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Abstract: The increase in anthropogenic pollution raises serious concerns regarding contamination
of water bodies and aquatic species with potential implications on human health. Pharmaceutical
compounds are a type of contaminants of emerging concern that are increasingly consumed and,
thus, being frequently found in the aquatic environment. In this sense, an electrochemical sensor
based on an unmodified and untreated carbon fiber paper (CPS—carbon paper sensor) was simply
employed for the analysis of trimethoprim antibiotic in fish samples. First, the analytical conditions
were thoroughly optimized in order for the CPS to achieve maximum performance in trimethoprim
determination. Therefore, an electrolyte (0.1 M Britton–Robinson buffer) pH of 7 was selected
and for square wave voltammetry parameters, optimum values of amplitude, frequency and step
potential corresponded to 0.02 V, 50 Hz, and 0.015 V, respectively, whereas the deposition of analyte
occurred at +0.7 V for 60 s. In these optimum conditions, the obtained liner range (0.05 to 2 µM),
sensitivity (48.8 µA µM−1 cm−2), and LOD (0.065 µM) competes favorably with the commonly
used GCE-based sensors or BDD electrodes that employ nanostructuration or are more expensive.
The CPS was then applied for trimethoprim determination in fish samples after employing a solid
phase extraction procedure based on QuEChERS salts, resulting in recoveries of 105.9 ± 1.8% by the
standard addition method.

Keywords: electrochemical sensor; carbon paper; trimethoprim; electroanalysis; fish; environmental
analysis

1. Introduction

The increased unsustainability of fish resources is a reality caused by the overfish-
ing [1] that is pressured by the food demand of an ever-growing world population [2]. In
parallel, the increasing presence of pollutants from anthropogenic activities is also expected,
negatively affecting aquatic ecosystems since, globally, 80% of wastewaters are released
without any treatment [3]. Therefore, consumption of contaminated seafood is probable
due to the bioavailability properties of many pollutants, which makes the adoption of
preventive measures to improve food safety and reduce food wastes imperative.

Pharmaceutical compounds are an important class of contaminants of emerging con-
cern given the vast number of different compounds available, their wide and increasing
consumption, and their potential persistent, bioavailable, and toxic nature [4,5]. Even if
properly discharged, the wastewater treatments may not be sufficient to guarantee their
removal or degradation [6,7], which makes pharmaceutical compounds ubiquitous in the
environment, as suggested by many studies [6–12]. Antibiotics are one of the most relevant
groups of pharmaceutical compounds, and some have been found at high concentrations
in waters [11,13]. In this regard, trimethoprim is a synthetic antibiotic, and one of the
most consumed drugs [14]. The lack of information and regulation on the presence of this
compound in the environment led to its inclusion on the European Commission’s surface
water watch list [15]. Electrochemical methods, in particular voltammetry, provide ease
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of operation, high sensitivity, compatibility with miniaturization, and portability of the
equipment, which can be further improved with the use of the advanced technology of
sensors [16,17]. Therefore, sensor technology can become a very pertinent component in the
analysis of single compounds such as trimethoprim, and contaminants in general [18–20].

In this work, an electrochemical sensor was developed for quantitative analysis of
trimethoprim in fish samples. Carbon fiber paper was selected as transducing material
without any pre-treatment and modification and used as a sensor (CPS—carbon paper
sensor), being thoroughly optimized in order to achieve maximum analytical performance
in fish matrices. This type of material has been emerging as a transducer in electrochemical
sensors, due to its inherent mechanical, electrical, and electrochemical properties. In
particular, carbon paper is a highly porous material composed of randomly arranged
carbon fibers with micrometer diameter that translate to a high specific surface area and,
thus, high sensitivities. Moreover, this material is lightweight and thin, resembling paper,
which permits size and shape adjustments. These are interesting features when compared
with other commonly employed electrodes in sensor fabrication, as evidenced in a recent
review [21]. Concerning trimethoprim, some sensors have been developed based on more
traditional electrodes such as glassy carbon (GCE) [22–28] or boron-doped diamond (BDD)
electrode [29–31], but also screen-printed [32,33] and carbon paste [34] were employed
(Table 1). Considering all these sensors, none were employed in challenging solid food
samples, such as fish, which was tested for the first time in this study.

