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Abstract: For in-vehicle network communication, the controller area network (CAN) broadcasts to
all connected nodes without address validation. Therefore, it is highly vulnerable to all sorts of
attack scenarios. This research proposes a novel intrusion detection system (IDS) for CAN to identify
in-vehicle network anomalies. The statistical characteristics of attacks provide valuable information
about the inherent intrusion patterns and behaviors. We employed two real-world attack scenarios
from publicly available datasets to record a real-time response against intrusions with increased
precision for in-vehicle network environments. Our proposed IDS can exploit malicious patterns by
calculating thresholds and using the statistical properties of attacks, making attack detection more
efficient. The optimized threshold value is calculated using brute-force optimization for various
window sizes to minimize the total error. The reference values of normality require a few legitimate
data frames for effective intrusion detection. The experimental findings validate that our suggested
method can efficiently detect fuzzy, merge, and denial-of-service (DoS) attacks with low false-positive
rates. It is also demonstrated that the total error decreases with an increasing attack rate for varying
window sizes. The results indicate that our proposed IDS minimizes the misclassification rate and is
hence better suited for in-vehicle networks.

Keywords: intrusion detection; anomaly detection; DoS attack; fuzzy attack; automotive IDS; in-
vehicle networks; cyber security; controller area networks

1. Introduction

As the automotive industry is rapidly evolving to accommodate industry-driven me-
chanical and communication technologies, there is a constant need for calibrated actuators,
advanced sensors, and high-grade electronic control units (ECUs). The typical structure
of a vehicle’s domain architecture is depicted in Figure 1 and is segmented to support the
powertrain, chassis, body, and driver assistance tasks connected to many subsystems. The
complexity of such subsystems used in vehicles increases with each hardware addition [1].
To comply with industry requirements, the controller area network (CAN) bus is the classic
in-vehicle automotive network, allowing vehicles to reduce wiring complications and reap
the benefits of design simplification. Since the CAN network is primarily responsible for
real-time communication between the connected ECUs and in-vehicle automotive network,
data must accurately and reliably flow with extremely low latency [2]. Such a data-intensive
application is inherently subject to malicious attacks; therefore, the automotive-based ap-
plications of the CAN bus require cutting-edge intrusion detection systems (IDS) with high
accuracy and detection rates.

One way to protect the CAN bus communication for the in-vehicle automotive network
is by incorporating security elements such as a reliable IDS capable of detecting various
attack scenarios. Extensive research has been carried out on CAN bus IDS for in-vehicle
automotive networks [3–5]. While the effects of CAN bus vulnerabilities have necessitated
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an upgrade of security requirements for in-vehicle networks over the last decade, an
integrated IDS has proven to have significantly enhanced the security features of automotive
applications [6,7].

Figure 1. Vehicle domain architecture.

Numerous intrusion detection methodologies have been developed to prevent emerg-
ing attacks targeting in-vehicle networks, but they also have certain limitations. For in-
stance, several machine learning (ML)-based techniques have been established for anomaly
detection in the CAN network, but the initial model parameter training usually requires a
lot of computing power and expensive hardware, making them useless for the automotive
industry as a whole [8–10]. Message authentication code (MAC) protocols can secure in-
vehicle networks, but CAN-bus bandwidth limitation hinders the advancement in this area,
which also renders most cryptographic algorithms impractical [11–13]. MAC-supported
protocols also require altering the mechanisms by which the firmware operates or the way
ECUs talk to each other, making them unfavorable for CAN bus security. The potential of
parametric-based intrusion detection approaches has also been discussed in the literature.
According to [14–17], the study of frequency-based IDS and the resulting outcome is an
essential aspect of in-vehicle CAN bus security. However, frequency-based IDS that calcu-
late the inter-packet timing of CAN bus frames or learn periodicity patterns for anomaly
detection have significant drawbacks, such as a few advanced attacks that make these IDS
ineffective by gradually changing the periodicity or content of data frames. Windowing
and thresholds are used to find intrusions in CAN bus traffic. However, most IDS have
not selected the optimal values for these parameters for intrusion detection. Motivated by
this, we investigated into obtaining optimally tuned IDS parameters in order to maximize
IDS detection and address the limitations in [18–23]. We focus on a system model in which
ECUs take measurements in real-time and send the results to a service-oriented gateway
via different types of CAN buses.

In this manuscript, we present an innovative parametric method to develop CAN
network IDS, where we investigate both experimental relationships and numerical analysis
for the attack ratio, average, and standard deviation of CAN bus data. We obtained the
lowest possible error rates by optimizing the threshold values for various window sizes.
We evaluated the error rate for denial-of-service (DoS) and fuzzy attacks using a variety of
performance metrics. Fuzzy attacks introduce arbitrary dataframes into the CAN network,
generating complicated network traffic [24]. In the real world, attackers combine multiple
attacks; to circumvent this situation, we generated a merge attack by combining DoS
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and a fuzzy attack and conducted a thorough analysis. This study makes use of two
datasets obtained from real-world CAN-bus in-vehicle networks to determine whether or
not our proposed IDS is credible. Optimal threshold values are obtained using a brute-force
optimization algorithm to identify anomalies in the in-vehicle network.

To the best of our knowledge, no prior research has suggested an IDS based on statis-
tical characteristics of attacks that optimizes threshold values and uses optimal window
sizes to minimize detection error rates using a sliding window approach for the CAN-bus
in-vehicle network. Our major contributions to this manuscript are listed below:

1. A novel IDS based on the statistical characteristics of attacks is proposed to identify
CAN-bus anomalies for the in-vehicle network. The IDS is equipped with a sliding
window-based intrusion detection function.

2. A merge attack was developed by combining DoS and fuzzy attack to evaluate
proposed IDS against real-life attack scenario [25]. Experimental results demonstrate
that the suggested technique can efficiently detect fuzzy, merge and DoS attacks with
a high degree of detection accuracy.

3. Optimize threshold values are obtained using the brute-force optimization method
and variation in window size is examined thoroughly to obtain minimum misclassifi-
cation rate.

4. The proposed methodology is fine-tuned by adjusting parameters to obtain optimal
results and conducting a thorough analysis using a variety of performance metrics.

5. The credibility of the proposed IDS is tested against two real datasets, i.e., the car-
hacking dataset [26] and the survival analysis dataset [27].

The remaining sections of this manuscript are organized as follows: Section 2 sum-
marizes previous research on anomaly detection for the in-vehicle automotive network.
Section 3 discusses the precise design details of our proposed anomaly detection system,
whereas Section 4 discusses the experimental outcomes. In Section 5, we discuss the limi-
tations of our research and our future objectives. Finally, in Section 6, we summarize our
findings, and Table 1 describes the notations used throughout this study.

Table 1. List of key notations.

Notations Description

N Window size

K Total number of data frames and multiple of N

k k-th data frame for 1 ≤ k ≤ K

D D be the identifier vector

dk Identifier of the k-th data frame

Q Total number of identifiers in the data frames

i 1 ≤ i ≤ K/N

q 1 ≤ q ≤ Q

Yi Window’s frequency vector

Ii Index set of identifier with non-zero frequency

µi Average of identifiers in Yi

σi Standard deviation of identifiers in Yi

µa Average of averages
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Table 1. Cont.

