
Citation: Katambire, V.N.; Musabe,

R.; Uwitonze, A.; Mukanyiligira, D.

Battery-Powered RSU Running Time

Monitoring and Prediction Using ML

Model Based on Received Signal

Strength and Data Transmission

Frequency in V2I Applications.

Sensors 2023, 23, 3536. https://

doi.org/10.3390/s23073536

Academic Editor: Marek Jaśkiewicz
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Abstract: The application of the Internet of Things (IoT), vehicles to infrastructure (V2I) communi-
cation and intelligent roadside units (RSU) are promising paradigms to improve road traffic safety.
However, for the RSUs to communicate with the vehicles and transmit the data to the remote loca-
tion, RSUs require enough power and good network quality. Recent advances in technology have
improved lithium-ion battery capabilities. However, other complementary methodologies including
battery management systems (BMS) have to be developed to provide an early warning sign of the
battery’s state of health. In this paper, we have evaluated the impact of the received signal strength
indication (RSSI) and the current consumption at different transmission frequencies on a static battery-
based RSU that depends on the global system for mobile communications (GSM)/general packet
radio services (GPRS). Machine learning (ML) models, for instance, Random Forest (RF) and Support
Vector Machine (SVM), were employed and tested on the collected data and later compared using the
coefficient of determination (R2). The models were used to predict the battery current consumption
based on the RSSI of the location where the RSUs were imposed and the frequency at which the
RSU transmits the data to the remote database. The RF was preferable to SVM for predicting current
consumption with an R2 of 98% and 94%, respectively. It is essential to accurately forecast the battery
health of RSUs to assess their dependability and running time. The primary duty of the BMS is to
estimate the status of the battery and its dynamic operating limits. However, achieving an accurate
and robust battery state of charge remains a significant challenge. Referring to that can help road
managers make alternative decisions, such as replacing the battery before the RSU power source gets
drained. The proposed method can be deployed in other remote WSN and IoT-based applications.

Keywords: current consumption; roadside units; machine learning; V2I communication

1. Introduction

Wireless sensor networks (WSN) and communication technologies are emerging
applications that allow real-time monitoring of different communication nodes. Today,
complex systems and multiple interacting devices in the intelligent transport system
(ITS) generate massive amounts of data. The IoT can ease the implementation of traffic
management systems (TMS). The combination of ML and the IoT has stimulated the
interest of many researchers since it can process enormous amounts of data suitable for
solving complex real-world traffic control problems such as traffic congestion at road
intersections [1].

Congestion in urban areas characterised by increasing traffic rates is a major concern
for transportation management. One of the most important goals of global transportation
research is to optimize traffic flow by using travel time, vehicle density information, in-
formation gathered by vehicles and the RSUs [2]. With the introduction of loop detectors,
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radar, cameras and other sensors, road traffic data can be sent to the traffic control center.
RSUs can collect traffic flow data on road segments of intersections and send this informa-
tion to concerned bodies for further data usage [3]. A smart construction architecture that
makes use of IoT to control the performance of all technological systems was proposed in
order to achieve energy efficiency [4].

The Government of Rwanda (GoR) has realised the potential of emerging technolo-
gies and started using innovative technologies in road transport. Road camera units are
being imposed on roads to capture vehicles exceeding the maximum allowed speed limits
on a particular road segment. Moreover, different roadside nodes are being deployed
for other uses such as traffic light scheduling at junctions, monitoring both traffic and
greenhouse gas produced by vehicles [5,6]. For these parameters to be monitored, RSUs
require sufficient power and the location at which the RSU is fixed requires a good signal
and fewer signal barriers such as buildings. Experiments have been conducted to deter-
mine the best communication technology that can be used for indoor localisation systems
and applications.

Several works have focused on network topology and developing algorithms to reduce
power consumption in WSN while improving network lifespan. The power consumption
and RSSI, as they are some of the characteristics of indoor localisation, were examined [7].
However, Wi-Fi was found to use higher power than BLE, Zigbee and LoRaWAN, meaning
that it is not preferable for use in a system that relies on batteries to function. As electricity is
one of the big challenges not only in the least developed countries, continuous monitoring
of those RSU nodes relying on the battery power by predicting their batteries’ lifespan is
needed to avoid the failures that might be raised from deploying these units and failure to
obtain the data that were to be generated from those road units. This research aims:

• To develop a GSM/GPRS-based RSU that communicates the data to the database
while powered by the battery;

• Evaluate the effect of RSSI and the data transmission frequency on the current con-
sumption of a battery-based RSU; and

• Identify the appropriate ML method to forecast the battery discharging time of the
RSU in order to replace the battery.

The GSM signal strength in urban and rural locations is not always the same, and the
RSSI might also vary by location in urban or rural areas. This work shows how poor signal
and frequency of data transmission contribute to the reduction of the expected battery
running time of a GSM-based RSU. The RSU data communication begins to degrade as the
battery power becomes low. The major contributions of this paper are the following:

• To propose an IoT-based RSU’s data communication architecture;
• To determine the feature importance of RSSI and data communication frequency on

the battery discharging time of GPRS-based RSUs; and
• To identify the best ML model for the prediction of the RSU’s battery running time.