Table 1. Studies in the literature concerning trimethoprim electroanalysis.

Sensor
Configuration

Detection
Technique Linear Range (µM) Sensitivity (µA

µM−1/µA µM−1 cm−2) LOD (µM) Real Sample Reference

CP SWV 0.05–2 34.3/48.8 0.065 fish This work

GCE/TMOPPMn(III)Cl DPV 0.06–1 - 0.003 pharm. formul.
urine [22]

GCE/GO/PPy(MIP) SWV - - 0.13 urine [23]

GCE/rGO/AgNPs DPV 1–10 0.1/1.41 0.4 wastewater [24]

GCE/MWCNT/Fe3O4 DPV 0.1–0.5 162/- 0.021
pharm. formul.

Water
urine

[25]

GCE/CuPh-CB SWAdASV 0.4–1.1
1.5–6 5.82/30 0.67 river water [26]

GCE/MoO2 DPV 2–20 0.157/2.22 0.127 - [27]

GCE/GR-ZnO DPV 1–10
10–180 0.412/5.831 0.3

lake water
tap water

urine
serum

[28]

BDD Amperometry 0.0861–1.38 - 0.052 bovine milk [29]

BDD DPV 0.7–7 0.67/- 0.014 pharm. formul. [30]

BDD BIA–MPA 6.9–140 0.119/0.92 0.52 pharm. formul. [31]

CPE (paraffin +
MWCNT-SbNPs) DPV 0.1–0.7 0.37/3 0.031 water [35]

CPE/CTAB CV 0.2–1 - 0.15 - [34]

SPCE/rGNR DPV 1–10 0.0303/0.433 0.04 tap water [32]

SPE/MWCNT-PB DPV 0.1–10 0.108/- 0.06 urine [33]

HMDE SW-AdCSV
LS-AdCSV 0.1–1 0.45/-

0.074/-
0.01

0.008 pharm. formul. [36]

ISE (MIP) Potentiometry 1–1000 - 0.3 aquaculture water [37]

AgNPs—silver nanoparticles; BDD—boron-doped diamond; CB—carbon black; CPE—carbon paste electrode;
CTAB—cetyltrimethylammonium bromide; CuPh—copper (II) phthalocyanine; GCE—glassy carbon electrode;
GO—graphene oxide; HMDE—hanging mercury drop electrode; ISE—ion-selective electrode; MIP—molecularly
imprinted polymer; MWCNT—multi-walled carbon nanotubes; PB—Prussian blue; rGNR—reduced graphene
nanoribbons; rGO—reduced graphene oxide; SbNPs—antimony nanoparticles; SPCE—screen-printed carbon elec-
trode; SPE—screen-printed electrode; TMOPPMn(III)Cl—5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinato]Mn
(III)chloride.
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2. Materials and Methods
2.1. Materials, Reagents, and Solutions

All analytical grade chemicals were obtained and used without further purification.
Reagents such as acetaminophen, acetylsalicylic acid, sodium nitrate, trimethoprim,

amoxicillin, sulfamethoxazole, and dimethyl sulfoxide were acquired from Sigma-Aldrich
(Steinhein, Germany), while L-glutamic acid, calcium carbonate, sulfuric acid (97%), and
hydrochloric acid (37%) were acquired from Fluka (Buchs, Switzerland). D(+)-glucose
anhydrous was acquired from Scharlab (Sentmenat, Spain), whereas L(+)-ascorbic acid,
D(+)-lactose monohydrate, and methanol were acquired from Riedel-de-Haën (Seelze,
Germany). Ortho-phosphoric acid and sodium sulphate were obtained from Merck (Stein-
hein, Germany) and ortho-boric acid and potassium chloride (99.8%) from VWR (Leuven,
Belgium). Glacial acetic acid, ethanol absolute anhydrous, and acetonitrile were purchased
from Carlo Erba Reagents (Val-de-Reuil, France), whereas sodium hydroxide was obtained
from Labkem (Barcelona, Spain).

Carbon paper (Toray TGP-H-60) was purchased from Alfa Aesar (Kandel, Germany).
QuECHERS Classic (4 g magnesium sulfate and 1 g sodium chloride) was purchased from
Teknokroma (Barcelona, Spain), whereas the dispersive SPE kit for drug residues in meat
(150 mg C18 and 900 mg magnesium sulfate) was obtained from Agilent (Santa Clara,
CA, USA).