Notations Description

σa Standard deviation of averages

µs Average of standard deviations

σs Standard deviation of standard deviations

Mi The number of attack frames in Wi
N

εi The attack ratio of the i-th window vector Wi
N

α Minimum value of attack ratio in Wi
N

γ1 and γ2 Threshold values

2. Related Work

This section discusses the CAN bus protocol, CAN-FD, various vulnerabilities that
affect in-vehicle CAN bus networks, the methodologies used to develop vehicular IDS, and
the practical limitations of these systems.

2.1. CAN Bus Protocol

One of the most prevalent multi-master serial communication buses, the CAN bus,
can support baud rates up to 1 Mbit/s. At first, it was intended for the automotive industry
only, but it is now being used in most industrial applications. The CAN bus is equipped
with crucial attributes such as self-diagnosis, which allows for identifying component
failures. The CAN bus mechanism has been fine-tuned to provide a robust response to
safety-critical systems when necessary. The CAN bus includes error correction capabilities
as part of its effort to ensure reliable communication between ECUs [28]. Despite these
significant advantages, it falls short of some fundamental requirements for secure data
communication between critical subsystems connected to the in-vehicle networking system.
As illustrated in Figure 2, the CAN bus inherent design lacks message authentication, and
it also does not support point-to-point data transmission between nodes.

Figure 2. CAN-bus data frame format.

All of the ECUs can take advantage of the network’s unsegmented nature to broadcast
messages and communicate directly with safety-critical subsystems, which is advanta-
geous for all of them. Because CAN bus traffic is not encrypted, it can be easily sniffed,
spoofed, modified, and replayed to inject various types of attacks, such as DoS, fuzzy,
and personification attacks [29]. These vulnerabilities necessitate the use of some robust
intrusion detection systems that can be added to complex intrusion detection systems and
perform quick initial diagnostics. The communication technology used in vehicle networks
has advanced significantly in recent years. CAN with Flexible Data Rate (CAN-FD) is
introduced to be used in the next generation of automotive systems [30]. Although the
CAN-FD supports advanced features, i.e., a communication data rate greater than 1 Mbit/s
and an increased payload size of up to 8 Mbit/s [31], security issues can still prevail in the
practical use of the CAN-FD [32].



Sensors 2023, 23, 3554 5 of 26

2.2. Methods for In-Vehicle Intrusion Detection

Attackers may acquire unauthorized control of connected vehicles by inserting ma-
licious data frames into the in-vehicle networks, most notably the CAN bus. Numerous
intrusion detection approaches have been developed to guard against CAN message
eavesdropping, and Table 2 reviews the common limitations and specific contributions of
relevant studies. According to their detection scope, intrusion detection algorithms may be
classified as fingerprint-based, parametric-based, entropy-based, or deep learning-based
(DL-based) methods.

Table 2. Summary of the related methodologies for the CAN bus.

Proposed by Attack Types IDS Features Contribution Limitation

Cho and Shin
(2016) [22]

Fabrication,
Suspension, and
Masquerade attack

Recursive least squares
(RLS) algorithm and
cumulative sum
(CUSUM) algorithm

Their IDS is
invulnerable to
attackers who use
faked timestamps

ECUs that generate
aperiodic messages are
challenging for the
algorithm to fingerprint

Cho and Shin
(2017) [33] Impersonation attacks

It performs an online
update of
voltage-based
fingerprints

ECU profiling based on
voltage parameters to
identify aperiodic
attack

Voltage profiles for
ECUs are required
during the
manufacturing stage
and are updated
through voltage profile
adjustments

Sagong et al., (2018)
[34]

Overcurrent, DoS, and
forced retransmission
attack

IRS uses fuses or circuit
breakers

IRS provide a
hardware-based system
to mitigate attacks

Hardware failure
requires manual
replacement

Li et al., (2021) [35] Masquerade attack
Least square estimation
to build fingerprint
model

Masquerade attack
detection in presence of
temperature variations
with 2.7% false alarm
rate

The detection rate of
this scheme is only
optimal with
temperature variation

Taylor et al., (2015) [14] Packet injection attack Optimum window size
is used

Inter-packet timing is
calculated using sliding
window and average
times are compared to
historical averages to
determine anomaly

Experimental data lack
non-periodic packet for
anomaly detection

Song et al., (2016) [36] Injection attacks
Entropy-based
anomaly detection
method

Lightweight IDS based
on time intervals that
detects injection attacks
faster

Unable to recognize
irregular message
sequence and reply
attacks

Müter and Asaj
(2011) [37] DoS and Spoof attack Concept of relative

entropy is used

A threshold-based
detection method that
reduces false-positives

Unable to identify
small scale attacks

Marchetti et al.,
(2016) [38] Reply and fuzzy attack

For each identifier, the
algorithm tunes the
model

Independent of
CAN-bus messages
content for anomaly
detection

This method fails for
IDs with high entropy
variations under
normal conditions.
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Table 2. Cont.

Proposed by Attack Types IDS Features Contribution Limitation

Wu et al., (2018) [39] DoS and injection
attack

Optimum window size
and threshold values
are used

Heuristic algorithm
based on simulated
annealing for detection

A fixed size sliding
window method is
implemented

Seo et al., (2018) [40] DoS, fuzzy, and
RPM/Gear attacks

Generative adversarial
net (GAN) is used for
anomaly detection

GIDS uses a
discriminator network
trained on legitimate
data to detect unknown
attacks in changing
environments

GIDS is incapable of
detecting malicious or
component-failure data

Longari et al.,
(2021) [41]

DoS, fuzzy, Replay and
Sniffing

The IDS employs LSTM
autoencoders

LSTM-autoencoder that
uses an unsupervised
learning method for
detection

Complex computation
for in-vehicle
environment

Amato et al., (2021) [42] DoS, fuzzy, and
RPM/Gear attacks

MultiLayer
perceptrons-based
detection model

Human behavior-based
intrusion detection

The lack of ensemble
learning limits the
performance of the
model

2.2.1. Fingerprint-Based Methods

Groundbreaking work by Cho et al. demonstrated that fingerprints of hardware could
be used to model the clock’s behavior [22]. The hardware generates unique fingerprint
information because of the inherent physical properties, and their IDS uses the cumulative
sum method on the fingerprint data collected to detect any possible abnormal behavior of
the in-vehicle network. The algorithm calculates a clock offset based on message periodicity,
limiting its ability to detect intrusions for aperiodic information. Later in [33], it was also
observed that a voltage-based attacker identifier scheme called Viden could be built using
voltage measurements to identify attackers. Voltage fingerprints of ECUs using transmitter
voltages to create voltage profiles. However, voltage profiles for ECUs are required during
the manufacturing stage and are updated through voltage profile adjustments for accurate
detection. Researchers in [34] observed that the extra wires needed by voltage-based
IDS might introduce various voltage-based attacks into the CAN bus. Moreover, due to
hardware failure in their IDS, fuse and circuit breakers must be manually replaced. A
similar method was used by Li et al. [35], and exploited temperature variation impact
on the voltage characteristics to obtain hardware fingerprints. They showed that the
temperature-varied voltage fingerprinting scheme solution is optimal compared to other
fingerprint-based IDS. Nevertheless, real-time signal measurement can be a difficult job in
a constrained environment and may hinder the implementation of the proposed methods.

