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Abstract: Domain experts prefer interactive and targeted control-point tone mapping operations
(TMOs) to enhance underwater image quality and feature visibility; though this comes at the expense
of time and training. In this paper, we provide end-users with a simpler and faster interactive
tone-mapping approach. This is built upon Weibull Tone Mapping (WTM) theory; introduced in
previous work as a preferred tool to describe and improve domain expert TMOs. We allow end-users
to easily shape brightness distributions according to the Weibull distribution, using two parameter
sliders which modify the distribution peak and spread. Our experiments showed that 10 domain
experts found the two-slider Weibull manipulation sufficed to make a desired adjustment in >80%
of images in a large dataset. For the remaining ∼20%, observers opted for a control-point TMO
which can, broadly, encompass many global tone mapping algorithms. Importantly, 91% of these
control-point TMOs can actually be visually well-approximated by our Weibull slider manipulation,
despite users not identifying slider parameters themselves. Our work stresses the benefit of the
Weibull distribution and significance of image purpose in underwater image enhancement.

Keywords: underwater image enhancement; tone mapping; histogram specification; Weibull distri-
bution

1. Introduction

Underwater imaging is a preferred survey tool for marine environments yet optical
imaging is challenging [1], particularly with respect to illumination. Within water, light
attenuates with increasing depth; exponentially decreasing in intensity [2]. This is driven
by increased wavelength absorption and scattering [2], resulting in low contrast images that
often suffer from colour reduction and blurring effects. To lessen these effects, underwater
surveys must utilise strong artificial lighting on camera platforms [3]. However, this can
cause inconsistent lighting patterns. Such inconsistencies may be both deliberate, such as
lighting adjustments to limit the interest of fish shoals, which can obstruct seafloor imaging
and impede investigation. They can also be unintentional, like non-uniform illumination,
light distortion and shadow effects. These may be caused by variation in the height or
angle of imaging platforms, induced by alternative deployment methods and prevailing
weather conditions. The quality of underwater images is, therefore, highly variable with
low correspondence between images. Features such as seafloor-dwelling organisms may
be poorly visible or irregular in appearance and, thus, annotation tasks can be severely
hindered [1,4].

Tone mapping, which manipulates image histograms (or brightness distributions),
can be an effective method to enhance the appearance and/or visibility of image features
and suppress non-desirable lighting effects. Tone mapping can be framed as a problem
of mapping an input brightness distribution to a target output distribution, such as in
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Figure 1. It uses a tone curve, or transform curve, which simply defines how to change
image brightness values.

Figure 1. An example of tone mapping: (A) an input image, (B) an enhanced output image, (C) their
corresponding brightness distributions and (D) the tone map that matches the input histogram to the
output histogram.

Tone maps such as this can be created using photo-editing tools, such as Photoshop or
GIMP. In this example, a user can, effectively, make their own input to output (brightness)
tone curve, see Figure 2.

At the start, a user is presented with an input to output ‘identity’ mapping; simply a
graph with a line at 45◦ (A). This linear tone curve means that an input brightness, of say
b1, maps to an equivalent output brightness, b2 i.e., b1 = b2. This is true for all brightness
values in this case. A user can then select (B) and move (C) control-points up or down to
alter the curve shape. Movement upwards causes brightness values to increase, or become
brighter, whereas movement downwards cause values to reduce, becoming darker. Finally,
a smooth interpolation is made between the adjusted control points to define the overall
tone adjustment (D).

Figure 2. A diagram of tone map creation and interactive manipulation: (A) an input to output
‘identity’ mapping, (B) selection of control-points to modify the mapping (C,D) a smooth interpolation
to create the final tone map.

However, bespoke tonal adjustments such as these are time consuming. Since benthic
(seafloor) surveys, for example, typically capture thousands of images there is interest
in finding automatic adjustments of images. Perhaps the best known automatic tone
adjustment is histogram equalization (HE). The method begins with the observation that
an image that has a flat, or uniform, brightness histogram conveys maximum information
(entropy) [5]. In this case, all brightness values are in use, and in an equal amount; they are
equalised. This visually translates to image details appearing more conspicuous. In HE,
a tone curve is found that maps an input image to an output with a flat histogram [6,7].
However, HE is too simplistic in formulation and often produces images with contrasts
that are both unnaturally low and high (in different image regions). Moreover, underwater
images are intrinsically dark, particularly those taken in deeper waters. The requirement
for artificial lighting to capture adequate imagery leaves images dominated by a strong
spot-light or halo effect. Thus, their histograms are rarely uniform and any attempts to
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enforce this behaviour can lead to abnormal brightness changes. In Contrast Limited
Histogram Equalisation (CLHE) [8], the aim again is to flatten the histogram of the output
image. However, the set of allowable tone curves are constrained so that they are neither
too steep nor too shallow. CLHE has the advantage that it is a simple method and often
produces improved, though not preferred, tone-renderings of images [9]. Tone mapping is,
of course, a large field. In the context of underwater imaging, a range of algorithms have
been applied, including [8,10–18]. See [19,20] for a review of underwater image processing.
Since the data collected from underwater imagery, and its usage, is highly diverse, it is
crucial to consider the purpose the imagery serves (and its audience) when designing, or
evaluating, an enhancement. However, to our knowledge, existing automated algorithms
are rarely designed from the perspective of an end-user, nor do they reliably produce
outputs which are always preferred by the users.

