities, specifically executive functions) and prototypical microtasks
in two human intelligence tasks (HITs). Following a between-subjects study design, the
HITs differed in meeting two conditions: microtasks without personalization (normal
difficulty) and with personalization (easy difficulty, where the inputs and/or the content
was simplified). Both HITs had the same cognitive tests and only differed in terms of
difficulty. The main purpose of this study was to investigate whether it is feasible to allocate
crowd workers to suitable microtasks based on cognitive tests and task fingerprinting. A
secondary purpose was to investigate task fingerprinting, not only to obtain behavioral
traces of crowd workers from a performance standpoint, but also to complement the
evaluation made through the administration of cognitive ability tests.

2. Background

The ground-breaking works of Hettiachchi and colleagues [32,33] revealed the under-
lying potential of cognition-based microtask assignment. However, in addition to microtask
assignment, there have been other approaches to performing cognitive personalization
of microtask design. Eickhoff [35] conducted a study to identify the cognitive biases (i.e.,
systematic errors in the thinking processes) of crowd workers and indicated that microtask
design should take these biases into consideration, in order to avoid a decrease in terms
of work performance. In another work based on collaboration scenarios, a model was
developed using the random forest algorithm to identify relevant collaboration skills [36].
Moreover, Sampath et al. [37] found that performance in text-transcription tasks can be
improved significantly if the microtask design takes into account working memory or
visual saliency. Paulino and colleagues [38,39] suggested that cognitive styles could be used
to infer information processing preferences in a crowd work setting. These preferences
can then be used to personalize the microtask interface. However, these studies can be
considered analyses of user log interactions to enhance cognitive personalization.

Besides the seminal work of Rzeszotarski and Kittur [26], other similar techniques have
been developed for identifying behavioral traces of crowd workers. A system was proposed
to integrate different techniques for quality control in the context of crowdsourcing [40].
This system allowed the integration of outcomes related to gold standards, majority voting,
and behavioral traces, with the generation of graphics and other forms of data visualization.
Another study based on behavioral data captured from logging mouse interactions and
eye tracking data showed that this is beneficial and can complement task duration metric
for quality control purposes [41]. Additional behavioral traces from crowd workers can
be identified, to develop a model for predicting label effectiveness, as well as worker
performance. A previous work more focused on classification microtasks generated a
model for optimizing label aggregation processes [42]. Furthermore, it was found that
the classification accuracy can also be improved significantly when using gold judges
based on behavioral data [43]. Regarding the data collected, most of the studies identified
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behavioral traces based on the raw data from clicks or key presses. In the pioneering work
of Rzeszotarski and Kittur [26], the features identified were the simple interactions made in
the microtask interface, such as the page scrolls, the special keys presses (e.g., tab or enter),
and the change of focus, either on the input fields or in the browser tabs. To complement
these indicators, the timestamp to the millisecond was identified for each interaction. This
basic approach to processing raw data was used in other studies [27,42]. Additionally,
Han and associates [27] created a browser extension to be used by crowd workers when
performing microtasks. The authors extended the temporal and behavior indicators from
the work of Rzeszotarski and Kittur [26] but provided new features regarding contextual
and compound features. The contextual features refer to the study of two or more behaviors
simultaneously, while the compound features are related to the analysis of a sequence
of interactions that enrich behavioral identification (e.g., if a crowd worker scrolls the
page frequently, it may indicate that he/she is hesitant). In another study, Gadiraju and
colleagues [29] complemented behavioral trace identification by analyzing the time before,
during, and after interactions with finer granularity.

While there has been significant progress in task fingerprinting in crowd work, espe-
cially by Rzeszotarski and Kittur [26] and later by Gadiraju and co-authors [29], a research
gap exists in combining crowd workers’ interaction logs with cognitive tests. This combi-
nation has the potential to enhance the performance of crowd workers and improve the
quality of work delivered to the requesters.

3. Methodology

A case study was designed to answer the previously formulated research questions.
In this section, the methodology of this case study will be presented. There are two ways
to achieve cognitive personalization in microtask design: administering cognitive tests to
assess capabilities, or using task fingerprinting. The former involves transforming psycho-
metric tests into microtasks, a method successfully used in previous studies [32,33,38,39].
The latter involves evaluating the behavior of crowd workers while performing microtasks,
which can be done by analyzing click details or keyboard press data [26,44]. This study used
both methods: psychometric tests and microtask fingerprinting. Combining these methods
can be mutually beneficial, since behavioral traces identified in microtask fingerprinting
can enhance the accuracy of psychometric tests, and the results from psychometric tests
can support the identification of new behavioral traces.

