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Abstract: In this paper, a 38 GHz 4-port multiple-input multiple-output (MIMO) antenna with
considerable isolation and gain enhancement for 5G applications is introduced. The suggested
antenna element is a monopole antenna composed of a circular patch with a rectangular slot etched
from it and a partial ground plane is used to extend the desired frequency to operate from 36.6 GHz
to 39.5 GHz with a center frequency of 38 GHz. The high isolation is achieved by arranging the four
elements orthogonally and adding four stubs to reduce mutual coupling between elements at the
desired frequency bands. The gain improvement is also introduced by placing a frequency selective
structure (FSS) which is designed at the same frequency bands of the antenna under the suggested
MIMO antenna to act as a reflector. The proposed four-element MIMO with the FSS prototype is
built and tested in order to confirm the simulated results. The suggested antenna operated from
37.2 GHz to 39.2 GHz with an isolation of less than 25 dB across the obtained frequency range. The
peak gain of the antenna is enhanced from 5.5 dBi to around 10 dBi by utilizing the FSS structure;
furthermore, the back radiation is enhanced. The MIMO performance is validated by extracting its
parameters and comparing with the simulated results. The results extracted from the simulation
and the measurement show satisfactory matching along with the target band, indicating that the
proposed structure could be used for 5G communications.

Keywords: MIMO antenna; MIMO performance; high gain; 5G wireless communications; FSS structure

1. Introduction

The fifth-generation (5G) communications are distinguished by three distinct char-
acteristics: universal connectivity, extremely low latency, and extraordinarily high data
transmission rates [1,2]. This new fifth-generation (5G) communication network, with
high-capacity and high-rate data transmissions, allows 5G to be integrated with the internet
of things (IoT) technology [3,4]. Because of their large bandwidth, the millimeter-wave
(mm-Wave) bands corresponding to frequencies ranging from 30 GHz to 300 GHz have
received a lot of attention. When compared to existing wireless technologies, mm-Wave
communications have various advantages: extremely wide bandwidths, larger spectrum
resources, and small element sizes [5,6]. The Federal Communications Commission (FCC)
makes mm-wave spectrum operation above 24 GHz available for 5G wireless in four bands:
24.75–25.25 GHz, 37.6–38.6 GHz, 47.2–48.2 GHz, and 50.4–51.4 GHz [7].

Antenna design is one of the most complicated issues for future 5G cellular connec-
tivity. Various experts have been working on 5G antennas that resonate at a frequency of
38 GHz [8–13]. In [11], a four-element MIMO antenna resonates at 38 GHz with a peak gain
of 7.6 dBi, and an isolation greater than 20 dB is introduced. In [12], a unique single layer
for a 5G (MIMO) antenna with isolation greater than 20 dB and a peak gain of 7.7 dBi is
presented. A compact design of a 4 × 4 massive MIMO antenna that resonates at 38.9 GHz
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with a defective ground structure enhances isolation between segments is proposed in [13].
Thus, by presenting a MIMO system with considerable isolation between antenna ports,
the total system performance can be enhanced in terms of larger data rate and capacity, and
lower multipath effect [14–17].

Gain enhancement can be accomplished by utilizing several techniques such as em-
ploying array configuration [18–20], an artificial magnetic conductor (AMC) [21–23], and
an appropriately constructed FSS reflector to create an in-phase reflection throughout the
full bandwidth [24–29]. In [18], a compact 1 × 4 broadband dual-polarized (DP) array is
presented with end-fire radiation and with enhanced gain from 4 dBi to 7.1 dBi. In [19],
A novel dense dielectric (DD) patch array antenna operating at 28 GHz is presented to
improve gain by more than 16 dBi. In [20], broadband printed dipole antenna and arrays
for (5G) wireless cellular communication networks are presented, with gain enhancement
from 4.5 dBi to 12 dBi using an 8-element array.