Aqueous solutions were prepared using ultrapure water obtained from a Miliporewa-
ter purification system (18 MΩ, Milli-Q, Millipore, Molsheim, France). Britton–Robinson
buffer (BRB) with 0.1 M concentration was used as the main electrolyte solution and
prepared using sodium hydroxide, acetic acid glacial, phosphoric acid, boric acid, and
potassium chloride. The pH was adjusted using 1 M NaOH or HCl. Stock solution of
trimethoprim were prepared in methanol and then diluted with BRB when necessary.

2.2. Instrumentation and Electrochemical Measurements

All electrochemical experiments were performed with a Metrohm potentiostat, model
Autolab PGSTAT12, controlled by GPES v4.9 software (Herisau, Switzerland). The elec-
trochemical characterization was carried on by cyclic voltammetry (CV) and square wave
voltammetry (SWV) techniques in a three-electrode cell format composed of a Ag/AgCl
(KCl, 3 M) reference electrode, a platinum counter electrode, and the CPS as working
electrode (Figure 1). The CPS was simply assembled by cutting a rectangular piece with
dimensions of about 2.5 × 0.7 cm2 (0.19 mm thickness) and covering one of the ends with
aluminum foil for better connection with a crocodile clip. It was employed without any
pre-treatment and modification of the surface. The current densities were obtained by
dividing the peak current by the geometric area (about 0.63 cm2) of the CPS immersed in
the electrolyte. Morphological characterizations of the untreated and pre-treated CPS were
previously performed [38].
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A series of optimizations of the analytical conditions were performed using SWV,
namely, electrolyte pH (from 3 to 12), the technique parameters (amplitude, frequency,
and step potential), and trimethoprim deposition (deposition time and potential). The
calibrations curves were performed by SWV in the optimized conditions, with the elec-
trolyte solution being stirred 15 s after each addition of trimethoprim stock solution for
homogenization.

2.3. Real Sample Preparation and Analysis

The validation of the sensor was performed in fish samples of Merluccius capensis
bought in a local supermarket (Porto, Portugal). About 1 g of edible meat (previously
spiked with trimethoprim since no signal was obtained without fortification) was weighted
(Thermo Fisher Scientific, model FPRS223, Leicestershire, UK) into a 50 mL falcon tube
and then 5 mL of water and 5 mL of acetonitrile were added with the mixture being
vortexed (VWR, VV3, UK) for 1 min. The QuEChERS salts (4 g magnesium sulfate and 1 g
sodium chloride) were then added to the falcon tube and thoroughly shaken by hand for
1 min. Next, the mixture was centrifuged (Thermo Fisher Scientific Heraeus Megafuge 16R,
Kandel, Germany) at 4000 rpm, 4 ◦C for 5 min, with the supernatant being collected and
transferred to the dispersive solid-phase extraction (SPE) falcon tube. After being vortexed
for 1 min, the mixture was again centrifuged at 13,000 rpm, 4 ◦C for 3 min. The final
supernatant was collected and evaporated under a nitrogen (99.99%) stream. The residue
was then redissolved in 1 mL of 30:70 acetonitrile:buffer (v/v), being finally analyzed
through the standard addition method.