This case study was established using a prototypical microtask crowdsourcing sce-
nario, based on methods and subsequent findings described in [33]. First, the tasks that
were presented to the crowd workers were based on cognitive tests (see Table 1 for a detailed
outline) and evaluated executive functions that have been proven to be effective in assessing
the cognitive abilities of crowd workers [33]. These cognitive tests were transformed into
short microtasks, each one made up of several small trials in the form of cognitive puzzles,
which were appropriate to a crowd work context. Second, the prototypical microtasks
were also based on the work of Hettiachchi et al. [32,33], who acquired positive outcomes
concerning the combination of cognitive abilities with crowdsourcing tasks. These pro-
totypical microtasks (i.e., classification, sentiment analysis, counting, transcription) are
representative of the tasks available in crowdsourcing marketplaces [45,46].
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Table 1. Summary of the microtasks applied in this case study, consisting of cognitive tests and their
positive relationship with the microtask (according to Hettiachchi and colleagues [33]).

Cognitive Test
Executive Function

Main Finding Description of the
Cognitive Test

Indicated
MicrotasksCognitive

Flexibility
Inhibition

Control
Working
Memory

Flanker [47] X

Assesses the ability to
override the prepotent
answer for incongruent

elements.

Composed in trials of
images showing five

arrows. The congruent
version has all arrows in
the same direction. The
incongruent version has

the middle arrow pointing
in the opposite direction.

Classification,
Counting,
Sentiment
Analysis

N-Back [48] X
Check if the individual

can keep up with a
sequence of stimuli

Presents a sequence of
letters (each one

represents a trial) and
asks which one matches
the three previous trials.

Classification,
Counting

Pointing [49] X
This test evaluates the
ability to memorize a

series of recent actions.

Composed of three to
twelve squares, the

individual must find each
square, which may

contain a visual reward,
without repeating the

previously clicked square.

Classification,
Counting

Stroop [50] X

Identical to the Flanker
test, but in this version, it
has words and different

(or same) colors.

The words are presented
with the name of a color.
This test is composed of

three diverse types of trial:
congruent, incongruent,

or unrelated.

Classification,
Counting,
Sentiment
Analysis

Task-Switching
[51] X

Obligates the participant
in some trials to change

the question, by
answering only if in some
squares there is a vowel or

a number even.

The letters and numbers
are presented in four

aligned squares.
Transcription

Classification is a category of microtasks that asks crowd workers to verify some
characteristics according to a set of instructions or even the validation of certain content. As
explained by Hettiachchi and colleagues [32], “In this task, crowd workers were presented
with 16 paintings (primarily from The Metropolitan Museum of Art and the remaining
from Flickr, all images licensed for public use) and were asked to identify and mark the
items appearing in each painting from a given list of four items. Images represent different
painting styles from different countries and contain one or more of the listed items.”
Sentiment analysis was based on the crowd worker reading a sentence and analyzing the
sentiment contained. A sentence’s sentiment was classified as either ‘negative’, ‘neutral’,
or ‘positive’ in the version with personalization. In the version without personalization, it
could be classified as ‘angry’, ‘sad’, ‘sarcasm’, ‘helpful’, ‘courage’, ‘happy’, or ‘patriotic’.
Counting is a category of microtasks that asks crowd workers to count elements provided
in an image, based on the description of characteristics with a set of instructions. As
explained by Hettiachchi and colleagues [32]: “In this microtask, workers were presented
with an image of a petri dish and asked to count malaria-infected blood cells. Workers
were provided with specific instructions on how to differentiate an infected blood cell
from an ordinary blood cell.” The accuracy of each counting microtask was determined by
max(0, 1 − |response−groundtruth|

groundtruth ). Transcription refers to the microtasks where the crowd
workers typically analyzed an image with hand-written text and had to transcribe it. This
used extracted images from The George Washington Papers at the Library of Congress [52].
The Levenshtein distance (LD) [53] was calculated between the response string and the
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ground truth, and accuracy was measured using max(0, 1 − 2∗LD
length(groundtruth) ). The UI of

the microtasks with personalization developed for this case study is presented in Figure 1
(the UI of the microtasks without personalization can be found here [32]).
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Four experimental conditions were defined to answer the previously formulated
research questions. This differed from prior works, and consisted of two main clearly
distinguishable parts:

• Personalization of microtasks (with or without personalization). This condition fo-
cuses on the personalization of the interface. For this purpose, two interfaces were
designed: one without any personalization and implying a normal difficulty, and the
other one with personalization, where the content or the input elements were adapted
to make it easier to solve each microtask. The elements required to make user interface
(UI) adaptations were based on the ontology for cognitive personalization in a crowd
work context proposed by Paulino and colleagues [38]. The cognitive knowledge
that is represented in the ontology is based on mental functions, as defined by the
international classification of functioning, disability and health (ICF), a framework
for the classification of health and disability [1]. Furthermore, the ontology includes
the concepts of microtasks, cognitive abilities, and types of adaptation, in order to
personalize the interface to the crowd worker. To this end, an existing ontology called
ACCESIBILITIC [54] was incorporated, which represents knowledge about accessi-
bility and activity-centered design and includes a taxonomy with the classification of
cognition-related concepts from the ICF scheme, which supported the personalization
of the microtasks used in this case study. The group of microtasks with personalization
(presented in Figure 1) was expected to have better microtask accuracy results when
compared to the group without personalization (described in [32]).