A feasible configuration of a slotted bowtie antenna with an AMC structure is intro-
duced in [21]. In [22], a high-gain and wideband MIMO antenna that resonates at 28 GHz
is introduced with an AMC array to increase the antenna gain to 10 dBi. In [24], the use of
a 2D transmission FSS structure to improve the gain to 10.3 dB is discussed. In [25], a novel
design of a double dielectric resonator antenna (DRA) with a gain enhancement of 3.16 dBi
is achieved by using FSS. In [26], four ports circular polarization (CP) antenna are proposed
for a 30 GHz MIMO system with an FSS superstrate to enhance the gain by around 1.5 dBi.

In this paper, a 38 GHz MIMO antenna composed of highly isolated four elements
with an FSS structure is designed and simulated using HFSS for 5G applications. To
achieve the anticipated 5G frequency ranges, the circular patch is cut by a rectangular
slot. Furthermore, to accomplish the high isolation properties of the MIMO configuration,
the four elements of the recommended antenna with a size of 25.95 × 25.95 × 0.238 mm3

are joined and positioned orthogonally with four stubs. The MIMO testing findings in
terms of impedance and radiation characteristics are extracted to investigate the desired
performance of the MIMO antenna. Moreover, the MIMO diversity parameters such as
envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL) are
also extracted. The novelty of this work is the design of a simple 4-port antenna operated
at 38 GHz applications. Second, the antenna achieved isolation between ports around more
than 25 dB, which is suitable for this application. Third, the antenna has an enhanced gain
of 10 dBi with the help of the FSS structures. Fourth, the antenna has a suitable overall size
and diversity performance which is recommended for 38 GHz applications.

2. Design Procedures of Single Monopole Antenna

The single antenna design phases are shown in Figure 1. It is simulated on a Rogers
RT 4003 substrate with a thickness h = 0.203 mm, and dielectric constant εr = 3.55, with an
overall size of L × L = 12 × 12 mm2. First, a circular patch monopole antenna is designed
with a diameter R = 4.94 mm, a partial ground plane with a length (Lg1) of 8 mm, and
a 50 Ω feedline with a width (Wf) of 0.4 mm and a length (Lf) of 7 mm is introduced
as a start point of the design. As shown in Figure 2a, the blue dashed curve (antenna 1)
resonates at a fundamental mode of 36 GHz with bandwidth extended from 34.8 GHz to
37.3 GHz. To achieve the suggested frequency at 38 GHz, antenna 2 is introduced. By
etching a rectangular slot with W1 = 2.2 mm, L1 = 2.45 mm, and L2 = 2.35 mm, Lg = 7.7 mm
is introduced to obtain a frequency range extended from 36.6 GHz to 39.6 GHz as depicted
in Figure 2a (red solid). Additionally, the effect of the ground length (Lg) on the antenna
2 performance is shown in Figure 2b. When the ground length (Lg) equals 7.5 mm, the
antenna is operated at 39.5 GHz. By increasing the Lg to 7.7 mm, the operated frequency
is shifted down to 38 GHz. Finally, by increasing it to 8 mm, the antenna is operated
at 36 GHz.
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Figure 2. The circular patch antenna results (a) S11 outcomes of the antennas (b) The effect of the
ground length (Lg).

From the design procedures above, antenna 3 is recommended for producing the
desired 38 GHz frequency bands. By using the HFSS simulator, a parametric study is
performed to obtain the optimized width (W1) of the rectangular slot as shown in Figure 3.
It is seen that W1 can affect the depth of the S11 level while the bandwidth of the antenna
was not affected. The 2D layout with the optimized dimensions is shown in Figure 4a
and the simulated S11 outcomes are displayed in Figure 4b. The simulated outcomes are
accomplished frequency bands from 36.5 GHz to 39.5 GHz with deep S11 levels of −30
around 38 GHz in the recommended band.
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3. Four-Port MIMO Antenna and Its Parametric Analysis