3. Results and Discussion
3.1. Electrochemical Behavior of Trimethoprim

Trimethoprim is an antibiotic drug that contains amino and oxygen functionalities in
its chemical structure, being this way susceptible to electrochemical reaction processes. Pre-
liminary experimental studies were performed in order to understand the electrochemical
behaviour of trimethoprim drug using an unmodified CPS. A simple CV measurement
showed a peak at around +1.2 V, indicating oxidation of the drug (Figure 2) with irreversible
nature, in accordance with other studies [25,35,39].
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Two different, but sensitive techniques were equated and compared (Figure S1) for
this sensor, namely, differential pulse voltammetry (DPV) and square wave voltammetry
(SWV). Both techniques seem suitable for the determination of trimethoprim, though
for a low concentration corresponding to 0.1 µM, the SWV peak seemed more resolved
compared with DPV, thus, being selected for subsequent studies. For higher concentrations,
a second peak at more positive potentials can be observed despite being more faded than
the first peak (Figure S1a,b). These two oxidation peaks, separated by about 0.1 V are likely
attributed to the oxidation of both amino groups contained in the trimethoprim structure as
suggested by Goyal and Kumar [39]. The peak at +1.1 V has more expression and, thus, is
the one considered in this study. The type of electron transfer process between the CPS and
trimethoprim was assessed by CV at different scan rates (50 to 2000 mV s−1), as depicted
in Figure 3a. The plot of the logarithm of peak current as a function of the logarithm of
scan rate dictates a linear relationship with a slope of 0.816 (n = 3) (Figure 3b). This value
is between 0.5 and 1, which indicates a mixed electron transfer mechanism controlled by
both diffusion and adsorption [40]. Other studies in the literature using different electrodes
demonstrate that the process of trimethoprim oxidation can occur either controlled by
diffusion [34], adsorption [22,28], or a combination of these two processes [25,26]. The
number of electrons (z) involved in the oxidation reaction was assessed by applying the
Laviron equation (Equation (1)) [41]:

Epa = E0 +

(
2.303RT
(1− α)zF

)
log

(
RTk0

(1− α)zF

)
+

(
2.303RT
(1− α)zF

)
log v (1)Sensors 2023, 23, x FOR PEER REVIEW 6 of 15 
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Figure 3. Scan rate study of 10 µM trimethoprim in 0.1 M Britton–Robinson buffer pH 7 on the
carbon paper sensor. (a) Cyclic voltammograms at various scan rates (from 50 to 2000 mV s−1).
(b) Logarithm of peak current as a function of logarithm of scan rate. (c) Peak potential as a function
of the logarithm of scan rate.

Plotting the peak potential at the different scan rates versus the logarithm of the scan
rate, linearity is observed (Figure 3c), the slope being equal to 2.303RT/(1 − α)zF. Taking in
consideration a transfer coefficient (α) of about 0.5 for this molecule [22,42], the calculated
number of electrons, z, corresponded to 2.
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3.2. Optimization of Analytical Conditions

The analytical conditions were optimized in order to enhance trimethoprim signal
by the CPS. Starting with pH optimization, its effect on the oxidation peak height was
measured by varying the electrolyte (0.1 M BRB) pH from 3 to 12 (Figure 4a). In all pH
values, the SWV analysis of trimethoprim results in two oxidation peaks that are well-
separated, however, only the first one is considered for analytical purposes based on the
significantly higher peak current, as mentioned before. This way, a maximum peak around
pH 7 is clearly seen in Figure 4b, being selected as the optimum value. This optimum
pH is near the pKa (6.6) [37] of trimethoprim, which means that it exists in ionized and
nonionized forms in similar proportions in the solution [43]. This value is in line with
the one found by Guaraldo et al. [26], though other studies identify optimum values of
3 [24,34,35] to 5 [22]. The plot between Epa and pH (Figure 4c) presents a shift of peak
potential towards more negative values with increasing pH, suggesting the involvement of
protons [39] in accordance with Equation (2) [44,45]:

Ep = E0′ −
(

0.0592m
z

)
pH (2)

where m and z represent the number of mol of protons and electrons, respectively. The
observed linear relationship presents a slope of 35.3 mV/pH, which indicates a different
number of electrons and protons involved in the oxidation rection. Taking in consideration
a two-electron transfer process, determined in Equation (1), the number of calculated
protons corresponds to 1.2 (≈1), accordingly to Equation (2). Based on a study of the
literature, the possible oxidation reaction of trimethoprim is depicted in Figure 5 [42].
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Figure 5. Possible two-electron oxidation mechanism of trimethoprim. (Reproduced from Patil
et al. [42], with permission from MDPI, 2022).

The SWV technique parameters may also significantly influence the analytical signal.
This way, amplitude, step potential, and frequency were each individually optimized, while
keeping the other parameters constant. When varying the amplitude from 0.002 to 0.16 V,
it is possible to observe in Figure 6a that peak height raises sharply until 0.02 V, which then
decreases and stabilizes. Therefore, an amplitude value of 0.02 V was selected as optimum
and used in the following optimizations. Next, frequency was varied from 10 to 200 Hz
(Figure 6b). Although peak height increases almost linearly, an unreproducible behaviour
is noted for high values of frequency. The step potential varies from 0.001 to 0.02 V, which
translates to a scan rate range between 100 and 2000 mV s−1 (Figure 6c). The peak height of
trimethoprim constantly increases; however, here too, an unreproducible peak shape and
significant noise with increasing scan rate is observed. To achieve a compromise between
reproducibility and good signal, a frequency of 50 Hz and step potential of 0.015 V are
chosen, which corresponds to a scan rate of 750 mV s−1.