The results of this study will support the design and development of expected battery
running time prediction using features of IoT and ML. This system could be used by
road authorities and decision makers for the adaptation to increasing RSUs’ quality of
service. The remaining sections of this paper are as follows: Section 2 discusses the related
literature, Section 3 presents materials used during our experimentation and the methods to
achieve the results. Section 4 discusses the experiment and its results. Finally, in Section 5,
the conclusions with the future work directions are presented.

2. Related Works

Vehicle-to-Everything (V2X) communication and its constituents Vehicle-to-Vehicle
(V2V) and V2I communication are emerging technologies for addressing the pressing issues
of road transport management. These communication technologies are being used in
transport for different purposes including collision avoidance, traffic signal control at the
intersection, reducing congestion and many more [8]. All these technologies are associated
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with wireless technologies such as long-range (LoRa), Bluetooth Low Energy (BLE), Zigbee
and Wi-Fi communication that consume power [9,10]. These wireless technologies are
accused of having some disadvantages in their uses such as that Zigbee can introduce
higher latency and LoRa has multi-hop communications and high costs [11]. An advanced
objective function zero (AOF0) routing algorithm together with a datagram transport layer
security protocol in a fog network were proposed and revealed to have good performance,
promising for it to be successful in power and delay reduction. The proposed AOF0 not
only extends the life of the network but also includes a simple method for lowering network
overhead compared to other objective functions [12].

Technologies for V2X communication face various challenges during data transmis-
sion including power consumption and latency resulting in poor transmission through-
put [13,14]. The V2I communication system was created to ensure the reliable and au-
tonomous operation of the systems. RSUs are at the heart of vehicle monitoring by allowing
information sharing through sending the alert message to other vehicles around and com-
munication with the traffic control center [15]. IoT, WSN, LoRa technology and cellular
wireless networks have enabled vehicles and RSUs to collect real-time data for analysing
the driving behavior of the drivers [16]. Within a few years, it is anticipated that there will
be numerous vehicles on the road with Wi-Fi [17].

Various methods are currently being adopted to power the roadside nodes. RSUs are
substantial hardware and have a considerable effect on the infrastructure of the vehicular
ad hoc networks (VANET). The RSUs’ consistent operation ensures the effectiveness of the
VANET’s goals. Lithium-ion batteries have become widespread in recent years. RSUs are
being powered through lithium-ion batteries, acid batteries, solar and energy harvesting-
based methods to communicate with road vehicles [18]. They are the most dominating in
the market as they are economical for use in various products [19]. However, for effective
data sharing, RSUs need to be powered enough. RSU sleep scheduling and joint placement
in a VANET environment were proposed to optimize RSU power consumption [20]. Energy
consumption optimisation with a green scheduler consisting of prediction, ON/OFF and
evaluation algorithms was suggested to lower the RSU’s power consumption [21]. A
remaining-useful-life prediction method was proposed to forecast the expected battery
lifespan using a gathered recurrent unit neural network and soft-sensing method while
reducing failure risks [22].

Battery capacity estimation is one of the noteworthy features of the BMS. Battery ability
indicates the battery’s maximum storage capability, which is critical for the battery’s state of
charge (SOC). A hybrid method consisting of a convolutional neural network and attention
mechanism was proposed to predict the SOC of lithium-ion batteries [23]. An advanced
battery management system based on artificial intelligence was proposed; the method uses
advanced power electronics and AI to recognize early signs of battery degradation [24].
There have been efforts to predict the health of a battery. Lithium-ion batteries are used
as the main power sources in electric vehicles, mobile phones and uninterruptible power
supply devices as they have high-energy, high-power density and a long cycle life [25].

The performance of the LSTM algorithm for predicting the state of health of recharge-
able lithium-ion batteries was compared to that of an RNN-based algorithm [26]. For the
efficient operation of a BMS applied to a lithium-based UPS device, a deep learning-based
model that can forecast battery life was investigated [27]. The relationship between RSSI
and the battery lifespan in WSN was evaluated by using mTOSSIM, which permits an
estimation of the power consumption in a long-term analysis as well as the battery lifetime
of the devices [28]. The reinforcement learning technique was used to evaluate the radio
environment while designating appropriate ways to reduce overall power consumption
and increase reliability resulting in battery lifetime extension [29].

In [30], the authors described the conditions of the distribution of WSN nodes. A net-
work was created to increase life expectancy by changing network topology. The method
to calculate network life expectancy was analysed and assessed. It was observed that the
overall lifecycle of each network can be changed by the developed structure of a network.
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Both humidity, temperature and other environmental factors have been demonstrated in
other studies to have a substantial impact on RSSI in the outdoor environment. The RSSI
metric is sensitive to numerous variables that cause it to fluctuate [31]. Studies that worked
on V2X revealed that RSSI of any received data shows the quality of wireless links [32].
Moreover, in [33], the authors used Li-ion cells in the experiments to evaluate the impact of
both RSSI and the impedance on the power line communication. The impedance and DC
power sources output voltage were calculated for the equivalent resulting in the circuit’s
output voltage.