This section discusses the structure of a 4-port MIMO antenna and the method used
to enhance isolation between elements. As indicated in Figure 5, the MIMO antenna is
discussed in two designs with an (L × L) size of 25.95 × 25.95 m2. The single antenna unit
discussed in the previous section is copied three times and placed orthogonally to each
other as depicted in Figure 5a, and the detachment (d = 3 mm) between the four elements is
the same as depicted in Figure 5a. To enhance the isolation between ports, four stubs with
a width of Ws = 0.5 mm and a length of Ls = 12 mm are utilized as depicted in Figure 5b.
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Figures 6 and 7 depict the simulation results to compare the two designs and demon-
strate the influence of adding the four stubs on the separation between antenna elements.
As depicted in Figure 6, S11 with and without stubs shows that the two antennas operated
at approximately the same frequency bands. The return loss between antenna elements
(S21/S31/S41) is improved by around 5 dB by introducing the four stubs, especially at
38 GHz, which validates the MIMO antenna with stubs to be used instead of without stubs
in this paper.

For achieving the high performance of the four-element MIMO antenna, parametric
studies were performed. The parametric study to show the influence of changing the length
of isolation stubs (Ls) on antenna performance operates as depicted in Figures 8 and 9.
As shown in Figure 8, Ls length affects the antenna matching while the bandwidth of the
antenna is the same. However, it affected the isolation between ports as shown in Figure 9.
The isolation between ports is improved as the length of stubs (Ls) is increased from 6 to
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12 mm, as shown in Figure 9. Therefore, the optimum length of isolation stubs is 12 mm,
and its width Ws = 0.5 mm.
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Figure 10 shows the simulated surface current distribution for the 4-port MIMO
antenna with/without stubs at 38 GHz. As shown, the current distribution in the case of
the presence of the stubs has a small amount of current going to the other port compare to
without a stub, which validates the high isolation between ports as shown in Figure 10b.
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Figure 11 shows the fabricated prototype photo (Top/Back views) of the 4-port MIMO
antenna. The 4-port MIMO antenna has a total size of 25.95 × 25.95 × 0.238 mm3 and is
joined and positioned orthogonally with four stubs.

Figures 12 and 13 depict the simulated as well as the measured outcomes for the
suggested MIMO configuration that demonstrates the accepted reflection coefficient and
the transmission coefficients between ports. The simulated outcomes have a frequency
band from 36.7 GHz to 39.5 GHz, the S11 reaches−24 dB, and the coupling between antenna
elements (S21/S31/S41) is <−22 dB. On the other hand, the tested results which are extracted
using (R&S ZVA 67 VNA) are from 37 GHz to 39 GHz with S11 reaching −36.2 dB, and the
isolation between ports (S21/S31/S41) is <25 dB. There is a slight difference between the
two outcomes due to fabrication and measurement tolerances that cannot be resolved.
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Figure 14 depicts the normalized radiation pattern outcomes of the 4-port MIMO
antenna at port 1 and 38 GHz when the other three ports are connected to 50 Ω. The
antenna has a semi bidirectional radiation pattern at ϕ = 0◦ and semi omnidirectional
pattern at ϕ = 90◦. Finally, due to manufacturing and testing tolerances, there is a minor
difference between the two outcomes.
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4. FSS

This section investigates the characteristic of the FSS unit cell and studies the effect of
the cell size on the MIMO antenna performance.

a. The FSS Unit cell

As discussed in the literature review, The FSS is considered one of the techniques
utilized to improve the antenna gain. By placing the FSS array under the antenna, it can
be worked as a reflection structure to reflect the back-radiation and enhance the radiation
characteristics of the antenna. The FSS unit cell and the suggested FSS array are shown
in Figure 15. Rogers’ 5880 substrates with a 0.5 mm thickness, εr = 2.2, and a total size
of 2.82 mm × 2.82 mm are utilized in the simulation and fabrication. A copper layer of
0.035 mm in thickness with two rectangular slots is added on top of the substrate, as shown
in Figure 15a, and there is no copper layer on the back of it. The FSS unit cell S-parameters
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outcomes are illustrated in Figure 16. The outcomes show that the FSS achieves band-stop
features from 30 GHz Up to 45 GHz with an S21 response lower than −10 dB, and the
lowest level is introduced at 38 GHz. Additionally, S11 touches 0 dB which means the FSS
can be used as a reflector.
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b. Antenna attached with FSS array