• Cognitive profile (above or below the median overall score of cognitive abilities tests).
The median value can be calculated based on the executive functions assessed using
the administration of the cognitive ability tests. This value was used as a threshold for
allocating the crowd workers to microtasks with or without personalization.

In general terms, this study intended to predict the performance when executing the
different types of microtask. To this end, we defined four dependent variables related to the
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accuracy of microtasks (classification, counting, sentiment analysis, and transcription) and
several independent variables (accuracy of Stroop, Flanker, Task Switching, Pointing and
N-Back cognitive tests, response time, click details, and key presses of all cognitive tests
and microtasks). The task fingerprinting was performed based on the click details and key
presses, enabling the identification of behavioral traces. The development of the cognitive
tests and the crowdsourcing microtasks was based on JSPsych [55], a JavaScript library that
facilitates the development of online psychometric tests and which has been used in several
research works in the domain of psychology [56–58]. The crowd workers were recruited
from Amazon Mechanical Turk and a total of USD 1.2 was paid for an estimated time of
10 min to complete all cognitive tests and microtasks. This value followed the research
trend of paying crowd workers according to the United States minimum wage [59].

After the results were obtained, a dataset was constructed from the performance in
cognitive tests and microtasks, and then a deep regression neural network was developed.
Deep learning (DL) and deep neural network (DNN) architectures have become the state-
of-art methods in many fields of ML in recent years. DL has become one of the most
researched and developed areas in recent years, with impressive results in every area it has
been applied [60]. DL differs from other ML methods in the way it learns. DL automates
much of the feature extraction. Thus, ML is more dependent on human intervention to learn
and has a smaller number of layers. Consequently, it requires fewer data to learn patterns
but does not achieve good results when compared with DL. ML utilizes AI techniques that
teach the computer how to improve its behavior for a given task. Some techniques used for
ML include support vector machines and decision trees [61]. The network consists of an
input layer, multiple hidden layers, and an output layer. The nodes are fully connected,
and the number of input layer nodes is equal to the number of features in the input data.
Each hidden layer node is composed of neurons.

4. Results

For the study, we recruited 134 unique crowd workers (age: mean = 36.695, SD = 12.945;
gender: male n = 81, female n = 53), split into two groups: microtasks with personalization
(n = 69) and without personalization (n = 65). Although the UI was different for each
microtask, the cognitive tests administered were equal in both groups, in order to obtain an
accurate cognitive profile of the crowd worker. Task duration can be used as an indicator
to identify non-competent crowd workers, as stated by Pei and colleagues [30]. However,
this indicator is subjective in a remote environment, since it is difficult to determine if the
crowd worker is taking time because he/she is carrying out the task or is doing another
unrelated activity [26]. In this section, we describe indicators resulting from the interaction
with the UI, which enabled the observation of how much time was actually allocated to the
task and how much time was spent on pause.

4.1. Cognitive Tests

The average accuracy of all cognitive tests was similar in both the crowd workers
who had microtasks with personalization (mean = 0.565, SD = 0.190) and those without
personalization (mean = 0.556, SD = 0.1999). In fact, this was somewhat expected, since the
same cognitive tests were administered to all of participants, without a noticeable influence
from the type of microtasks performed. As expected, the same happened for the time
duration (measured in seconds) of the cognitive tests (with personalization: mean = 1.119,
SD = 0.467; without personalization: mean = 1.052, SD = 0.559), number of clicks (with
personalization: mean = 22.943, SD = 9.987; without personalization: mean = 21.431,
SD = 11.534), and number of key presses (with personalization: mean = 9.496, SD = 14.739;
without personalization: mean = 12.240, SD = 22.013). Table 2 presents the results of
the cognitive tests according to the four research conditions: personalization (batch of
HITs with changes to the prototypical microtasks) and cognitive overall score (below or
equal/above median of the average accuracy score extracted from the five cognitive tests).
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Table 2. Results of the cognitive tests, comprised of average and standard deviation values (both have 3 decimal digits) in the four research conditions of
personalization and cognition (‘W/o’—without, ‘W/’—with, ‘pers’—personalization, ‘A.’—accuracy, ‘D.’—duration, ‘C.’—clicks, ‘K.’—key presses).

Research
Condition

Flanker N-Back Pointing Stroop Task-Switching

A. D. C. K. A. D. C. K. A. D. C. K. A. D. C. K. A. D. C. K.

W/pers. and <
median cognit.