In this study, the RSSI and data transmission frequency were considered to evaluate
their effects on the RSU battery power consumption. Both RSSI and current consumption
by transmission frequency were gathered from the experiment and were used as predictors
of RSU’s battery’s expected running time. Electrochemical and thermodynamic reactions
to analyse battery ageing were not considered in this work. Moreover, the effects of
temperature, humidity and other environmental factors that affect the RSSI value were
assumed to be out of the scope of this work. Impressed by the problems mentioned
above, this paper aimed to measure an RSU battery’s power consumption, describe the
IoT architecture to send the data to the road traffic management center and evaluate the
appropriate ML method to forecast the battery running time of the RSU before it dies and
needs to be replaced.

The GSM signal strength in urban and rural locations is not always the same; the RSSI
might vary by location in urban or rural areas based on various factors. The overall objective
of this paper was to determine the RSSI of different locations while also determining the
power consumption by RSUs in our targeted locations. This work aimed to show how
poor signal and frequency of data transmission contribute to the reduction of the SOC
of GSM-based RSUs and identify the correlation between RSSI and current consumption.
The RSU data communication begins to degrade as the battery power becomes low. With the
introduction of sensors at intersections, it is now possible to implement an adaptive traffic
signal control strategy to optimise traffic flows by adjusting signal timing in real time based
on traffic conditions.

In the least developed countries, developing a WSN for IoT applications that work
on LoRA and other technologies might cost a lot of money. Hence, as in many countries,
the GSM cellular network is well established, building applications and systems that
are cellular communication-based might cost less as the network infrastructures have
already been established. The East African Community (EAC) is adequately covered by
the mobile network. According to the ITU, GSMA mobile connectivity is estimated at
76%. One-area network membership by Rwanda, Kenya, South Sudan and Uganda has
made communication among EAC Partner states simple. The ageing phenomena and
their stimulates must be understood and communicated in order to predict battery health.
The low availability of electricity services hinders the EAC region due to the excessive cost
of supply, insufficient interconnections and relatively high distribution losses of electricity.

3. Materials and Methods
3.1. Study Area

The City of Kigali (CoK) is the most active and progressive among other cities in
Rwanda. The city is located at a latitude of 10◦58′ S and a longitude of 30◦07′ E. The CoK
has a total area of 730 km2, a population of 1.2 million and a plus 4% urbanisation annual
growth rate. In recent years, the GoR has undertaken the preparation of several urban
development plans in the sectors of planning, transport and infrastructure. Currently,
the CoK counts 20 junctions that are signalised. However, they are inefficient as the signals
are not dynamically linked to traffic sensors to respond to changing demand. Moreover,
these junctions are having traffic cameras as RSUs that are mainly used to capture drivers
that violate road traffic rules. Experiments were conducted at five signalised junctions to
evaluate the impact of RSSI and the frequency rate at which the data are transmitted to the
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database on the current consumption of battery-based RSUs considered to be GPRS-based
sensor nodes.

The junctions were chosen based on the fact that they are the busiest intersections in
the CoK. One of the common characteristics of these junctions is that they are adjacent.
The intersections were given identification numbers (ID), ID 001 (Lat. 1◦57′39.13′ ′ S, Long.
30◦07′12.91′ ′ E), ID 002 (Lat. 1◦57′34.18′ ′ S, Long. 30◦7′0.88′ ′ E), ID 003 (Lat. 1◦58′7.73′ ′

S, Long. 30◦5′17.93′ ′ E ), ID 004 (Lat. 1◦58′9.99′ ′ S, Long. 30◦5′9.62′ ′ E) and ID 005 (Lat.
1◦58′7.77′ ′ S, Long. 30◦5′1.52′ ′ E), respectively. The entire average delay time at these
junctions would be reduced only when coordinated control of traffic signals is applied and
that has to depend on the traffic situation captured by the RSU imposed on the junctions.
As the traffic flow rate depends on the period of the day and the season, respecting real-time
traffic flow-based traffic signal scheduling could increase the effectiveness of the battery
state of charge [34]. Figures 1 and 2 show the aerial layouts of our areas of study.

Figure 1. Two consecutive junctions at Remera.

Figure 2. Three consecutive junctions at Rwandex.

3.2. Methodology

This part details the methodology adopted for measuring RSSI and battery current
consumption based on the data transmission frequency at five junctions where two experi-
ments were conducted. The first was to measure the RSSI. The sampling interval of RSSI
was every 20 s at each junction, and the overall data average was considered to be the RSSI
at the specific junction. The second experiment was to measure the current consumption of
the RSU at each junction with various frequencies of data transmission.