2.2.2. Parametric-Based Method

Taylor et al. [14] detected malicious messages using a Hamming distance between
data frames and interpacket timing-based statistics features and indicated that a significant
amount of data was required to achieve a low false-positive rate. Song et al. [36] suggested
a frequency-based, lightweight IDS for the CAN bus to determine whether the vehicle
has been attacked by data injection. The system uses the time interval between CAN data
frames for anomaly detection. However, it requires more computing power to analyze the
CAN message sequence in order to improve the detection accuracy.

2.2.3. Entropy-Based Methods

Muter and Asaj demonstrated the idea of an entropy-based method for CAN-bus
network anomaly detection. Their anomaly detection method calculated the ID frequency
for in-vehicle network [37]. The limitation of the approach includes the difficulty of
recognizing small-scale attacks. Marchetti et al. assessed the usefulness of an entropy-
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based intrusion detection method for modern vehicles. Based on experimental data, they
showed that accurate attack detection could only be obtained if the abnormal data size
was large [38]. Wu et al., used the entropy-based method and enhanced the detection
accuracy for in-vehicle automotive network attacks while maintaining a low response time.
They also optimized the size of sliding window [39]. However, calculating the intrusion
detection threshold in entropy-based IDS is challenging.

2.2.4. Deep Learning-Based Methods

Seo et al. suggested a generative adversarial network (GAN)-based IDS for in-vehicle
automotive network using a deep learning method. The GAN-based intrusion detection
system (GIDS) was trained on a fake random dataset to detect attacks in real CAN bus
data [40]. Moreover, GIDS is incapable of detecting malicious or component-failure data.
Later, in [41], CANnolo was proposed to use long short-term memory (LSTM) autoencoders
to identify intrusions in CAN bus data. CANnolo generated a model using normal data
and detected intrusion based on the difference between reconstructed and real CAN bus
data, but requires complex computation for in-vehicle environment. Amato et al., in their
latest work, suggested a method based on deep learning to detect attacks on CAN-bus data
frames [42]. Their work aimed to detect malicious attacks based on the human behavior
of attackers. The algorithm applies multilayer perceptrons (MLP) to train the algorithm.
However, the lack of ensemble learning limits the performance of the model.

3. Proposed Methodology

This section is divided into two subsections: proposed intrusion detection method
and performance metrics.

3.1. Proposed Intrusion Detection Method

This research aimed to propose a novel intrusion detection system (IDS) to identify
anomalies, particularly in-vehicle networks. This methodology implements a fixed sliding
window-based intrusion detection function. The average of averages and the average
of standard deviations were used to calculate the reference values of normality and the
threshold values. An abnormality condition for i-th window vector is detected by com-
paring the mean µi and standard deviation σi of i-th window with µa, µs, σa, and σs,
respectively. The abnormality in the i-th window vector Wi

N is determined by value of
intrusion detection function, f (µi, σi) = 0 indicates that the i-th window vector Wi

N is a
normal window vector while f (µi, σi) = 1 represents the abnormal state for the in-vehicle
network data. Let D = [d1 d2, · · · , dk, · · · , dK] be the identifier vector where K is the total
number of data frames and dk is the identifier of the k-th data frame for 1 ≤ k ≤ K. Since
the size of an identifier in the data frame is 11 bits, there are Q = 211 = 2048 identifiers
in the data frames. Thus, dk is given by 0 ≤ dk < Q. Let the i-th window vector Wi

N be
given by Wi

N = [d(i−1)N+1, d(i−1)N+2, · · · , d(i)N ] for 1 ≤ i ≤ K/N, where N is the win-
dow size and it is assumed that K is a multiple of N. Let Yi = [yi

1, yi
2, yi

3, · · · , yi
Q] be the

i-th window’s frequency vector where yi
q is the frequency of the q-th identifier in Wi

N for

1 ≤ q ≤ Q. Then, we have ∑Q
q=1 yi

q = N as the sum of all the frequency identifiers. Let

Ii = {j|yi
j > 0, 1 ≤ j ≤ Q} be the index set of identifiers which have non-zero frequency

in the i-th window, where |Ii| denotes the number of elements in Ii. Let µi and σi be the
average and standard deviation of non-zero elements in Yi as follows:

µi =
1
|Ii| ∑

q∈Ii

yi
q =

N
|Ii|

(1)

σi =

√√√√ 1
|Ii| ∑

q∈Ii

(yi
q − µi)2 (2)



Sensors 2023, 23, 3554 8 of 26

3.1.1. Reference Values of Normality

Let us assume that the first L window vectors Wi
N , 1 ≤ i ≤ L contain normal CAN-bus

data frames with no attacks. Then, they are used for calculating the reference values of
normality. Let µa and σa be the average and standard deviation of the averages of first L
window frequency vectors Y1,Y2, . . . , YL:

µa =
1
L

L

∑
l=1

µl (3)

σa =

√√√√ 1
L

L

∑
l=1

(µl − µa)2, (4)

respectively. Let µs and σs be the average and standard deviation of the standard deviations
of Y1,Y2, . . . , YL:

µs =
1
L

L

∑
l=1

σl (5)

σs =

√√√√ 1
L

L

∑
l=1

(µl − µs)2 (6)

3.1.2. Abnormality Identification

Abnormality in i-th window vector Wi
N is decided by computing the intrusion detec-

tion function f (µi, σi). The outcome of intrusion detection function f (µi, σi) depends on
values of µi, σi, µa, σa, µs, and σs and is given as

f (µi, σi) =

{0, |µi−µa |
σa
≤ γ1 and |σi−µs |

σs
≤ γ2

1, otherwise,
(7)

where γ1 and γ2 are threshold values. Then, f (µi, σi) = 0 indicates that the i-th window
vector is normal while f (µi, σi) = 1 represents the abnormal state. The attack ratio εi of the
i-th window vector Wi

N is defined as

εi =
Mi

N
(8)

where Mi is the number of attack frames in Wi
N . Table 1 lists the notations used in this

methodology to identify different parameters used.
The algorithm can be summarized in the following steps:

1. Preprocessing

• Each window vector Wi
N is extracted from the CAN bus dataset.

• For each of the i-th window vector Wi
N , a frequency vector Yi = [yi

1, yi
2, yi

3, · · · , yi
Q]

is calculated.

2. Calculation of reference values of normality

• Using legitimate CAN-bus data frames, L frequency vectors Y1,Y2, . . . , YL

are calculated.
• Reference values of normality, i.e., average of averages µa, standard deviation of

the averages σa, average of standard deviations µs, and standard deviation of the
standard deviations σs are calculated.