0.425
±

0.260

1.262
±

0.548

0.606
±
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Despite the understandable exception of some outliers, the cognitive tests generated
similar distributions in the two different groups of crowd workers, which is to be expected,
since both types of cognitive test had a considerable sample (for each group n ≥ 65; with
personalization: n = 69, without personalization: n = 65). Although the results in both
groups were expected to be similar for the cognitive tests, the same was not expected for the
prototypical microtasks, due to the fact that the UI of the two versions of these microtasks
was different, based on the personalization of the components of each HIT, as explained in
the Methodology section.

4.2. Prototypical Microtasks

The difference between the versions with personalization (easy difficulty) and without
personalization (normal difficulty) was based on the changes to the UI interface of the
microtasks presented to the crowd workers. Figures 1 and 2 present the box plots of
the results obtained in the versions with personalization and without personalization,
respectively. On the one hand, the personalized microtask UIs mainly featured multiple-
choice inputs, making it easier for crowd workers to complete the tasks. On the other hand,
non-personalized microtask UIs included open-ended answers, which could decrease
the task success rate and increase the number of interactions with the interface. The
primary variable observed was accuracy in determining the success of the crowd workers’
microtasks. Additionally, other metrics were examined for performing task fingerprinting
based on the crowd workers’ behavior during task completion. Analyzing the average
time taken to solve the microtasks was crucial for assessing the effort and interest of
the crowd participants. Extremely short execution times may indicate disinterest or a
task’s intuitiveness, while excessively long execution times usually signify a more complex
execution and/or interpretation. Since these were multiple-choice tasks, it was expected
that the average number of clicks would be around one.
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Understandably, the accuracy of the microtasks without personalization (mean = 0.467;
SD = 0.358) was lower than the accuracy of the counting microtasks in the pool of crowd
workers who had personalization (mean = 0.546, SD = 0.369). Calculating the difference in
the means of the accuracy, there was around a 10% decrease (while the standard deviation
remained similar) on the version without personalization. Furthermore, we observed a sim-
ilar pattern when considering classification microtasks with personalization (mean = 0.720,
SD = 0.278) and without personalization (mean = 0.369; SD = 0.369). In both microtasks of
counting and classification, it is important to emphasize that the content of the microtask
(output shown to the crowd worker) was changed in the version with personalization,
whereas the main image that the crowd workers were asked to count/classify in the ver-
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sion with personalization was cut in half compared to the original in the version without
personalization, which eased the microtask difficulty. The accuracy of the transcription
microtasks between the pool of crowd workers who had microtasks with personalization
(mean = 0.892, SD = 0.211) and without personalization (mean = 0.445; SD = 0.348) showed
an enormous difference. A possible reason for this difference was that not only the output
of the microtask in the version with personalization was simplified, but also the input
was changed from open-ended to multiple-choice. Moreover, the accuracy of the micro-
tasks comprising sentiment analysis in the pool of crowd workers who had microtasks
with personalization (mean = 0.431, SD = 0.300) showed an expressive difference when
compared to the microtasks without personalization (mean = 0.303; SD = 0.305). In this
microtask, the output remained the same and the only difference with the version with
personalization was that the multiple-choice input only had three options, while the version
without personalization had seven different options.

Looking at the results depicted in Figures 2 and 3, we can observe the higher accuracy
in the version with personalization when compared to microtasks without personalization.
Subsequently, each version obtained a better accuracy for crowd workers with higher cog-
nitive scores than those who had lower cognitive scores. One of the other metrics analyzed
was the duration (measured in seconds) needed for the crowd worker to finish the microtask.
Extrapolating to the microtasks involving counting (with personalization: mean = 10.087,
SD = 6.380; without personalization: mean = 11.781, SD = 6.052) and sentiment analysis
(with personalization: mean = 6.049, SD = 7.566; without personalization: mean = 6.455,
SD = 6.250), we noted that the duration mean and standard deviation were similar between
the versions. This did not happen in the microtasks comprising classification (with person-
alization: mean = 15.884, SD = 17.768; without personalization: mean = 30.351, SD = 21.395)
and transcription (with personalization: mean = 9.694, SD = 8.522; without personalization:
mean = 66.096, SD = 62.299), where the version with personalization demonstrated an
much shorter time to accomplish the microtasks when compared with the original version
without personalization. This mainly happened due to the differences in the complexity
of the two versions of personalization, with expressive values in the case of transcription,
where the input differed from open-ended to multiple-choice, with the former meaning
that the crowd worker needed more time to insert their answer. As also shown in Figure 2,
the time duration for the microtasks without personalization was lower in people with
higher cognition, which translated into greater effectiveness.
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In a broad sense, the number of clicks made on the mouse/touchpad can allow a
better evaluation of the crowd worker’s interaction with the microtask interface. Similarly
to what happened for the duration required to accomplish each microtask, both versions
with and without personalization obtained an similar number of clicks in the microtasks
involving counting (with personalization: mean = 4.710, SD = 1.783; without personaliza-
tion: mean = 5.492, SD = 6.205) and sentiment analysis (with personalization: mean = 2.464,
SD = 1.420; without personalization: mean = 2.523, SD = 1.288). The microtasks comprising
classification (with personalization: mean = 3.275, SD = 3.072; without personalization:
mean = 6.677, SD = 2.501) and transcription (with personalization: mean = 2.261, SD = 0.560;
without personalization: mean = 6.507, SD = 6.792) showed an opposite trend. As also
shown in Figure 3, the number of clicks in the microtasks without personalization was
higher for crowd workers with a higher cognitive score compared the ones with a lower
cognitive score, which also affected the accuracy of the microtasks performed.