3.2.1. Road Side Unit

The RSU experiment setup was composed of the microcontroller, SIM 800L, GSM/GPRS
module, GPS module, current sensor, IR sensor and the 12 V battery supplying the RSU
node. Figure 3 shows the internal part of the RSU. This is the main part of our experiment
as it is the one that senses data and sends them to the remote database for further analysis:
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• Microcontroller: This is the core part of data acquisition. The actual programmable board
serves as the central nervous system, and flow chart logic is built here. The GSM/GPRS
module is linked to the microcontroller, allowing for the connection of sensing devices to
the board. The GSM/GPRS module transmits data as well as other information to the
database;

• GSM/GPRS Module: To transmit the data to a remote web server, an Arduino Uno
module interface was used. This GSM/GPRS module works with GSM frequencies
in the range of 850–1900 MHz. The module’s protocol allows data to be sent to the
database via the GSM network;

• GPS module: The GPS module interoperable with the Arduino Uno was using satellite
data to locate the source of data. These data are of invaluable usage by road man-
agers and transport in charge to quantify traffic flow based on RSU battery power
consumption;

• IR Sensor: An infrared sensor can be used to detect motion or objects, based on the
perceived parameter in the environment. The infrared sensor module contains both
the transmitter and receiver. An IR LED serves as the transmitter, while a photodiode
serves as the receiver [35]. A system that uses IR sensors to measure traffic density
and a microcontroller to manage the switching of traffic lights in response was pro-
posed [36]. This has shown that the dynamic traffic-controlling system outperformed
the static and conventional traffic-controlling systems;

• Current sensor: This sensor measures current ranging between−5 A and 5 A. A model-
based sensor error detection and isolation for Li-ion cell batteries were used to deter-
mine battery degradation. An online load current and state-of-charge estimation and
the findings offered valuable knowledge for reducing the structural complexity and
expense of using lithium-ion batteries in the future [37].

• Lithium-ion battery: A 12 V/7 Ah was used to supply current the node.

Figure 3. Internal circuity of the RSU.

3.2.2. Received Signal Strength Measuring

The RSSI determines the strength of the signal power received in a certain place.
The RSSI quality is mainly affected by the distance between the transmitting and receiving
devices. However, other factors also affect the RSSI value, including the positioning, sensor
geometric orientation, climatic influences and so forth that were out of this work’s scope.
The power, responsiveness and orientation of the antenna with respect to the transmitter
significantly affect the received signal of the receiving node [38]:

RSSI = −10nlog(d) + V (1)

where d presents the distance between the transmitter and receiver’s antennas, n is the path-
loss constant that varies based on the environment, and V is the fixed constant accounting
for system losses.
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To gain the RSSI values at the junctions in Figures 1 and 2, the GSM module was
connected to the microcontroller. Python codes were written in the microcontroller where
the path on the computer to store the data that responded to the GSM module from the
base station was created, and the data were saved in the comma-separated values (CSV) file
to the specified path. The AT+CSQ AT command was sent to the GSM module connected
to an Arduino, and the GSM module was responding to the signal quality in the timing
advance (TA) value through the nearby base station of the GSM network. Table 1 describes
key AT commands used to gain the RSSI values at the junctions.

Table 1. Description of AT Commands used.

AT Command Use

AT+CSQ=? Signal strength report
AT+CREG? Registration status and access technology of the serving cell
AT+SAPBR=3,1, Connecting to GPRS
AT+HTTPINIT Initialises the HTTP service

3.2.3. Current Consumption Measuring

Degradation affects the performance of the battery [39]. The current sensor was used
to acquire the current consumed by the RSU components. In a general way, the power
consumption of the RSU was looked at in three ways: the power consumed by the sens-
ing units (each component/sensor of the RSU), the power consumed by receiving units
while processing the data and the power for radio unit (GSM) when it is transmitting the
processed and packed data to the database; this RSU power consumption is calculated in
Equation (2). The current consumed by the node’s components while the GSM module was
OFF was measured and recorded. Thereafter, the GSM 800L module was connected to the
circuity in order to connect to the GSM network for data communication, and the variation
in current consumption was observed. The variation caused by the radio unit module was
considered, as the hypothesis was that the battery running time depends on both the RSSI
and the frequency at which the data are transmitted to the database, assuming that the
current consumed by the sensing part does not change:

CTot = CSens + CProc + CTrans (2)

where CTot is the total current consumption of the roadside unit, CSens is the current
consumption of the sensing unit, CProc is the current consumed by the processing unit and
CTrans the current consumed by the radio unit (GSM module). Figure 4 details the circuitry
current consumption by GSM/GPRS when transmitting the data to the database.

Figure 4. Current acquisition process.

The RSU current consumption (CTot) increased or decreased based on the increase or
decrease of the processing unit’s current consumption (CProc) and the current consumed
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by the radio unit (CTrans). The CTrans varies based on the change in data transmission
frequency. The CTrans depended on the RSSI value of the location where the RSUs were
located. The current consumed by the sensing unit (CSens) remained constant as the RSU
components were the same at different locations. In our experiment, the current data were
captured and then transmitted to the database every 20 s, 40 s and 60 s, respectively, where,
later on, the data were extracted in CSV format and analysed in Python to evaluate the best
ML model for the prediction.