3. Intrusion detection
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• For each i-th frequency vector Yi, the average µi = 1
|Ii | ∑q∈Ii yi

q = N
|Ii | and

standard deviation σi =
√

1
|Ii | ∑q∈Ii (yi

q − µi)2 are calculated using the index

set of identifiers Ii = {j|yi
j > 0, 1 ≤ j ≤ Q}.

• f (µi, σi) is used to decide the abnormality of the i-th window vector Wi
N by

comparing µi and σi with µa, σa, µs, and σs.

3.2. Performance Metrics

To evaluate the effectiveness of the suggested method against the attacks described
in the previous section, we have calculated the true positive, true negative, false positive,
false positive error rate, false negative, false negative error rate, misclassification rate, total
error, average error rate, F1-score, recall, precision, and accuracy. Table 3 describes the
performance parameters used in this study. Essentially, false negative may occur when
i-th window vector Wi

N is malicious, but detector prediction is normal. If a false negative
occurs, the number of false negatives is increased by 1 based on the condition εi ≥ α &
f (µi, σi) = 0, where α is the minimum value of attack ratio for 0 ≤ α ≤ 0.02. Conversely,
the number of false positives is incremented by 1 when the detector prediction indicates
an anomaly for actually normal i-th window vector Wi

N based on condition εi = 0 &
f (µi, σi) = 1. A true negative is defined as an event when both the i-th window vector Wi

N
and detector prediction are normal. If a true negative occurs, the number of true negatives
is increased by 1 based on the condition εi = 0 & f (µi, σi) = 0. Conversely, the number
of true positives is incremented by 1 when both the i-th window vector Wi

N and detector
prediction are abnormal based on condition εi ≥ α & f (µi, σi) = 1.

Table 3. Performance metrics.

Performance Parameters Description

TNW Total number of normal windows

TAW Total number of attacked window

FN False negative

FNER False negative error rate

FP False positive

FPER False positive error rate

TE Total error

MR Misclassification rate

AER Average error rate

F1 F1-score

RCL Recall

PRC Precision

ACC Accuracy

False positive error rate (FPER), or the fall out is the fraction between the number
of legitimate windows incorrectly identified as abnormal and the total number of actual
legitimate windows:

FPER =
FP

FP + TN
(9)
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False negative error rate (FNER) or the miss rate is the fraction between the abnormal
windows identified as normal and the total abnormal windows:

FNER =
FN

FN + TP
(10)

Total error (TE) is defined as total number of incorrect decisions:

TE = FP + FN (11)

Average error rate (AER) is the rate obtained by averaging the sum of FPER and FNER:

AER =
FPER + FNER

2
(12)

Misclassification rate (MR) is described by the total number of errors made during the
prediction divided by the total windows:

MR =
FP + FN

FP + TP + FN + TN
(13)

Accuracy (ACC) denotes the ratio of accurately classified samples in the whole sample
space and can be calculated as follows:

ACC =
TP + TN

TP + FP + FN + TN
(14)

Precision (PRC) refers to the proportion of malicious windows correctly classified to
the total number of attack instances:

PRC =
TP

TP + FP
(15)

Recall (RCL) shows what percentage of all windows that have been identified as being
attacked are actually attacked:

RCL =
TP

TP + FN
(16)

The F1-score is clearly linked to precision and recall. The F1-score value fluctuates
between 1 and 0 and can be viewed as the average of model precision and recall:

F1 = 2
(

RCL× PRC
RCL + PRC

)
(17)

4. Experimental Results

This section is divided into seven subsections: dataset description, experiments,
and evaluations.

4.1. Datasets Description

Two datasets were used in this study to validate the credibility of our proposed IDS.
The car hacking dataset was initially published by [26] and the survival analysis dataset was
introduced by [27]. The datasets were extracted by categorizing CAN traffic via the OBD-II
port of a vehicle while attacks were being performed. In addition to a timestamp and CAN
identifier, an 8-bit data field (DATA [0–7]) and the data length code (DLC) are also included
in the datasets. We utilized data collected from real vehicles to validate the generality of
the proposed intrusion detection method in our paper. The datasets contained data from
three different automobile manufacturing companies, namely Hyundai, Kia, and Chevrolet,
and were used as a training and testing dataset to effectively design our proposed IDS.
Hu et al., in [25] used a multi-attack scenarios for in-vehicle intrusion detection system.
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We have combined DoS and fuzzy attacks to create a merged attack and created a similar
attack scenario as proposed in [25] using the car hacking dataset [26]. The main features of
all the datasets used in the experimentation of our study are provided in Table 4.

Table 4. Detailed description of datasets used in performance evaluations.

Datasets Vehicle Type Attack Types Number of Samples Attack Percentage

Total Used DoS Attack Fuzzy
Attack DoS % Fuzzy %

Car hacking dataset Sonata 4 2 3,665,771 3,838,860 19.086 14.695

Survival analysis dataset

Sonata 3 2 149,547 135,670 21.680 13.354

Spark 3 2 120,570 65,665 18.733 8.850

Soul 3 2 181,901 249,990 18.219 15.925

Merged dataset Sonata 4 2 1,500,000 1,500,000 25.225 13.263

The DoS and fuzzy attack datasets are publicly available for research purposes. The
merged attack dataset is formed by combining the smaller blocks of the original DoS and
fuzzy datasets. The merged dataset contains 25,000 data frames alternately combined from
each dataset. A total of 3,000,000 data frames are combined to create a merged attack,
extracted from DoS and fuzzy attack datasets. A block of 25,000 data frames is copied
from the DoS dataset, following another block of 25,000 data frames from the fuzzy attack
dataset. In total, 1,500,000 data frames from each dataset are merged to make a new dataset
for experimentation.

4.2. Attack Ratio vs. Average and Standard Deviation

The experimental relationship and numerical analysis for the attack ratio plotted
against the average and standard deviation (SD) for DoS and fuzzy attacks on the x and
double-y-axes are presented in the following subsections. The graphs in Figures 3–6
show the average and standard deviation for each of i-th window vector Wi

N . We used
a double y-axis graph to verify the relationships between average and SD with various
ranges to get a broader view of whether both dependent variables increase or decrease
with a change in attack ratio. N is set to have 100 identifiers in each of i-th window
vector Wi

N as a predetermined value. We are determining the statistical characteristics
of attacks in this experiment, so the normality reference values are not measured. In the
course of this investigation, K = 100,000 individual data frames are extracted from the
CAN-bus car hacking dataset. The highest possible value for i-th index will be 1000 for this
parameter configuration.