To investigate the effect of the FSS cells array on the MIMO antenna performance,
such as S11 and peak gain, the suggested MIMO antenna is attached with different FSS cells
size and placed at a distance of 5 mm, as shown in Figure 17. Antenna 1, antenna 2, and
antenna 3 have 10 × 10, 14 × 14, and 18 × 18 FSS cells sizes, respectively. It is clear that by
increasing the array size, the reflection coefficient and the bandwidth are almost the same
as shown in Figure 18. However, the peak gain of the antenna is affected. When the FSS
array equals 10 × 10, 14 × 14, or 18 × 18 cells, the gain of the antenna has around 9 dBi,
10 dBi, and around 10 dBi at 38 GHz, respectively, as shown in Figure 19. It means that
when increasing the cell size, the gain is almost the same. Thus, for reducing the antenna
size, the FSS arrays with 14 × 14 cells are utilized.
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5. The Proposed Four-Port MIMO Antenna

Depending on the previous discussion to improve the suggested antenna gain, a
14 × 14 FSS array (36.2 mm× 36.2 mm) is added under the proposed MIMO. The suggested
4-port MIMO antenna with a 14 × 14 FSS cell is fabricated as shown in Figure 20. A foam
layer with εr = 1.03 of polystyrene and 5 mm thickness is added between the MIMO antenna
and the FSS cells, as shown in Figure 20c. The simulated and measured outcomes for S11
and isolation between elements (S21/S31/S41) are shown in Figures 21 and 22.
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The simulation result shows that the proposed antenna cover the band from
36.7 GHz to 39.5 GHz, with S11 reaching −21 dB, and the isolation between antenna
elements (S21/S31/S41) is <20 dB. While the tested outcomes are accomplished by frequency
bands from 37.2 GHz to 39.2 GHz, S11 reaches the maximum level of −24.4 dB at 38 GHz,
and the isolation between antenna elements (S21/S31/S41) equals 25 dB. The simulated and
measured outcomes have a good match within the operating band (38 GHz). However,
due to the fabrication and measurement tolerances, there is a difference between the two
results outcomes.

The normalized simulated radiation patterns outcomes of the 4-port MIMO antenna
at port 1 at 38 GHz with/without FSS are illustrated in Figure 23. It is seen that the FSS
cells reduced the back loop of the antenna and enhanced the gain of the antenna.
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The normalized radiation pattern outcomes of the 4-port MIMO antenna with FSS at
port 1 at 38 GHz are shown in Figure 24. By placing the FSS under the MIMO antenna,
the maximum power is concentrated in one direction, resulting in gain enhancement, and
reducing the back radiation compared to the structure without FSS. The simulated and
tested peak gain outcomes of the MIMO antenna with/without FSS at port 1 are illustrated
in Figure 25.
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Figure 25. The simulated and measured peak gain outcomes of the MIMO antenna with/without
FSS at port 1.

The measured gain and radiation patterns are extracted by the technique discussed
in [30,31]. It is seen that the antenna with FSS has simulated peak gain ranging from 8.2 dBi
to 10 dBi and measured peak gain ranging from 8 up to 10 dBi within the working band,
while it achieves simulated peak gain around 5.8 dBi and measuring peak gain ranging
from 4.5 dBi to 5.5 dBi without using the FSS structure. It can be concluded that the FSS can
increase the antenna gain by 4.5 dBi higher than the antenna gain without FSS. Figure 26
displays the simulated total efficiency and the radiation efficiency of the MIMO antenna at
port 1 with/without FSS. The radiation and total efficiencies of the suggested antenna are
around 87% and 82%, respectively.