Finally, electrodeposition of the analyte at the electrode surface was also assessed.
Deposition potential was first optimized by applying different potentials for 60 s (Figure 7a).
The peak height slightly increases for an applied potential of +0.7 V. Applying deposition
potentials near the potential peak leads to the opposite effect, since it starts to oxidize
trimethoprim before the start of the SWV measurement, which consequently lowers the
obtained signal, as expected. The deposition times corresponding to 30, 90, 120, and
180 s were then tested, as depicted in Figure 7b, with 60 s being chosen as the optimum
deposition time.



Sensors 2023, 23, 3560 8 of 14

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15 
 

 

compromise between reproducibility and good signal, a frequency of 50 Hz and step 
potential of 0.015 V are chosen, which corresponds to a scan rate of 750 mV s−1. 

 
Figure 6. Optimization of SWV parameters for 10 µM trimethoprim in 0.1 M Britton–Robinson 
buffer pH 7. (a) Optimization of amplitude from 0.002 to 0.16 V. Inset: Peak height as a function of 
amplitude. (b) Optimization of frequency from 10 to 200 Hz. Inset: Peak height as a function of 
frequency. (c) Optimization of step potential from 0.001 to 0.02 V. Inset: Peak height as a function of 
step potential. 

Finally, electrodeposition of the analyte at the electrode surface was also assessed. 
Deposition potential was first optimized by applying different potentials for 60 s (Figure 
7a). The peak height slightly increases for an applied potential of +0.7 V. Applying 
deposition potentials near the potential peak leads to the opposite effect, since it starts to 
oxidize trimethoprim before the start of the SWV measurement, which consequently 
lowers the obtained signal, as expected. The deposition times corresponding to 30, 90, 120, 
and 180 s were then tested, as depicted in Figure 7b, with 60 s being chosen as the optimum 
deposition time. 

0

20

40

60

80

100

120

140

160

180

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

j(
µA

 cm
−2

)

E (V vs Ag/AgCl)

0

100

200

300

400

500

600

700

800

900

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

j(
µA

 cm
−2

)

E (V vs Ag/gCl)

0

100

200

300

400

500

0 50 100 150 200

Pe
ak

 h
ei

gh
t, 

j(
uA

 cm
−2

)

Frequency (Hz)

0

100

200

300

400

500

600

700

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

j(
µA

 cm
−2

)

E (V vs Ag/AgCl)

0

50

100

150

200

250

0 0.005 0.01 0.015 0.02

Pe
ak

 h
ei

gh
t, 

j(
µA

 cm
−2

)

Step potential (V)

0.02 V

0.001 V

(a) (b)

(c)

200 Hz

10 Hz

0.16 V

0.002 V

0
5

10
15
20
25
30
35
40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Pe
ak

 h
ei

gh
t, 

j(
µA

 cm
−2

)

Amplitude (V)
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3.3. Analysis of Trimethoprim