Different researchers used current sensors to determine battery degradation by devel-
oping model-based sensor error detection and isolation for Li-ion cell batteries. An online
load current and state-of-charge estimation were proposed and their findings offered valu-
able knowledge for reducing the structural complexity and expense of using lithium-ion
batteries in the future [37]. Batteries’ capacity can be measured in the amount of current
consumed and capacitance decline trend. When the capacitance of the battery drops below
80% of its nominal capacitance, the endpoint of the battery’s life is reached [40,41]. At this
time, the battery’s failure threshold is set to 80%. Therefore, in this work, the test bed was
powered by a 12 V battery (12 V/7 Ah), and the state of health (SOH) is determined by
Equation (3):

SOH =
Ct

Cm
(3)

where Ct denotes the capacitance of tth cycle, and Cm represents the nominal capacitance
of the battery. Considered deterioration of battery performance was reflected by the
capacitance of batteries. While the definition of the remaining useful life (RUL) of the
battery here was considered for our 12 V battery, the work time before the battery drops to
the failure threshold was given by Equation (4):

RUL = Cm ∗ 0.8 = 9.6Ah (4)

Hence, the prediction of the remaining usefulness of the lithium-ion battery based on
previous current consumption data can be calculated by Equation (5), and the predicted
SOH to reach the end-of-life of the battery here was referred to as a capacity below 9.6 V:

SOHp
t+1 = f ([SOHr

t , SOHr
t−1, . . . SOHr

t−w+1]) (5)

SOHp
t+1 is the prediction value of step t, SOHr

t is the observation value of step t, and w is
the length of the slide window.

3.2.4. RSU Data Communication

The layers of the architecture in our proposed work are the data acquisition layer
(RSU), the network connectivity (BTS) that was built on the GSM communication and the
service layer for the traffic manager and other concerned users to visualise and export the
data. The RSU is capable of transmitting the data to the remote database. The roadside
unit collects the data, packs the data and sends them to a remote database where the data
can be extracted or exported in any format for further analysis. Different sensors can be
integrated into the RSU. The current measured and sent to the database was read when
the RSU processing part started to send the data to the database using GPRS protocols.
Figure 5 presents the architectural diagram of the data communication.

Table 2 describes the acquired data, where “ID” represents the intersection identi-
fication number, and “Longitude” and “Latitude” are the geographic locations of the
intersections, “RSSI” is the average value of the signal at the area and the average current
consumed within that area by the interval of data transmission to the database. The current
consumption is estimated in amperes, and it is symbolised by A.
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Figure 5. System architectural diagram.

Table 2. Description of RSSI and current consumption by RSU and location.

Intersection Latitude Longitude RSSI 20 s [A] 40 s [A] 60 s [A]

ID001 1◦57′39.13′ ′ S 30◦07′12.91′ ′ E −53 0.10 0.08 0.21
ID002 1◦57′34.18′ ′ S 30◦7′0.88′ ′ E −67 0.13 0.11 0.05
ID003 1◦58′7.73′ ′ S 30◦5′17.93′ ′ E −53 0.10 0.09 0.02
ID004 1◦58′9.99′ ′ S 30◦5′9.62′ ′ E −61 0.11 0.08 0.02
ID005 1◦58′7.77′ ′ S 30◦5′1.52′ ′ E −77 0.17 0.15 0.09

Figure 6 shows the readings by the network cell info Android application that was used
to identify the BTS location. The application was used to determine network signal strength
and local serving cell information. The network operator and operator ID information at
each location were collected and shared with the network operator to help us in identifying
the geolocation of the BTSs. This information was used later on to measure the distance
from RSU to BTS. The distances from ID001 to BTS were 50 m, ID002 to BTS (30 m), ID003
to BTS (30 m), ID004 to BTS (40 m) and ID005 to BTS (50 m), respectively. Figure 7 shows
where the BTS were located on some of the junctions in the study.

Figure 6. Various RSSI by location and operator ID.
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Figure 7. Position of BTS at the junctions ID001 and ID003. (a) the BTS positioned at 50 m from
intersection ID001 and (b) the BTS positioned at 30 m from intersection ID003.

3.3. Data Preparation for Forecasting

The two models were evaluated by using training and validation datasets to predict
the battery health of the RSU node based on the RSSI value of where the RSU is imposed
and the current consumed when transmitting the data to the database. The dataset was
divided into training and testing datasets. The training dataset comprises 70% (11,880)
and the testing dataset consisted of 30% of the total recorded data (16,973) during our
experiments. Four categories, namely RSSI value, and current consumption when data
are transmitted every 20 s, 40 s and 60 s, respectively, were considered as predictors. They
were labelled as RSSI (dBm), current_20 s (current values when data were being sent every
20 s), current_40 s (current values when data were being sent every 40 s) and current_60 s
(current values when data were being sent every 60 s), respectively. The data values of
these attributes were stored in the database and were later on exported in the form of CSV
files to apply the ML models to the data.