The metric of key presses was similar to the click behavior, but instead the former cor-
responded to the interactions of the crowd worker with the keyboard. At a glance, the key
presses registered similar results with both versions (with personalization: mean = 1.000,
SD = 6.181; without personalization: mean = 1.600, SD = 4.860). However, the outcomes of
the other types of microtask were different. For instance, the microtasks involving counting
(with personalization: mean = 0.652, SD = 1.348; without personalization: mean = 4.231,
SD = 10.811), classification (with personalization: mean = 1.319, SD = 4.230; without person-
alization: mean = 7.231, SD = 17.647), and transcription (with personalization: mean = 0.710,
SD = 2.492; without personalization: mean = 79.415, SD = 70.321) obtained less key presses
in the version with personalization when compared to the version without personaliza-
tion. The outstanding result was for transcription, with a mean difference in the order of
100 times. This difference was explained by the change in the type of input for the two
versions, from open-ended (version without personalization) to multiple-choice (version
with personalization), with the former requiring the usage of a keyboard, while the latter
only required the usage of the mouse/touchpad.

Table 3 presents the results of the identification of behavioral traces (task fingerprint-
ing) comprised of average and standard deviation values, specifically based on the click
data and the key presses. These behavioral traces were obtained based on how much time
the crowd worker needed to perform a specific action. For this study, four different actions
were specified: hurry actions (performed in less than 100 ms), confident actions (performed
between 100 ms and 10,000 ms), hesitant actions (performed over 10,000 ms), and special
actions (click or key presses in buttons/key presses that shortcut action, for example the
key “alt” combined with other key). Regarding the behavioral traces identified from the
click data, all four prototypical microtasks (i.e., counting, classification, transcription, and
sentiment analysis) showed either more confident actions or less hurry actions in the ver-
sion with personalization compared with the version without personalization. In the key
press data, the number of almost every action (i.e., hurry, hesitant, confident and special)
had increased in the version without personalization when compared with the version with
personalization. It is necessary to take into consideration that the number of all key presses
was greater in the former version, which indicates that the crowd workers had to perform
more actions in that version, which highlights the increase of special actions performed in
the version without personalization (e.g., in the transcription micro task it was helpful to
use the CTRL + C and CNTRL + V combination to perform copy and paste).
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Table 3. Results of the identification of behavior traces (task fingerprinting) comprised of average and standard deviation values (both have 3 decimal digits) in the
versions with and without personalization (‘W/o’—without, ‘W/’—with, ‘pers’—personalization, ‘Hu.’— hurry actions, ‘He.’— hesitant actions, ‘co.’—confident
actions, “sp.”—special actions).

Micro Task and
Behavior/Version

Counting Classification Transcription Sentiment

Hu. He. Co. Sp. Hu. He. Co. Sp. Hu. He. Co. Sp. Hu. He. Co. Sp.

W/pers. (clicks) 0.014 ±
0.120

0.797 ±
2.090

1.681 ±
2.110

0.000 ±
0.000

0.028 ±
0.168

0.956 ±
3.465

0.637 ±
1.042

0.000 ±
0.000

0.869 ±
0.339

0.057 ±
0.235

0.188 ±
0.393

0.000 ±
0.000

0.898 ±
0.304

0.115 ±
0.403

0.405 ±
0.845

0.000 ±
0.000

W/pers. (key-
presses)

0.014 ±
0.120

0.376 ±
0.940

1.086 ±
2.605

0.231 ±
1.456

0.000 ±
0.000

0.101 ±
0.546

0.260 ±
1.024

0.086 ±
0.331

0.000 ±
0.000

0.463 ±
3.616

0.101 ±
0.425

0.275 ±
2.168

0.000 ±
0.000

0.000 ±
0.000

0.913 ±
3.716

0.362 ±
2.196

W/o pers.
(clicks)

0.000 ±
0.000

0.985 ±
3.21

0.892 ±
0.886

0.000 ±
0.000

0.000 ±
0.000

3.246 ±
5.111

1.107 ±
1.985

0.000 ±
0.000

0.830 ±
0.377

1.400 ±
3.831

1.215 ±
1.231

0.000 ±
0.000

0.784 ±
0.414

0.153 ±
0.592

0.384 ±
0.896

0.000 ±
0.000

W/o pers.
(key

presses)