The analysis of trimethoprim was performed by SWV in the optimum conditions
that were previously determined (BR buffer at pH 7; SWV parameters: 0.02 V amplitude,
50 Hz frequency, and 0.015 V step potential; deposition potential of +0.7 V and deposition
time of 60 s). The calibration data (Figure 8) were obtained through consecutive standard
additions of trimethoprim to the electrolyte solution. The wider calibration curve depicted
in Figure 8b indicates a saturation and stabilization of peak height of trimethoprim for
concentrations above 2 µM. Therefore, a good linearity is obtained between concentrations
of 0.05 and 2 µM (Figure 8c). In this range, the mean sensitivity, which is retrieved from
the slope of each calibration curve, corresponds to 48.8 ± 3.2 µA µM−1 cm−2 (n = 3 inde-
pendent curves). The calculated limit of detection (LOD), based on the standard deviation
of the response of the blank (LOD = 3.3σblank/slope), corresponds to 0.065 µM. These are
interesting analytical results considering an unmodified and unconventional transducing
material. The CPS shows better values of LOD, and lower limit linearity and sensitivity
than most studies in the literature presented in Table 1, being, therefore, a potential alter-
native to more conventional or expensive electrodes such as the GCE or BDD, and also
to disposable screen-printed electrodes (SPE). Considering GCE-based sensors, all have
employed some level of nanostructuration in order to achieve sub-micromolar LODs in
trimethoprim determination, which, consequently, increases the complexity, cost, and, pos-
sibly, the environmental burden of the proposals. Despite being nanostructured, practically
all these sensors present higher values for the lower limit of linearity, as well as lower
sensitivities (with the exception of the sensor from Bhengo et al. [25] who achieved about
five times higher sensitivity). Additionally, GCE transducers require mechanical and/or
electrochemical cleaning processes to obtain reproducible results, increasing the time of
analysis. Results in the same order of magnitude in terms of LOD as the one reached in
this study were previously obtained by BDD electrodes [29,30] that were also used without
modification with any (nano)material. However, in these sensors, the lower limit linearity
were 1.7 [29] and 14 times [30] higher than the one developed in this study, also presenting
a fraction of the sensitivity value (0.67 µA µM−1) [30] compared with the CPS. In addition,
BDD is an expensive electrode material that also requires an electrochemical pre-treatment
for its proper activation. Other interesting proposals using screen-printed electrodes (SPE)
or carbon paste electrodes (CPE) obtained LODs in the same range, although with higher
values for lower limit linearity (2 [33,35] and 20 times [32] higher) and lower sensitivity
(0.03 [32,33] to 0.37 µA µM−1 [35]). Similarly, a hanging mercury drop electrode obtained
an excellent LOD of 0.008 µM [36], although these type of electrodes are not commonly
used due to the associated environmental problems of mercury. In this sense, the simplicity
of the CPS predicts much lower processing costs and environmental footprints compared
with the existing modified sensors (Table 1). The high sensitivity achieved by CPS can be
explained by the specific nature of this transducer. It is composed of randomly arranged
and tortuous carbon fibers with micrometer diameter, presenting high porosity and a
format similar to paper [21,46].

The repeatability and reproducibility features of the sensor were also evaluated. In
the first case, the same sensor was used to measure the same concentration of trimetho-
prim (0.5 µM) seven times, obtaining a relative standard deviation (RSD) of 6% for peak
height (Figure S2a,b). As for the reproducibility, five different CPS applied for the same
concentration of trimethoprim (0.5 µM) resulted in a RSD of about 9% for the peak height
(Figure S2c,d). The reusability of CPS was not evaluated here, being discarded after a mea-
surement, since we noted a loss in performance when reused in following days. Therefore,
its assessment, as well as forms of electrode regeneration, may be pertinent future studies,
accounting also for the sustainability of the CPS in the analysis of this type of analyte.
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Figure 8. Assays for determination of the linearity range of trimethoprim in the optimum conditions
(pH 7; SWV parameters: 0.02 V amplitude, 50 Hz frequency, and 0.015 V step potential; deposition of
+0.7 V and deposition time of 60 s). (a) SWV curves up to 10 µM. (b) Peak height for all concentrations
range tested (up to 10 µM). (c) Linear calibration range.

Several compounds were tested as potential interferents in the oxidation of trimethoprim
(Table 2), with the interference level being expressed as the current ratio of trimethoprim peak in
the absence and presence of other compounds (%current ratio = itrimethoprim + interferent/itrimethoprim
× 100). Four different and widely used pharmaceutical drugs (sulfamethoxazole, ac-
etaminophen, amoxicillin, and aspirin) were tested individually and then in a mixture.
Sulfamethoxazole, which is an antibiotic commonly prescribed with trimethoprim, shows
the most significant interference, with the trimethoprim peak lowering about 14% in the
presence of this drug. Other widely available compounds such as ascorbic acid, glutamic
acid, glucose, lactose, sodium sulphate, and calcium carbonate were considered as interfer-
ents, though their mixture only exerted a 3% difference in trimethoprim signal (Figure S3).