3.4. Machine Learning Models

In this work, two prediction methods were used to evaluate the best prediction
model for battery SOC using both predictors’ RSSI values and the frequency of the data
transmission to the database. The SVM and RF for classification and prediction were
used as they are technologies that can reduce road authorities’ time loss by offering them
RSU’s battery charge insights. ML methods for predicting battery health are indeed a
kind of data analysis that automates the creation of analytical models. It is based on the
idea that systems can learn from data, discover patterns and make judgments or forecasts
with minimal or no human intervention. The first step was to collect data. Measurable
parameters such as RSSI, the frequency at which data were communicated to the central
database and current data were recorded during RSU operation. The next stage was to
extract the characteristics of the battery to be discharged. The third was to train an ML
model to describe the link between the extracted variables and battery running time.

Feature extraction is a vital process that has a substantial impact on battery perfor-
mance. More meaningful and precise input data will result in more relevant and precise
predictions. To train the ML algorithm, some researchers used battery health model metrics
such as electrical resistivity, series resistance and polarisation capacitance as input features.
This method necessitates the use of an electrical model using online state estimation tech-
niques [42,43]. During data preparation, the following steps were followed: data collection,
pre-processing, model training and selection, model training and selection, model feature
selection and then the prediction.
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• Data collection: At this stage, the RSSI and current consumed values from various
locations (RSUs) were gathered. The data provided insights on the variation of RSSI
by location, and the current consumed when data are transmitted with respect to
different frequencies of the data transmission to the database;

• Data pre-processing: Data were pre-processed to remove missing values and irrelevant
values. After this, features to predict RSU’s battery SOC were carried out, features
were extracted and data were split;

• Model training: The appropriate ML algorithms based on the current consumption
problem were evaluated. SVM and RF have been considered. This was followed by
training both models on the pre-processed data;

• Model evaluation: The performance of each trained model was evaluated using
metrics such as mean absolute error (MAE) and the R2;

• Feature selection: This consisted of selecting the most relevant features that strongly
influence the current consumption;

• Prediction: The models were applied to the collected data to make predictions about
current consumption and behaviours based on changes in the transmission frequency
of the data to the remote database.

Figure 8 shows activities in the process where RSSI and current data collected were
used for model evaluation. The method for predicting the RSU’s battery health was
depicted using ML models.

Figure 8. Data collection and processing.

3.4.1. Support Vector Machine

SVM, which is a supervised ML algorithm, was introduced by Vapnik in 1995 to solve
classification and regression problems. The SVM is one of the supervised learning models
that investigate data and identifies data samples used for classification. Assuming that
battery power consumption is a regression problem X, RSSI (x1), the frequency at which the
data are sent to the TMC are the time stamp 1 (x2), time stamp 2 (x3) and time stamp 3 (x4)
are considered as input (predictors) for SVM, in order to understand how the response
X depends simultaneously on the predictors in our context assumed to be (x1), (x2), (x3)
and (x4). Given the training data consisting of the input matrix X = [x1, x2,. . . , xn] and an
output vector Y = [y1, y2,. . . , yn], the SVM construct an optimised linear regression through
mapping the input vector x. SVM in ML approaches includes a set of learning methods and
shows better results [44]. SVM performs linear and nonlinear classification. SVM supports
linear and nonlinear regression applications [45].

3.4.2. Random Forest

RF is a prediction method categorised as ensemble learning that integrates multiple
decision trees. It is one of the data mining tools used in the ML framework. It can be used
for both classifications, regression problems and time series forecasting. The RF classifier is
a collection of decision trees derived from the random training set. It combines the votes
from various decision trees to figure out the final class of the test object. It has a series of
decision paths from the node to the last leaf safeguarded by a sub-feature. Prediction is a
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sum of individual features and the mean value of the topmost region covered by the training
set. Given a training dataset A = (xi, yi), i = 1, 2,. . . , n, (X,Y)∈ Rm × R, the input matrix X
consists of n samples with m features, and the output Y is a target vector. The RF adopts the
bootstrap re-sampling method to form N tree sample sets (Sk, k = 1, 2,. . . , N tree) randomly
from the original sample set S, the number of elements of Sk is the same as that of S (where
k is the current number of iterations). In bootstrap samples, approximately one-third of
the data in the original sample set S which are called out-of-bag (OOB) data are not drawn,
and the remaining data are called in-bag data [46]. Random survival forest (RSF) being an
extension of RF to regular random forests, independent bootstrap sampling was used to
handle multicollinearity while examining lifetime prediction of lithium-ion batteries

3.5. Models’ Validation

Various metrics for evaluating regression models have been developed and used.
The performances of the models were assessed by using the usual model performance
metrics mean squared error (MSE), mean absolute error (MAE), root mean squared er-
ror (RMSE) and the R2 [47]. The MAE, MSE, RMSE, and the R2 were the indicators used
to determine the performance of the SVM and RF models [48]. The two key parameters
that determine the RF model’s capacity to estimate are the number of trees created and
the variables used to construct each tree. The model’s mean square error calculation is
calculated by the OOB, and this is the method for measuring the prediction error and
computing the variable importance [49]. Equation (6) is used to calculate the error:

MSEOOB =
1
n

n

∑
i=1

(Oi − PiOOB)
2 (6)