The diversity parameters of the MIMO antenna with FSS such as ECC, DG, and CCL
are measured to determine the performance of the antenna in the MIMO system. The
ECC can be accounted for using S-parameters and radiation field patterns to quantify the
multiple port efficiency [32].
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An ECC < 0.5 is considered to be a good level for MIMO systems [33]. Figure 27a–c 
depict the ECC outcomes of the MIMO antenna with FSS at port 1 extracted from the S-
parameters, and Figure 27d displays the ECC calculated from the radiation patterns as (2). 
The ECC values between ports 1 and 2; ports 1 and 3; and ports 1 and 4 are <0.005. 
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An ECC < 0.5 is considered to be a good level for MIMO systems [33]. Figure 27a–c
depict the ECC outcomes of the MIMO antenna with FSS at port 1 extracted from the
S-parameters, and Figure 27d displays the ECC calculated from the radiation patterns as
(2). The ECC values between ports 1 and 2; ports 1 and 3; and ports 1 and 4 are <0.005.
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The DG can be calculated from ECC using Equation (3) [33].

DG = 10×
√

1− |ECC| (3)

Figure 28 illustrates the DG outcomes of the MIMO antenna with FSS at port 1. The
DG values between ports 1 and 2; between ports 1 and 3; and ports 1 and 4 are around 9.99,
with a good trend between both outcomes.
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The CCL indicates the upper constraint on data transmission rate and is studied to
show its effect on the MIMO performance. The CCL should be <0.4 bits/s/Hz [32]. The
CCL can be calculated using Equations (4) and (5) [34].

C(Loss)= −log2 det(ψR
)

(4)

ψR =

[
ρ11 ρ12
ρ21 ρ22

]
, ρii = 1−

(
|Sii|2 +

∣∣Sij
∣∣2)

and
ρij = −

(
S*

iiSij + S*
jiSij

)
, for i, j = 1 or 2

(5)

Figure 29 shows the CCL outcomes of the MIMO antenna with FSS at port 1. The CCL
values between ports 1 and 2; between ports 1 and 3; and ports 1 and 4 are <0.4 bit/s/Hz
from 37 GHz to 39 GHz.

Table 1 tabulates the suggested antenna features in comparison to other reported
designs. From Table 1, it is clear that the suggested MIMO achieved good results which
recommended it to be utilized in the 5G networks.
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Table 1. The suggested antennas vs other designs.

Ref. No of
Elements

εr/Thickness
(mm)

Frequency
[GHz]

B.W
[GHz]

Gain
(dB)/Efficiency (%)

Isolation
(dB)

Gain
Improvement

Technique
Size (mm2)

[11] 4 2.2/0.381 28/38/38 2.4 7.6/(60–85) ≥17 - 156 × 77.8

[12] 4 2.2/0.787 27–30 3 6.1/84 ≥28 - 30 × 30

[18] 4 2.92/1.027 26/28 6.3 7.1/90.7 ≥17 Array 24.1 × 7

[19] 4 2.2/5.5 28 5 12.5/71.8 - Array 47 × 41

[20] 8 2.2/0.254 32 11.5 12/93 - Array 45 × 45

[21] 1 2.2/0.8 33 7 5.5/66.5 - AMC 30 × 16

[22] 2 3.55/5 28 5.5 10/91 ≥25 AMC 47 × 47

[24] 1 2.2/14 24.5 3 10.3/79.23% - FSS 40 × 40

[25] 2 (3) (2.2)/5 28 1 8.2/93% ≥30 FSS 35 × 25

[26] 4 (6.15) (2.2)/3.5 30 5 8/- ≥20 FSS 30 × 30

This work 4 3.55/5 38 3 8.2–10/82% ≥25 FSS 36.2 × 36.2

6. Conclusions

For 5G communications, a four-element MIMO antenna with an FSS has been proposed.
The proposed MIMO antenna was intended to be operated at frequency ranges from
37.2 GHz to 39.2 GHz, with isolation greater than 25 dB at the operating band. Gain
enhancement has been achieved by employing an FSS compared to the MIMO configuration
without an FSS structure. MIMO metrics such as ECC, DG, and CCL have been calculated
from simulated and measured data to validate the diversity performance of the proposed
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antenna and to demonstrate its superior features. The simulated and measured data match
well through the operated band, implying that the proposed structure can be recommended
to be utilized in 5G communications.
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