We might say that automated algorithms are constructive, in the sense that they
provide an algorithm that makes an output image without user involvement. In this paper,
we consider a descriptive approach. We propose properties that an automated algorithm
should have. We then adopt these properties—in a simplified user tone-manipulation
scenario—without specifying how an automated algorithm should work. Rather, we
manipulate the brightness values, in the same way that the data suggests an automated
algorithm should alter them.

Our work builds on the prior art of Weibull Tone Mapping (WTM) [9,21]. A Weibull
distribution (WD) is a smooth & unimodal function that is parameterised by two numbers
that control the peak location and spread of the distribution [22,23]. In Weibull Tone
Mapping, the brightness distributions of an input and a user-adjusted output image are
first represented as WDs. Then, the tone map, that alters the input image to the output,
is defined as the function that maps the underlying input WD to the target output WD.
Significantly, for identifying benthic habitats from imagery, images tone-mapped using
WTM were found to be preferred by domain experts over their own bespoke adjustments.

The prior work on WTM [9,21] did not allow users themselves to enhance images
according to the WTM theory. A key contribution of this paper is that it allows such direct
manipulation. First, given an input image, we can calculate its WD. Next, the user defines a
target output WD by adjusting two sliders. These sliders alter the peak position and spread
of the target WD. The user adjusts the sliders, whilst simultaneously viewing the live tonal
alterations in the output image. They continue until a desirable enhancement is reached.
In the case where users find the WTM image unsuitable, they can carry out an advanced
manipulation by manipulating control-points on a tone curve.

For our study, domain-experts were tasked with enhancing images of benthic habitats
such that details important for annotation purposes were more conspicuous. Broadly, we
found that the two-slider WTM adjustment simplified the image enhancement task, thereby
making users more productive in image annotation. Mostly, observers did not use the
advanced manipulation. Yet even when they did, their output images were, almost always,
found to have WD distributions. This may indicate that over-time, as users become familiar
with our tool, the need to use the advanced manipulation would further diminish.

In this paper we make the following contributions:

1. We develop the WTM algorithm into an interactive tone mapping tool to enhance
underwater imagery, allowing end-users to design targeted tonal enhancements more
quickly and simply.

2. We show that arbitrary histogram adjustments using two intuitive parameters (ap-
proximating brightness and contrast) are generally sufficient to support image analysis
by domain experts.

3. We further demonstrate, on a large dataset, that the brightness histograms of underwater
images can be described and adjusted very effectively using the Weibull Distribution.

4. We demonstrate that characteristics of desirable underwater image enhancements are
strongly linked to image purpose; for example, identifying and annotating specific
image features.
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This paper is organised as follows: in Section 2. we provide a background on tone
mapping, in Section 3. we recap our WTM algorithm. In Section 4 we present a series of
experiments to evaluate the performance of WTM. Lastly, in Section 5. we conclude the
findings of this study.

2. Background

The histogram of a brightness image L(x, y), denoted h(b) = hist(L(x, y)), records
the frequency of pixels of a given value b. It is often useful to normalise h, creating a
probability density function (PDF), by dividing the raw frequencies of the histogram by its
sum. For the remainder of this paper, we assume all histograms sum to 1 and all image
brightness values lie in the interval (0, 1].

Let I(x, y) denote the RGB pixel values at location (x, y) in a colour image. As defined
in HSV [7], we define brightness as the maximum of R,G and B, denoted as follows:
L(x, y) = max(I(x, y)). Using the maximum, rather than the mean, for example, allows
for simpler calculation of output colour images. Given an input colour image Iin(x, y),
the corresponding maximum brightness input image is denoted as Lin(x, y). Given an
output brightness image Lout(x, y),(created by tone mapping, for example) the output
colour image, Iout(x, y) is computed as:

Iout(x, y) = Iin(x, y)
Lout(x, y)
Lin(x, y)

(1)

Our brightness is the per-pixel maximum of R, G and B, Iout(x, y) ∈ (0, 1]l; that is,
the maximum definition ensures that Iout(x, y) is in the display range, see [24]. In contradis-
tinction, if we had defined brightness to be the mean of R, G and B, L(x, y) = mean(I(x, y)),
then the output colour image (Equation 1) could have values larger than 1 and, thus, not be
displayed directly. By using the maximum of R, G and B as our brightness, we avoid the
question of what to do if the manipulated brightness values fall outside of the display range.