4.2.1. Experimental Relationship

The priority order of the CAN frames is critical in CAN bus communication. Assume
that the highest-order CAN bus frame is continuously injected into the in-vehicle network.
It will result in a DoS attack scenario, and legitimate traffic will be hampered as a result of
the priority order. The x-axis in Figure 3 represents the attack ratio, while the double y-axis
denotes the average and SD values of the CAN bus frames, respectively. The average and
SD have lower values in the absence of an attack. However, the average and SD values
gradually rise under attack conditions as the attack rate increases. In the beginning, the
attack rate was around 5–10%, and malicious frames were scarce compared to legitimate
CAN bus frames. This is due to the fact that the maliciously inserted CAN bus frames
are comparable to the rest of the CAN bus frames. However, as the attack rate went up
from 10% to 70%, the malicious CAN bus frames became the majority, with an overall
increase in average and SD values for each window. The two curves are slightly different,
as shown in Figure 3, and these graphs indicate that the average value increases linearly.
However, neither the average nor the standard deviation showed an increasing trend in
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this experiment. During the course of a fuzzy attack, randomly generated malicious frames
are successively injected into the in-vehicle network. Because each ECU connected to the
CAN bus accepts all frames during the fuzzy attack, the average and SD values decrease in
contrast to the increase in attack rate. This decreasing trend is clearly visible in Figure 4,
where the average and SD values of attacked frames decreased as the attack rate increased.

Figure 3. Experimental results of attack ratio vs. average and standard deviation for DoS attack.

Figure 4. Experimental results of attack ratio vs. average and standard deviation for fuzzy attack.

4.2.2. Numerical Analysis

We present a numerical analysis for the above experiment performed for CAN bus
traffic. It can be easily observed from Figures 3 and 4 that for a predetermined size window
vector Wi

N , a DoS attack increases the average and the standard deviation, and a fuzzy
attack decreases them for N identifiers, i.e., d(i−1)N+1, d(i−1)N+2, . . . , d(i)N . However, if we
focus on Figure 3, as the intensity of a DoS attack is increased by injecting continuous
data frames, the average value of the window vector Wi

N increases, while the standard
deviation either remains constant or decreases. Similarly, in Figure 4, as the rate of injections
containing fuzzy frames increased, the average and standard deviation values showed a
decreasing trend. We cannot deduce a statement based on these observations because the
maximum number of possibly attacked frames in the available car hacking dataset is less
than 80% as seen in Figures 3 and 4. To create an extreme scenario, i.e, a 100% DoS or fuzzy
attack condition in which the attack ratio εi is equal to 1, we consider the following. The
average will attain maximum value and the standard deviation will become zero, since
there will be only one identifier di in the i-th window vector Wi

N , which is used to inject the
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attack. Considering this extreme case and the simulation results shown in Figures 3 and 4,
we cannot verify the conjecture with the dataset provided by Korea University because the
attack ratio remains below 80% throughout the whole dataset.

To overcome this hurdle, we used the existing car hacking dataset to create a 100%
attack scenario. Malicious data frames from each attack dataset are used to obtain an attack
rate εi be 0.8 or higher and performed the simulations as shown in Figures 5 and 6. Fixed
size window vectors Wi

N containing 100 legitimate data frames (N = 100) were selected
from each dataset. One data frame in the window vector at a time is replaced by an attack
data frame. After replacing the legitimate data frame with a malicious data frame, the
average, standard deviation, and attack ratio of each window vector are calculated. This
process was repeated for 1000 window vectors containing legitimate data frames.

Figure 5. Simulation results of attack ratio vs. average and standard deviation for 100% DoS attack.

Figure 6. Simulation results of attack ratio vs. average and standard deviation for 100% fuzzy attack.

The results in Figure 5 show that increasing the DoS attack to 100% can achieve a
maximum average value and a minimum standard deviation value. Only CAN-bus data
frames with the highest priority were injected into the malicious window during the DoS
attack. Similarly, Figure 6 depicts the effect of a 100% fuzzy attack; increasing the attack
rate reduces the average and standard deviation values linearly. For the fuzzy attack, the
malicious window contains various data frames that reduce the average value during the
fuzzy attack period.
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4.3. Misclassification Rate vs. Attack Ratio

In the following experiment, different fixed-size windows are used, i.e., N can have a
value of 50, 100, 200, 500, and 1000 in each of i-th window vector Wi

N . For this experiment,
K = 2,500,000 data frames are analyzed using the car hacking dataset. For each value of N,
the i-th index has a maximum value of 50,000, 25,000, 12,500, 5000, and 2500. The reference
values of normality are calculated using only legitimate CAN bus data frames from DoS
and fuzzy attack datasets, respectively. A total L = 100 window vectors are analyzed to
obtain the reference values of normality. For each of N, the reference values of normality
are computed accordingly by changing the window vector Wi

N . The εi is divided into ten
smaller blocks, each of length 0.1 between 0 and 1.0. Misclassification is calculated for
each smaller block. In a binary classification problem, the MR is proportional to the rate
at which the fraction of predicted values is incorrect. The MR is defined as the sum of
all prediction errors divided by the total number of instances. The following experiment
investigates the MR for a predetermined window vector Wi

N against DoS and fuzzy attacks.
The following experiment will look at how the MR varies for different window sizes against
DoS and fuzzy attack datasets. The parameters and criteria for intrusion detection are
almost identical to those used in the previous experiment; the only major variable is Wi

N ,
which represents the predetermined window size. For each window used, the reference
values of normality are computed. The number of CAN frames used to assess the intrusion
using the intrusion detection function f (µi, σi) is specified by the window vector Wi

N .

4.3.1. Optimum Window Size

Researchers have investigated numerous aspects of window size for the CAN-bus
in-vehicle network and discovered that selecting the optimal window size for intrusion
detection is critical. The limitations of windowing-based methods are shown in Table 5.

Table 5. Limitations of methodologies using windowing as parameter.

Methodologies Limitations

Ohira et al. [18]
They measured similarity across a range of sliding win-
dows, but it was determined that the similarity-based IDS
could only detect DoS attacks.

Tomlinson et al. [19]

Compared to a sliding window, this method reduces the
frequency with which the window metrics must be recal-
culated. However, their IDS is incapable of detecting a
fuzzy attack.

Baldini [20] They classified a window as attacked if at least one mali-
cious packet was present.

Our work Address each of the preceding concerns.

In 2020, Ohira et al. [18] used the offline learning phase to determine the similarity
values for various window sizes. They demonstrated that changing the sliding window size
affects the similarity values. When window size W is set to 5, the similarity value ranges
between 0.1 and 1.2, but when W is set to 50, the similarity ranges between 0.8 and 1.0. Fur-
thermore, the similarity value approaches 1.0 when W is between 100 and 200. This method
shows how similarity values increase as window sizes increase. They only tested their
intrusion detection system against a DoS attack. However, to detect changes in in-vehicle
traffic timing, Tomlinson et al. [19] performed a statistical analysis of CAN broadcasts.
Three distinct detection methods (ARIMA, Z-score, and supervised threshold) are used to
implement time-defined windows-based IDS. Each window’s metrics were calculated and
then applied within that window to aid in identification. Fuzzing attacks are undetectable
when preceded by other attacks because this method lacks metrics-based comparison with
previous windows. Baldini [20] proposed a sliding window entropy method that employs
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several entropy measures during the evaluation process. This approach assesses the effects
of different hyperparameters, such as window size and threshold range. However, the
proposed scheme has no rationale despite extensive testing, and the results are tested on a
single dataset.