The MSE is the average of a set of errors, and it is given by the Equation (7):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

where n is the observation number, and PiOOB is the average of the OOB’s predictions across
all the trees. In this paper, the training dataset comprises approximately 70%, and the
testing dataset consists of 30% of the total recorded data. The MAE given by the Equation (8)
is a risk metric corresponding to the expected value of the absolute error:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (8)

The RMSE, which is the standard deviation of the residuals (prediction errors), is defined
by Equation (9):

RMSE =

√
∑n

1 (yi − ŷi)

n
(9)

The R2 values range from zero to one [0, 1]. Zero (0) illustrates that the current consumption
can not be predicted based on the historically recorded current, while One (1) implies the
perfect prediction and is given by Equation (10):

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳi)2 (10)

where ŷi is the predicted value of the ith sample, and yi is the corresponding true value for
the total n sample.

4. Results and Discussion

After generating the data, the Jupyter Notebook was used for data analysis and
graphical data presentations. In the following section, we present all steps conducted
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during our experiments where Arduino code is used for transmitting current data to a
remote server in different conditions of how often data are transmitted. Some assumptions
were made: (1) all RSUs at the junctions are fixed so that there are no changes in RSSI, (2)
the RSU transmit the data in a given interval of time to reduce power consumption, and (3)
the IR sensors are used to capture the traffic flow data.

4.1. Received Signal Strength Indicator

In five locations where the experiment was carried out, it was realised that the RSSI
varies from location to location. In our experiment, the receiver is a GSM module (SIM
800L); to obtain information about its RSSI at a particular location, we were sending an
AT command (AT+CSQ=?) to it with the help of an Arduino board, and the module was
responding with its current RSSI. However, there was no high variation between the RSSI
values in the areas of interest. The signal quality was excellent at four locations ID001,
ID002, ID003 and ID004, respectively, and good at one location ID005. At the two locations
(ID001and ID003), the RSSI was similar, leading to no significant difference in the power
consumption at both locations. Having assumed that battery power consumption is a
regression problem, the RSSI and frequency at which the data are sent to the database were
considered predictors for both models.

4.2. RSSI versus Current Consumption

In our experiment, it was observed that, when RSUs were sending data after every 20 s,
the module was consuming a high amount of current compared to 40 s and 60 s. The con-
sumption was also varying based on the RSSI value of the locations. Figure 9 shows the
correlation of the variables. The current consumption will increase if the RSU is fixed at a
location characterised by poor signal quality. To minimize current consumption, the RSU
will not have to send the data often. The worse the RSSI, the higher the power is consumed.
As the data were transmitted at a high frequency, the power consumed increased. As the
RSSI tends to marginal condition (−109 dBm), the data transmission frequency has to
be minimised in another RSU node to consume less current. On the contrary, the more
excellent the RSSI (−53 dBm), the less the RSU will consume the power. From the figure,
when the RSSI is not good (−77 dBm) and the data are sent first (every 20 s), the current
consumed is high between 0.13 and 0.23 A compared to when data are sent every 40 s
(0.14–0.20 A), 40 s (0.08–0.14 A), respectively, meaning that, when the RSSI is not good, the
option to reduce power consumption is by increasing the interval time to transmit the data
to the database.

Figure 9. Current consumption vs. frequency of data transmission.
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4.2.1. Collinearity of the Data

The collinearity was computed to assess the correlation between the RSSI, current_20
s, current_40 s and current_60 s variables. Hence, to predict the working time of the battery,
it is necessary to apply a direct relationship by combining the variables that might affect
battery health. Figure 10 shows the correlation of the variables. It also shows how all
parameters are related to estimating the average expected battery running time.

Figure 10. Pearson correlation between RSSI and current variation.

4.2.2. Data Pairwise

Figure 11 shows the pair’s plot that visualises the current distribution. Despite the
fact that current consumption is the challenge, the lower RSSI, the higher the chance for the
RSU battery to reach its discharging time. The higher transmission frequency also reduces
battery running time. Both parameters affect the system’s functionality, according to our
observations during our experiments and analysis.

Figure 11. Pair plot of the used variables.

4.2.3. Case 1: Data Are Transmitted Every 20 s

In Arduino coding, the minimum allowed time delay given for the module to receive
and respond to AT commands for GPRS varies from 20 s. This is the reason we started at a
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minimum of 20 s; then, we wrote GPRS code for transmitting data to a remote database
every 20 s. Figure 12 shows that the current consumed by the RSU increased as the
frequency of data transmission was at a higher frequency (20 s). As in the figure, the lower
the RSSI values (−77 dBm), the higher the current consumption was (0.17 A).

Figure 12. Current consumption vs. RSSI in 20-s time stamps.

At the location where the RSSI was −77 dBm, the current consumption when the RSUs
transmit the data every 20 s was 0.17 A on average compared to −67 dBm (0.13 A), −61 dBm
(0.11 A) and − 53 dBm (0.10 A and 0.09 A), respectively. The current consumed by the GSM
module when connecting to the GSM network to transmit the data every 20 s was higher at
ID005 (−77 dBm) compared to ID001 and ID003 where the RSSI was −53 dBm.