Table 2. Selectivity assessment of the carbon paper sensor in the analysis of trimethoprim.

Mixture Concentration
Ratio

Interference
Level (%)

Trimethoprim + sulfamethoxazole 1:1 86.0
Trimethoprim + acetaminophen 1:1 99.4
Trimethoprim + amoxicillin 1:1 106.9
Trimethoprim + aspirin 1:1 103.6
Trimethoprim + ascorbic acid + glutamic acid + glucose
+ lactose + sodium sulphate + calcium carbonate 1:100 97.3

3.4. Real Sample

The CPS was finally validated in fish samples, since aquatic species are susceptible to
the bioavailability of pharmaceutical compounds released into aquatic ecosystems. The
complexity of the sample requires the employment of a solid-phase extraction procedure
using QuEChERS salts and dispersive kits for partitioning and cleaning of the sample from
interfering compounds such as vitamins, fat, proteins, etc. Even applying this extraction
procedure, the resulting signals for spiked samples were lower when compared with the
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analysis in buffered conditions at the same concentration level (Figure S4a), and so the de-
termination of trimethoprim was performed by the standard addition method (Figure S4b).
Analysing the fish extract directly, no trimethoprim was detected. Considering a spiking
level of 0.25 µM, for three different independent analyses, the obtained recoveries vary
from 103.3 to 107.4%, with RSD of 1.8% (Table 3). Through observation of Table 1, no other
study has considered such complex samples in the validation of the sensors.

Table 3. Recovery assays in fish samples.

Extract Spiking (µM) Found (µM) Recovery (%)

1 0 n.d. -
2 0.25 0.258 103.3
3 0.25 0.269 107.4
4 0.25 0.267 106.9

Mean 0.269 105.9
RSD 0.008 1.8

n.d.—not determined.

4. Conclusions

In this work, an unmodified and untreated carbon paper sensor shows good analytical
results towards the determination of a potentially environmental hazardous compound,
the antibiotic trimethoprim. The analytical conditions in terms of electrolyte pH, SWV
parameters, and analyte electrodeposition were thoroughly optimized, with the objective
to maximize the electrochemical signal and the selectivity. Ultimately, the sensor was
validated in fish samples, obtaining acceptable recoveries considering the complexity of the
sample nature. For instance, electrochemical sensors developed and applied to complex
samples of, e.g., meat are scarce in the literature, and no specific study for trimethoprim
was found. With the increase in world pollution, we can predict a contamination increase in
water bodies and, consequently, aquatic species, undermining both resource sustainability
and food security. Thus, a compromise of the scientific community in this field would be
beneficial to create new or better determination and extraction procedures that would lead
to more efficient or simple analysis for this type of sample. Additionally, the simplicity
offered by the CPS due to unnecessary surface modification enables minimization of the
environmental footprint of the analysis. This way, carbon paper stands as an efficient, low
cost, and greener option than the more traditional electrodes, being, thus, an interesting
and promising analytical tool for in situ environmental applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s23073560/s1, Figure S1: Comparison between SWV and DPV detection
techniques. (a) DPV of 10 µM trimethoprim. (b) DPV of 0.1 µM trimethoprim. (c) SWV of 10 µM
trimethoprim. (d) SWV of 0.1 µM trimethoprim; Figure S2: Repeatability and reproducibility of CPS
sensor for 0.1 µM trimethoprim in optimized conditions. (a) Seven different SWV measurements using
the same sensor to assess repeatability. (b) Comparison between peak height of the 7 measurements.
(c) SWV measurements of 5 different CPS to assess reproducibility. (d) Comparison between peak
height of the 5 different CPS; Figure S3: Selectivity studies performed by SWV for a trimethoprim
(yellow line) concentration of 5 µM in optimized analytical conditions and for trimethoprim mixed
with different compounds (ascorbic acid, glutamic acid, glucose, lactose, sodium sulphate and calcium
carbonate) in a 1:500 concentration ratio (blue line); Figure S4: Example of the analysis of fish extract.
(a) SWV comparing fish extract spiked with 0.25 µM of trimethoprim (full line) with 0.25 µM of
trimethoprim in electrolyte solution (trace line). (b) Representative standard addition plot of the
analysis of one extract spiked with 0.25 µM of trimethoprim.
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