0.030 ±
0.174

0.800 ±
2.237

1.800 ±
3.700

0.323 ±
1.160

0.000 ±
0.000

1.769 ±
6.022

0.738 ±
4.176

0.353 ±
1.931

0.076 ±
0.268

51.938 ±
45.670

6.830 ±
8.1076

3.953 ±
5.421

0.000 ±
0.000

0.138 ±
0.788

0.892 ±
2.298

0.215 ±
1.038
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4.3. Prediction Based on Microtask Fingerprinting with a Deep Learning Model

The results obtained from the cognitive tests and the prototypical microtasks (with
or without personalization) provide us various insights regarding the optimization of
microtask assignment. In addition, we introduced the usage of microtask fingerprinting
through the identification of crowd workers’ behavior during the interaction with the UI,
in order to complement the administration of the cognitive tests in a crowdsourcing setting.
The validation of the latter relied on the application of a DL model based on the results
obtained from the study (i.e., cognitive tests and prototypical microtasks with at least four
main variables: accuracy, duration, click count, and key presses). We evaluated the perfor-
mance of several deep learning (DL) models with a varyied number of layers in predicting
microtask accuracy. Our results showed that the models with many layers were prone
to overfitting, performing well on the training dataset but failing to generalize to unseen
data. Meanwhile, models with fewer layers were unable to achieve satisfactory results,
given the complexity of the input/output mapping. As we did not have a predetermined
number of layers that was deemed appropriate, we employed a trial-and-error approach
until we found a configuration of layers that yielded the optimal performance. In the end,
the number of layers used in the model was determined by the need to balance accuracy
and generalization, rather than using a pre-determined value.

As an example, one DL model used in our study had a sequential architecture with
dense layers and ReLU and TanH activation functions. The model had 105 input dimensions
and the layers with 256, 128, 64, 32, 16, and 8 neurons. We compiled the model using the
mean squared error loss function and Adam optimizer. After a number of iterations, the DL
model was evaluated on approximately 2000 rows of data from 134 unique crowd workers.
Results were produced, so we used less average values and obtained more raw indicators
(e.g., the crowd worker had to perform 5 ‘pointing’ cognitive trials and 3 ‘transcription’
microtasks; we only had one row of data from the total averages but if we unfolded the
data from the 5 rows of cognitive trials using the 3 rows of microtasks performed, a total of
15 rows of data from a unique crowd worker could be obtained).

After the design and compilation, our dataset was split into 70% for training and
30% for testing, as we did not use a separate validation set, due to having a small dataset.
We avoided overfitting by utilizing techniques such as early stopping and monitoring of
training loss. Although we did not use a validation set in this study, cross-validation should
be incorporated in future works, to further evaluate the performance of our models, in
case the dataset does not grow. Although our dataset was small and the data complex, we
considered our results to be positive. However, it is worth noting that the small size of our
dataset may have impacted the generalizability of our model’s performance.

Our model was trained for 700 epochs, with a batch size of 20. The accuracy of our
model was evaluated on the test dataset, achieving 95% when executing the model on the
entire dataset instead of a single cognitive test with a single microtask (where some authors
found a good relationship [32,33]). To calculate the accuracy, we generated predictions
for the test data and then scaled them back to their original price scales. We used the
absolute percent error to quantify the deviation between the predicted and actual values,
with a perfect prediction being an exact match. The need to apply a holistic approach when
dealing with this dataset was related to the focus of the crowd worker, i.e., when observing
all cognitive tests, a crowd worker can be focused on each microtask and spend more time
on it, as also corroborated by Paulino and colleagues [39].

Deep learning neural networks are likely to quickly overfit a training dataset with
few examples, which occurred in our case. Ensembles of neural networks with different
model configurations are known to reduce overfitting but require additional computational
expense for training and maintaining multiple models. A single model can be used to
simulate cases where many different network architectures are involved, by randomly
dropping out nodes during training. This is called dropout and offers a computationally
very cheap regularization method for reducing overfitting and improving generalization.
We introduced dropout layers between every dense layer with a rate of 0.15, with a float
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number between 0 and 1 representing the fraction of the input units to drop. The activation
functions used were TanH for the input layer and ReLu for the other layers. As Figure 4
depicts, the model was then compiled using the mean_squared_error as the loss function
and Adam as the optimizer. The loss function is a measure of how well the prediction
model performs in terms of being able to predict the expected value. The optimizer is
an algorithm used to change the attributes of a neural network, such as the weights and
learning rate, to reduce losses.
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5. Discussion
5.1. RQ1: How Can the Administration of Cognitive Ability Tests, Specifically in the Evaluation of
Executive Functions, Be Used to Allocate Crowd Workers to Microtasks with or
without Personalization?