4.2.4. Case 2: Data Are Transmitted Every 40 s

In the same way as the previous experiment in the case of the 20 s rate, we wrote some
GPRS code for transmitting data to a remote database every 40 s. The average amount of
current consumed for SIM800L was varying based on the RSSI of the location and was better
compared to the previous case 1. For the location where the RSSI was −77 dBm, the current
consumption when the RSUs transmit the data every 40 s was 0.15A on average compared
to −67 dBm (0.11 A), −61 dBm (0.08 A) and −53 dBm (0.10 A and 0.08 A), respectively.

Comparing Figures 12 and 13, at the same location that was ID005 (−77 dBm), when
the data were transmitted to the database, the GSM in 20 s, the current consumed was
0.17 A compared to 0.15 A when it was every 40 s.

Figure 13. Current consumption vs. RSSI in 40-second time stamps.

4.2.5. Case 3: Data Are Transmitted Every 60 s

GPRS code for transmitting data to a remote database every 60 s was written. Ac-
cording to Figure 14, the average amount of current consumed by SIM800L was signif-
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icantly reduced. At the location where the RSSI was −77 dBm, the current consump-
tion when the RSUs transmit the data every 60 s was 0.04 A on average compared
to−67 dBm (0.04 A),−61 dBm (0.03 A) and−53 dBm (0.01 A and 0.01 A), respectively. This
leads to the fact that, when the transmission frequency is reduced, the current consumption
reduces at both locations where the RSSI is good and where it is not adequate.

Figure 14. Current consumption vs. RSSI in 60-second time stamps.

4.3. Comparative Analysis of the Models

To validate the prediction capability of the suggested models, the accuracy of the
RF versus SVM model was assessed to evaluate their performance. RSSI values, current
consumption and data transmission frequency were the inputs to the models. R2 is the
measure of how the values fit together in relation to the starting values; this is an indication
of goodness of how well unseen samples are likely to be predicted by the model. The MAE
represents the original-to-predicted value difference, and this is the average absolute
difference across our whole data set. The RMSE stands for residual mean square error or
prediction error. Compared to the SVM model, RF revealed a higher R2 and lower MSE,
MAE and RMSE. Figure 15 shows the prediction results from the comparison of the RF and
SVM model.

Figure 15. Comparison of the performance metrics.

The RF-based prediction model showed an R2 = 0.98, MSE = 0.06, MAE = 0.19 and
RMSE = 0.23, compared to SVM, which has an R2 = 0.94, MSE = 0.32, MAE = 0.22 and
RMSE = 0.47. The RF values were preferable to those of SVM, particularly when considering
the R2 of 98% for the prediction of the current consumption of RSU that communicate based
on GSM/GPRS. RF is a pattern recognition method that uses a synchronous learning strat-
egy to build a large number of classifiers and aggregate their results to form the final pre-
diction. RF is capable of performing classification, regression and unsupervised learning.
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5. Conclusions

In this paper, a battery-based RSU sensor node that communicated the road data using
GSM/GPRS protocols was developed. The major objective for the RSU development was
to evaluate experimentally and qualitatively the effect of the RSSI and data transmission
frequency on the current consumption of the RSU powered by the battery. We have
seen that the GPRS protocol consumes a slightly high amount of battery power. Rwanda
is commonly known as a 1000 hills country, and the GSM connectivity is covering the
whole country; hence, V2I, V2X and IoV applications can easily use GPRS instead of using
Lora, which might require other infrastructures. We have demonstrated that the power
consumption of the used module depends on how frequently the RSU will be transmitting
the data. Hence, in some areas that are not having high traffic flow rates, commonly
remote areas, it requires a low frequency of data transmission compared to clouded regions
that are commonly found in urban areas where a SIM800L-based RSU sensor node can
survive for many days running on a battery. The remaining useful life of the battery was
considered for our 12 V lithium-ion battery powering the RSU node, and the working
time before the battery drops to the failure was referred to as capacity below 9.6 V as the
threshold was 80% of the battery capacity. When the capacitance of the battery drops
below 80% of its nominal capacitance, the endpoint of the battery’s life is reached, and,
at this time, the battery needs to be taken for recharge. In this paper, we developed a
real-time monitoring system that uses IoT features, data processing and an ML prediction
model to help estimate the remaining RSU’s battery running time. RF has been proven to
outperform SVM. The proposed model will help road managers monitor the status of the
batteries at each location; thus, unexpected data losses caused by the batteries’ state of not
powering RSUs to transmit the data can be prevented. Through this work, it was shown
that integrating IoT and ML for data processing is adequate for processing and analysing
sensor nodes’ data from various locations. In the future, a comparison of GSM/GPRS and
other communication modes will be compared. Considering the period of the day and
season could also reduce the RSU discharging rate. The effect of time, season and traffic
signal cyclicity by comparing intersections in urban and rural locations will be conducted
to gain more insights into the current consumption. There is also another way of extending
this work by developing TinyML at the RSU node to forecast battery health. Environmental
factors including the weather and objects can also be considered to evaluate their effects on
the received RSSI.
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