This subsection investigates the effects of a change in window size when the MR
is calculated against an increasing attack ratio, a topic not previously discussed. In the
presence of an increasing attack ratio, we intend to provide a rationale for selecting the
optimal window size. Now, it is understood that the size of the window will influence
the performance of the proposed intrusion detection systems. Consequently, what is the
optimal window size? This is an unanswered question since the optimal window size also
depends on the other hyperparameters utilized by the proposed scheme.

4.3.2. Evaluation Based on Variation in Window-Size

For DoS and fuzzy attack datasets, the x-axis represents the attack ratio, while the
y-axis represents the MR, as shown in Figures 7 and 8. The MR is calculated against the
attack ratio using different window sizes. For each of the window sizes used, the MR shows
a high value against a smaller value of attack ratio. Further investigation is carried out, and
the attack ratio is divided into smaller blocks to fully comprehend the profound effects of
window size on the MR during the attack phase. To accurately measure the MR, windows
with εi and windows with εi that includes misclassification are calculated. The εi is broken
up into smaller blocks of length 0.01, and MR is calculated by dividing the number of
windows with εi that have misclassifications by the total number of windows with εi. It is
easily observed that the MR value is high in the beginning but goes to zero after the attack
ratio goes above 0.3. Furthermore, this initial high value of MR can be observed in both
attack scenarios. In the DoS attack scenario, the size of the window increases from 50 to 200,
the peak value of MR slightly decreases from 1.0 to 0.9. Later, the MR rises again as the size
of window increases from 200 to 1000. Moreover, for a fuzzy attack, as the size of window
increases from 50 to 200, the peak value of MR remains constant, but as the window size
further increases from 200 to 1000, a sharp drop in MR value is observed. This means that
the size of the window is not the only thing that affects the MR value in either case.
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Figure 7. Attack ratio vs. misclassification rate for different window sizes (DoS attack).
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Figure 8. Attack ratio vs. misclassification rate for different window sizes (Fuzzy attack).

Further investigation is carried out, and for each of the window sizes, TE is calculated
to comprehend the profound effects of window size on the MR during the attack phase.
The data in Table 6 indicate that TE values do not increase monotonically with increasing
window size. In the DoS attack scenario, it is noticeable that as the window size increases
from 50 to 100, the TE value decreases. Later, the TE value rises slightly as the window size
increases from 200 to 1000. This implies that the window size does not solely influence the
TE and MR values for both scenarios. As shown in Table 7, the patterns in the data for fuzzy
attacks represent variations that may be inherent in the attack scenario. The TE appears to
have randomly distributed values with no discernible pattern for different window sizes.

Table 6. Total error (DoS attack).

Window Size TAW FP FN TE

50 20,554 287 106 393

100 10,409 95 88 183

200 5334 124 61 185

500 2299 10 79 89

1000 1261 0 99 99

Table 7. Total error (fuzzy attack).

Window Size TAW FP FN TE

50 22,509 364 112 476

100 11,384 61 50 111

200 5820 376 1 377

500 2472 240 0 240

1000 1349 6 0 6
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4.4. Threshold vs. Total Error Rate

The experimental measurements for the simulation results in this subsection were
done using the following parameters. To find the minimum value of TE, different fixed-size
window vectors with N = 50, 100, 200, 500, and 1000 were analyzed. Like in the previous
experiment, K = 2,500,000 data frames are evaluated using the car hacking data set. The i-th
index has a maximum value of 50,000, 25,000, 12,500, 5000, and 2500 for each value of N.
The reference values of normality are determined using 100 legitimate window vectors for
each N with different window size from DoS and fuzzy attack datasets, respectively. The
intrusion detection function f (µi, σi) uses two thresholds, γ1 and γ2. The thresholds range
between 1.0 and 5.0. For this experiment, each threshold is divided into 0.1 step increments
for different N values.

In the previous section, a thorough investigation was conducted into the effects caused
by the change in window size. However, in the presence of a malicious attack, it was
noticed that relying solely on window size to obtain the optimal value of TE and MR is
insufficient. MR is not only affected by window size but is also dependent on γ1 and γ2.
In the following experiment, γ1 and γ2 values are altered against DoS and fuzzy attack
datasets while different window sizes are used. The reference values of normality are
calculated for each window size used. Various performance metrics are also calculated by
adjusting the parameters of the intrusion detection model to obtain AER and MR.

4.4.1. Limitations in Related Work

We intend to provide a rationale for selecting the best threshold value that has not
yet been debated. Sagong et al. [21] investigated masquerade attacks and developed a
Maximum Slackness Index metric to evaluate the efficiency of a clock skew-based IDS.
They carried out the cloaking attack and demonstrated that it could avoid both IDS,
specifically, the most recent state-of-the-art IDS and Network Time Protocol (NTP). Even
though multiple added delays were quantified, the mechanism for threshold selection and
the impact caused by variations in values of γ and Γ were not thoroughly investigated.
In [22], a clock-based intrusion detection system (CIDS) used a fixed predefined threshold
value, ΓL = 5, to detect anomalies. Although CIDS detects in-vehicle intrusions with a low
FPR of 0.005% using cumulative sum (CUSUM) analysis, little attention has been paid to
determining an optimum threshold value. Ying et al. [23] proposed a novel masquerade
attack called the cloaking attack and conducted analyses of clock skew-based IDS for
automotive CAN systems. Although they showed a low average prediction error, they still
did not address the effect of threshold variation on MR.

4.4.2. Brute Force-Based Optimization

Optimization by brute force is a straightforward method. It requires a significant
amount of computing power because it evaluates all possible solutions before selecting
the optimum values. This method only applies to small problems because the number of
possible system states grows exponentially with the number of dimensions. For continuous
predictor variables, the number of states is infinite. Despite these shortcomings, brute
force methods have several advantages: they are straightforward to implement and check
all possible states in a discrete system. As a result, brute force methods are frequently
used to calculate the number of states or calculations required to find the optimum state.
Assume this is impossible due to the presence of continuous variables. In that case, for each
continuous variable, all possibilities must be tested.

4.4.3. Optimization of γ1 and γ2

We intend to provide a reason for selecting the optimum threshold value that has not
been discussed in the previous work. Table 8 shows that previous work using threshold
configurations is far from having optimal values. Although, refs. [21–23] show improved
performance, yet fail to demonstrate that MR is dependent on threshold variation.



Sensors 2023, 23, 3554 18 of 26

Table 8. Limitations of methodologies using threshold as parameter.

Methodologies Limitations

Sagong et al. [21]
The mechanism for threshold selection and the impact
of variation in γ and Γ values were not thoroughly
investigated.

Cho et al. [22]

A Clock-based IDS (CIDS) relied on a fixed predefined
threshold value for anomaly detection, notably ΓL = 5.
However, little attention has been paid to determining an
optimal threshold value.

Ying et al. [23] The effect of threshold variation on TE and ER in their IDS
was not addressed.

Our work Address each of the preceding concerns.