The study presented in this article was basically divided into two parts: the cognitive
ability tests adapted for a crowdsourcing setting, and the prototypical microtasks whose
design was presented to the crowd worker with or without personalization. Cognitive
tests were distributed equally to the crowd workers who performed both versions of the
prototypical microtasks. As expected, the cognitive tests had a similar distribution in both
groups of crowd workers. Although the results in both groups were expected to be similar
for the cognitive tests, the same was not expected to happen for the prototypical microtasks,
due to the personalization level of the UI. Accuracy was the variable that served as a basis
to determine the cognitive score and the success of the microtasks performed by the crowd
workers. The order of higher to lower accuracy obtained in all microtasks was set as follows:
the version with personalization and higher cognition score, version with personalization
and lower cognition score, version without personalization and higher cognitive score,
and version without personalization and lower cognitive score. This hierarchy of accuracy
and cognitive score in the different versions could be used to match each crowd worker to
the most suitable level of personalization. In this study, the version with personalization
contained easier tasks. Nevertheless, from the requester’s perspective, the data quality
could be more beneficial if the crowd worker was identified as someone who possessed
the necessary abilities to perform harder tasks (in this situation, the version without
personalization would be used). However, the crowd worker can be easily demotivated
if they have a lot of trouble in performing the tasks without personalization [62]. The
goal of optimizing this task assignment process is to match crowd workers to microtasks
with a suitable difficulty level, so that they can perform the microtasks while staying
motivated. As a result, the requester can obtain outcomes of crowdsourcing campaigns
with the expected quality [33]. The usage of optimal task assignment appears as a feasible
option in a crowdsourcing setting [63], and the administration of cognitive abilities tests
can be applied to support the process of allocating crowd workers to microtasks, while
taking into consideration the level of difficulty.
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5.2. RQ1.1: Is a Deep Learning Model Able to Allocate Crowd Workers to Microtasks with
Different Characteristics of UI and Complexities of the Content Presented?

Our findings underscore that a DL model can be built to predict whether it is necessary
to personalize microtasks to guarantee a good task performance. In this model, the effi-
ciency data of the microtasks were included, as well as the results obtained in the cognitive
tests. Moreover, it was possible to obtain a prediction score of the microtask accuracy in the
model with a 95% accuracy. We compared the results obtained with a study that carried out
task assignment considering cognitive abilities. In particular, Hettiachchi et al. [32] built
individual relationships between cognitive tests and microtasks. In the model we built, we
applied a holistic approach and put all the cognitive tests together with each microtask,
and we still managed to obtain a good prediction result. An explanation for this positive
result may be that the focus of the crowd worker was more on microtasks and not so much
on the cognitive tests, as they could have been be more comfortable doing the prototypical
microtasks that are often found in the crowdsourcing marketplaces and thus need more
time to accomplish them, as corroborated in [39].

5.3. RQ2: Can Task Fingerprinting, Based on the Identification of Behavioral Traces, Be Used to
Allocate Crowd Workers to Microtasks with or without Personalization?

The prediction DL model included the data of microtask fingerprinting to comple-
ment the administration of the cognitive tests in a crowdsourcing setting. The DL model
included the data of the cognitive tests and the prototypical microtasks with at least four
main variables: accuracy, duration, click count, and key presses. The latter three were
the general indicators of the crowd worker behavior, specifically when interacting with
the UI to perform each microtask. The usage of this data on the DL model and the sub-
sequent positive prediction result indicated a feasible research path of studying crowd
worker behavior based on the interaction data logs that support an optimal microtask
assignment. In microtasks comprising personalization, these metrics (duration, clicks,
key presses) had similar patterns, whether considering crowd workers with low or high
cognition, only obtaining a significant difference in effectiveness (with the exception of the
sentiment analysis task). The time required for the crowd workers to carry out microtasks
is an important factor for assessing their effort and interest, taking into account that an
excessively short time may be associated with situations with a lack of interest on the part
of the crowd worker, but also be related to tasks that are easy to understand. On the other
hand, excessive durations are associated with more complicated tasks (whether in terms of
execution or even interpretation of the task content). For example, the classification and
transcription tasks with personalization required shorter execution times when compared
to the original version without any personalization. This happened mainly due to the dif-
ferences in the complexity of the two versions of personalization, where the input differed.
Taking the transcription microtask as an example, the input was changed from open-ended
to multiple-choice, with the former requiring that the crowd worker spent more time to
choose their answer. Furthermore, as was expected in microtasks without personalization,
the duration of performance in the microtasks was lower in people with higher cognition
than with low cognition, which translated into a greater effectiveness.

In terms of the number of clicks made, the personalized microtasks predominantly
featured multiple-choice answers, where the crowd worker could only select one option.
Thus, it was expected that the number of clicks would be approximately one. However,
some records displayed more than two clicks, potentially due to the latency of the crowd
worker’s internet connection. Another plausible explanation could be that crowd workers
clicked more than necessary, assuming that the system did not recognize their response.
This emphasizes the significance of cross-referencing the obtained data, such as the du-
ration of actions during the task and the number of clicks. This approach helps to better
identify crowd workers’ behavior and comprehend the contextual factors impacting task
performance. Furthermore, this data-crossing to better infer the behavior of crowd workers
has been performed with success in other crowdsourcing studies [30]. Concerning the
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prototypical microtasks, we found that the classification and transcription tasks obtained
polarized results in the versions with and without personalization. The number of clicks in
microtasks without personalization was higher in crowd workers with a higher cognitive
score, in contrast to the those with a lower cognitive score, which also affected the accuracy
of the microtasks performed. The metric of key presses was similar to the click results,
but instead the former corresponded to the interactions on the keyboard. The microtasks
involving counting, classification, and transcription showed a lower number of key presses
in the version with personalization. The most significant result was for transcription, with
the difference in the average value being in the order of 100 times. This difference was
explained (with a similar reason as regarding the duration of the microtask) by the change
of the type of input in the two versions, from open-ended (version without personalization)
to multiple-choice (version with personalization).

Responding to RQ2, it is possible to use task fingerprinting to allocate crowd workers
to different levels of difficulty in microtasks. This was verified by the relationship obtained
in this study between the identification of crowd workers’ behaviors (i.e., through metrics
of interaction with the UI, such as duration, clicks, and key presses) and the accuracy of
microtasks (i.e., measuring the success of the proposed tasks). These considerations confirm
what has been described in the scientific literature (i.e., accuracy can only be predicted
by identifying crowd workers’ behavior during the task) [26,30]. This can be particularly
useful in crowdsourcing campaigns where there is no ground-truth value to assess the
accuracy of the task at the outset, and where it is necessary to use other metrics (e.g., task
fingerprinting) to assess the quality of responses [64].

6. Conclusions

Microtask fingerprinting in crowdsourcing presents an opportunity to identify crowd
worker behaviors, which can be crucial for improving crowdsourcing campaign outcomes.
This information can also serve as a parameter in task assignments, benefiting both the
requester and crowd worker. While accuracy is the primary metric for evaluating crowd-
sourcing work quality, it may not always be feasible, particularly in open-ended campaigns
with a broad range of responses and no ground-truth values. With the identification of be-
haviors, it is possible to predict whether crowd workers are diligent in completing different
prototypical microtasks. Previous research used cognitive personalization within the scope
of task assignment, first assessing cognitive capabilities and then mapping or adapting
microtasks optimally to each crowd worker. The study presented in this article attempted
to combine both approaches through investigating the possibility of complementing cog-
nitive tests with task fingerprinting, in order to personalize microtasks. We deployed
batches of cognitive tests (based on cognitive abilities, specifically executive functions)
and prototypical microtasks in two HITs, which differed in meeting two conditions of the
between-subjects study design: microtasks without personalization (normal difficulty) and
with personalization (easy difficulty, where the inputs and/or the content was simplified).
Both HITs used the same cognitive tests, and only differed in the microtask difficulties.

The results obtained in this study allow us to state that a DL model can be built to
predict whether it is necessary to personalize microtasks to guarantee good performance.
In this model, the microtask fingerprinting data of the microtasks were included, as well
as the results obtained in the cognitive tests, and it was possible to obtain a prediction
score of the microtasks accuracy in the model with a 95% accuracy. The usage of optimal
task assignment appears to be a feasible option in a crowdsourcing setting, and the ad-
ministration of cognitive ability tests can be applied to support the process of allocating
crowd workers to microtasks with varying levels of complexity. Furthermore, it is pos-
sible to use task fingerprinting to allocate crowd workers to different levels of difficulty
in microtasks. This was verified by the relationship obtained in this study between the
identification of crowd worker behavior (i.e., through metrics of interaction with the UI,
such as duration, clicks, and key presses performed) and the accuracy of microtasks (i.e.,
measuring the success of the proposed tasks). In future work, it is intended to validate
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the main findings of this study in an on-the-fly task assignment scenario. This will allow
the real-time allocation of crowd workers based, not only on the cognitive score obtained
from the cognitive tests, but also based on the crowd workers’ behaviors while they are
performing the microtasks. While we achieved an accuracy of 95%, it is important to note
that the small dataset size may have limited the model’s performance. In future work,
we plan to address this limitation by collecting a larger dataset, to further evaluate the
model’s performance and increase the confidence in the results. Additionally, this article
could motivate other studies, to investigate if task fingerprinting could complement the
administration of cognitive ability tests for accurately evaluating the executive functions
of crowd workers. Furthermore, with the DL model developed, it would be interesting
to assess the usage of task fingerprinting to help predict the executive functions of crowd
workers, which would represent an innovative way of measuring cognitive abilities in a
crowdsourcing setting.
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