As is apparent from Figure 9, when different combinations of γ1 and γ2 are used for a
fixed window vector Wi

N , the intrusion function f (µi, σi) produces error values that vary
over a wide range. It is now recognized from Figure 9 that the threshold value significantly
impacts the IDS performance. In our proposed IDS, the brute force approach is used as
an optimization technique to obtain the lowest total error. The Algorithm 1 generates all
possible combinations and chooses the optimum value of γ1 and γ2 against the applied
attacks. The reference values of normality are calculated and integrated into f (µi, σi) as a
part of the intrusion detection function for each window vector Wi

N . The TE is calculated
for all combinations of γ1 and γ2. Only one of the many possible combinations that gives
the optimal value of TE, AER, and MR is chosen.

Figure 9. Total error vs. threshold.
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Algorithm 1: Minimum value of TE
Input : D= [d1, d2, · · · , dk, · · · , dK]
Output : optimal TE

1 for each Wi
N , where N = [50, 100, 200, 500, 1000] do

2 calculate reference value of normality for each N for each 0.1 increase in γ1,
where γ1 = [1.0, 1.1, · · · , 5.0] do

3 for each 0.1 increase in γ2, where γ2 = [1.0, 1.1, · · · , 5.0] do
4 measure performance parameters
5 end for
6 end for
7 select optimal γ1 and γ2 such that TE has minimum value
8 end for
9 return Minimum value of TE using γ1 and γ2

4.4.4. Evaluation Based on Threshold Variation

In this subsection, we examined the proposed IDS accuracy using a variety of per-
formance metrics. For DoS attacks, Table 9 shows the false negative error rate (FNER),
false positive error rate (FPER), TE, AER, and the MR. Various window sizes are used to
determine the minimized error rate using an optimal threshold value. As the window
size increases, the MR increases proportionately. In the case of a fuzzy attack, Table 10
demonstrates that increasing the window size significantly reduces the MR to zero.

Table 9. Performance evaluation using optimum threshold value (DoS attack).

Window Size Optimal Threshold TNW TAW FPER FNER TE AER MR
γ1 γ2

50 5.0 5.0 29,446 20,554 0.0012 0.0068 178 0.0040 0.0035

100 3.0 4.3 14,591 10,409 0.0022 0.0098 136 0.0060 0.0054

200 4.2 5.0 7166 5334 0.0039 0.0142 104 0.0090 0.0082

500 1.8 2.5 2701 2299 0.0059 0.0243 72 0.0151 0.0143

1000 1.1 1.6 1239 1261 0.0064 0.0253 40 0.0158 0.0159

Table 10. Performance evaluation using optimum threshold value (fuzzy attack).

Window Size Optimal Threshold TNW TAW FPER FNER TE AER MR
γ1 γ2

50 3.3 4.8 27,491 22,509 0.0034 0.0046 223 0.0040 0.0044

100 3.0 3.4 13,616 11,384 0.0031 0.0037 94 0.0034 0.0037

200 4.8 5.0 6680 5820 0.0025 0.0010 24 0.0017 0.0019

500 4.9 4.9 2528 2472 0.0000 0.0000 0 0.0000 0.0000

1000 4.8 4.0 1151 1349 0.0000 0.0000 0 0.0000 0.0000

4.5. Merged Attack

Various attacks are injected into the CAN bus network in real-world scenarios. We
determined the robustness of our proposed algorithm when multiple intrusions simultane-
ously target the CAN bus network as used in [25]. In this analysis, DoS and fuzzy attacks
are merged simultaneously. A merged attack is used to create a realistic attack scenario.
Two fundamental attack types are used as in combination to compromise the in-vehicle
CAN bus network (i.e., DoS and fuzzy attacks). Both datasets contain exploited data frames
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from the car hacking dataset [26]. They created DoS and fuzzy attack datasets using the
CAN bus but did not include merged attacks in their study. The following parameters were
used in the experimental measurements for the simulation results in this subsection. To
identify the minimum value of TE, different window vectors with size N = 50, 100, 200, 500,
and 1000 were evaluated. A total of K = 3,000,000 data frames are evaluated. The reference
values of normality are determined using firstly 100 legitimate window vectors for each
different window of size N. The intrusion detection function f (µi, σi) uses two optimal
thresholds values, γ1 and γ2. According to the data in Table 11, the window size is changed
to obtain the minimized TE using optimal threshold values.

Table 11. Performance evaluation using optimum threshold value (merged attack).

Window Size Optimal Threshold TNW TAW FPER FNER TE AER MR
γ1 γ2

50 3.7 5.0 27,376 22,624 0.0014 0.0066 190 0.0040 0.0037

100 4.7 4.0 13,533 11,467 0.0019 0.0070 108 0.0044 0.0043

200 4.7 4.7 6618 5882 0.0030 0.0100 79 0.0065 0.0063

500 2.5 2.7 2459 2541 0.0040 0.0145 47 0.0092 0.0094

1000 4.6 2.0 1082 1418 0.0064 0.0331 54 0.0197 0.0215

As the window size increases, the MR also increases proportionately. These results
show that the behavior of the proposed IDS against a merged attack is similar to a DoS
attack when injected alone. However, for the fuzzy attack, an increase in window size
significantly reduced the MR to zero.

4.6. Comparison with Known IDS (Car Hacking Dataset)

The suggested technique is compared with recent methodologies [40,43–46], as shown
in Tables 12 and 13 against DoS and fuzzy attacks obtained from the car hacking dataset.
Although most of the methods achieve high accuracy, our proposed IDS shows improved
performance compared to other methodologies. The highest values for each performance
criterion are bolded. Other methods have achieved a slightly higher precision or recall
value in the case of a DoS attack, but the accuracy and F1 score are still lower than our
proposed model. When it comes to fuzzy attacks, our IDS outperforms the rest of the
proposed methods. To summarize, even though comparing existing methodologies is
not an easy task, the proposed IDS outperforms them by achieving a higher score in
quantitative comparison. The experimental findings indicate that the proposed IDS can
effectively distinguish between legitimate and malicious data for CAN bus systems.

Table 12. Performance analysis against DoS attack for known IDS (car hacking dataset).

Methods Accuracy Precision Recall F1

GIDS [40] 0.9790 0.9680 0.9960 -

KNN [43] 0.9740 - - 0.9340

SVM [43] 0.9650 - - 0.9330

WINDS [44] 0.9497 0.9797 0.9415 -

H-IDFS [45] 0.9728 1.0000 0.9620 0.9806

SAIDuCANT [46] 0.9808 0.9771 1.0000 0.9884

Proposed IDS 0.9964 0.9981 0.9931 0.9956
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Table 13. Performance analysis against fuzzy attack for known IDS (car hacking dataset).

Methods Accuracy Precision Recall F1

GIDS [40] 0.9800 0.9730 0.9950 -

KNN [43] 0.9740 - - 0.9340

SVM [43] 0.9650 - - 0.9330

WINDS [44] 0.8778 0.9816 0.8339 -

H-IDFS [45] 0.9517 0.9955 0.9493 0.9718

SAIDuCANT [46] 0.8782 0.8639 0.9958 0.9252

Proposed IDS 1.0000 1.0000 1.0000 1.0000

4.7. Test Case: Survival Analysis Dataset

Actual vehicle datasets were evaluated to demonstrate that the applicability of the
proposed IDS is not limited to a single vehicle model. This subsection shows the perfor-
mance of the proposed IDS when applied to unseen datasets from various vehicles. The
test dataset is divided into normal driving data that do not involve an attack and abnormal
driving data collected during an attack. The data were obtained using the Raspberry Pi31
and PiCAN22, connected to the OBD-II port via a serial peripheral interface of Sonata (2010)
by HYUNDAI, Soul (2015) by KIA, and Spark (2015) by CHEVROLET. We evaluated the
performance of the proposed method in terms of accuracy, precision, recall, and F1 for the
survival analysis dataset [27] developed by the Hacking and Countermeasure Research
Lab, Korea. The evaluation process is carried out by selecting optimal values of γ1 and
γ2 using a brute force approach for various window sizes; Tables 14–16 show the highest
accuracy of proposed IDS against DoS and fuzzy attacks.

Table 14. Performance parameters for Sonata.

Attack Type Window Size
Optimal Threshold

Accuracy Precision Recall F1
γ1 γ2

DoS

50 4.7 3.5 0.9993 1.0000 0.9986 0.9993

100 2.5 3.4 0.9979 1.0000 0.9958 0.9979

200 3.0 3.0 0.9959 1.0000 0.9917 0.9958

500 2.6 3.6 0.9966 1.0000 0.9932 0.9966

1000 1.8 1.4 1.0000 1.0000 1.0000 1.0000

fuzzy

50 2.6 4.1 0.9996 1.0000 0.9990 0.9995

100 2.3 3.3 1.0000 1.0000 1.0000 1.0000

200 3.0 3.0 1.0000 1.0000 1.0000 1.0000

500 2.7 3.0 1.0000 1.0000 1.0000 1.0000

1000 3.7 4.1 1.0000 1.0000 1.0000 1.0000
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Table 15. Performance parameters for Soul.

Attack Type Window Size
Optimal Threshold

Accuracy Precision Recall F1
γ1 γ2

DoS

50 2.1 3.7 0.9991 1.0000 0.9980 0.9990

100 2.3 2.9 0.9983 1.0000 0.9960 0.9980

200 3.6 4.3 1.0000 1.0000 1.0000 1.0000

500 2.2 2.0 0.9972 1.0000 0.9935 0.9967

1000 1.8 2.8 1.0000 1.0000 1.0000 1.0000

fuzzy

50 3.3 4.2 0.9985 0.9987 0.9983 0.9985

100 3.1 4.6 1.0000 1.0000 1.0000 1.0000

200 3.9 4.6 1.0000 1.0000 1.0000 1.0000

500 3.0 4.2 1.0000 1.0000 1.0000 1.0000

1000 3.9 4.1 0.9959 0.9920 1.0000 0.9959

Table 16. Performance parameters for Spark.

Attack Type Window Size
Optimal Threshold

Accuracy Precision Recall F1
γ1 γ2

DoS

50 4.7 4.3 0.9995 1.0000 0.9991 0.9995

100 3.8 4.0 1.0000 1.0000 1.0000 1.0000

200 2.8 3.4 1.0000 1.0000 1.0000 1.0000

500 3.1 3.3 1.0000 1.0000 1.0000 1.0000

1000 2.7 3.3 0.9916 1.0000 0.9833 0.9915

fuzzy

50 2.6 4.1 0.9996 1.0000 0.9990 0.9995

100 2.3 3.3 1.0000 1.0000 1.0000 1.0000

200 3.0 3.0 1.0000 1.0000 1.0000 1.0000

500 2.7 3.0 1.0000 1.0000 1.0000 1.0000

1000 3.7 4.1 1.0000 1.0000 1.0000 1.0000

It is validated through experimentation that the best performance can be acquired by
selecting optimal threshold values for each window size. Our proposed IDS can detect DoS
and fuzzy attacks with 100% accuracy against different vehicles.

Comparison with [47]

This subsection demonstrates how our suggested technique performed on the survival
analysis dataset [27]. The comparison of our approach with [47] is shown in Table 17. It can
be seen in [47] that a long short-term memory (LSTM)-based IDS is used against DoS and
fuzzy attacks, respectively.

This technique thoroughly studies hyperparameter values to achieve high detection
accuracy. Similar performance metrics, i.e., F1, accuracy, precision, and recall are used for
evaluation purposes to conduct a fair assessment. As a result, the proposed method can
become a concrete framework to identify near-real-time events with high level of accuracy.
This concept will aid in the future consideration of proposed IDS for in-vehicle networks.
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Table 17. Performance analysis against known IDS (survival analysis dataset).

Model Attack Type Method Accuracy Precision Recall F1

Sonata
DoS

Hossain et al. [47] 1.0000 - 1.0000 1.0000

Proposed IDS 1.0000 1.0000 1.0000 1.0000

fuzzy
Hossain et al. [47] 0.9996 - 1.0000 0.9999

Proposed IDS 1.0000 1.0000 1.0000 1.0000

Soul
DoS

Hossain et al. [47] 1.0000 - 1.0000 1.0000

Proposed IDS 1.0000 1.0000 1.0000 1.0000

fuzzy
Hossain et al. [47] 0.9962 - 0.9763 0.9880

Proposed IDS 1.0000 1.0000 1.0000 1.0000

Spark
DoS

Hossain et al. [47] 1.0000 - 1.0000 1.0000

Proposed IDS 1.0000 1.0000 1.0000 1.0000

fuzzy
Hossain et al. [47] 0.9960 - 0.9780 0.9780

Proposed IDS 1.0000 1.0000 1.0000 1.0000

5. Limitation and Future Work

This section discusses the limitations of the proposed method and future directions for
further improvement. Legitimate CAN-bus data frames must be used to establish reference
values of normality to detect the intrusion. The proposed IDS detects the presence of
an attacker ECU by comparing i-th window vector Wi

N to reference values of normality.
However, anomaly identification may be imprecise if the compromised ECU initiates an
attack prior to establishing normality values. To address this shortcoming, our IDS can
obtain the normality values of those ECUs during production and update them later via
software. As a result, the proposed method can be used without requiring the ECU’s
hardware to be changed, but firmware must be updated.

Our method employs the sliding window method, where the size of each window
remains constant throughout the analysis. In the future, we intend to update the size of
each window on the fly for normal and attack scenarios to optimize performance through
statistical analysis. Additionally, we intend to release novel attack models and datasets
based on real-world scenarios that will serve as a sufficient challenge for researchers to
develop more capable CAN-bus in-vehicle network security mechanisms to combat the
latest cyber-attacks.

6. Conclusions

We have designed, developed, and implemented a parametric-based optimized thresh-
old sliding window approach for intrusion detection using statistical analysis methods. The
intrinsic features of the CAN bus network have been exploited to achieve a minimized MR.
The performance of our proposed IDS has been evaluated using various metrics. We have
investigated experimental relationships and numerical analysis for attack ratio, average,
and standard deviation. We have obtained the minimized MR by optimizing the threshold
values for different window sizes using brute force optimization. Additionally, we have
thoroughly analyzed the merge attack as well. Two real-world datasets were evaluated to
prove the usefulness of the proposed IDS for different vehicle models.
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