Often, in image processing pipelines (and workflows), the input brightness image is
modified to make an improved output image. For example, if the details in an image are
too dark to see we might brighten the image and, conversely, if the pixels are too bright
we might darken the image. Both these adjustments, as well as many others, can, thus,
be thought of as mapping an input image with a brightness histogram h(b) to an output
image with a desired target brightness distribution htarg(b). The venerable Histogram
Equalisation (HE) [6,7] operates in this way. Here, the target distribution, htarg(b), is a
uniform or equalised histogram.

Importantly, there exists an increasing function of brightness t()—often called a tone
map—such that the histogram of hist( f (L(x, y))) is uniform.

Lout(x, y) = t(Lin(x, y) (2)

The function, t(), is the cumulative distribution function (CDF), or integral, of the
input brightness distribution; a histogram that is normalised to sum to one.

t(b) =
∫ b

0
h(b) db (3)

We show a worked example of HE in Figures 3 and 4. Figure 3A,B depict an input
image and its histogram-equalised counterpart, respectively. In Figure 4 we show the
corresponding brightness distribution of this input image (A), labelled as ’HE’, and the
HE tone curve (B)—the cumulative distribution of the input (or HE) histogram (A)—that
delivers the output image. Note that a tone curve has low slopes for small and large
brightness values. In the equalised image in Figure 3B, this translates to a loss of details in
darker regions (i.e., bottom right) and bright regions (i.e., sponges on the cobble). In the
mid-brightness range of the tone curve, the steepness of the slope causes the equalised
output to appear overly enhanced, with too much contrast.
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Figure 3. Image enhancement example: (A) Unenhanced (original), (B) HE and (C) CLHE.

Figure 4. HE & CLHE tone mapping: (A) An Input PDF (HE proxy histogram) and its slope-limited
(CLHE) proxy, (B) their respective CDF’s or tone maps. Grey lines in (A) depict upper and lower
slope bounds of 2/L and 0.5/L respectively, where L = 256 bins. Grey shading in (B) highlights area
of each tone map that fall within the slope thresholds.

In Figure 3 we show a second enhanced image (C), possessing more detail than the
input image (A), yet without the artefacts present in (B). This has been enhanced using the
Contrast Limited Histogram Equalisation (CLHE) algorithm [8,10]; the tone curve of which
is shown in Figure 4B. We can see from this that the tone curve never has a slope less than
0.5 or greater than 2, shown by the shaded areas. This slope-constrained tone curve is the
cumulative distribution of the CLHE-derived histogram shown in Figure 4A.

CLHE strives to find a histogram h′(b) ≈ h(b), such that the minimum slope (m) and
maximum slope (M) of its cumulative histogram are bounded. Here, h(b) represents our
input (HE) histogram and, in this case, m = 0.5 & M = 2, as depicted by dotted lines in
Figure 4A. To understand how this is achieved, let us move to the discrete domain. We
map the continuous histogram h(b) to a discrete N-vector h, which has N bins and sums to
1. Here, the input domain (0, 1] is uniformly sampled into N regions. As such, the jth bin is
the interval ( j−1

N , j
N ] and hj is the percentage of brightness values in the image that falls in

this interval; under the assumption that histograms are normalised to sum to one.
In the continuous domain, the tone curve for HE is the integral of h(), see Equation (3).

In the discrete domain, we have an N-element tone curve, s, which is analogously defined.
Here the integral is replaced by a summation:

sj =
j

∑
i=1

hj (4)
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As the size of each histogram bin is 1/N, the slope of the tone curve at the jth
brightness level sj is defined as:

sj =
sj−sj−1

1/N , if j > 1

s1 = s1
1/N

(5)

Clearly, we can also write the slope as:

sj =
hj

1/N
= Nhj (6)

If hj = 1/M, then the slope of the corresponding tone curve (cumulative histogram)
is always equal to one; that is, the tone curve is a line at 45 degrees. As we would expect,
if we try and equalise an image that already has a flat histogram then the tone curve is a
null operation i.e., each input brightness maps to the same output brightness.

In the case of CLHE, we would like to flatten an input histogram, yet limit the extent
of this imposed uniformity, using a tone curve with a bounded slope that is neither too
large nor too small. The CLHE algorithm achieves this by finding a proxy histogram h′ that
is similar to the original but in which the slope conditions are adhered to. Mathematically,
we would like the distance, ||h′ − h||, to be small and the slope constraint m ≤ Nh′ ≤ M to
be met.

However, what, exactly, is meant by ‘small’ is not well defined. As discussed in [25],
CLHE appears to empirically minimise a least-squares error; indeed it generally returns
the same proxy as an algorithm that minimises the least-squares error. So, to a first
approximation, we can consider ‘small’ to mean a minimum least-squares error. The integral
of this proxy brightness histogram (Figure 4A) creates the CLHE tone map shown in
Figure 4B.

CLHE is often deployed in its adaptive form, which is called Contrast Limited Adap-
tive Histogram Equalization (CLAHE). In CLAHE, an image is tiled into several non-
overlapping regions, say a 4× 4 grid. We calculate the histogram of each tile and use CLHE
to derive a slope-limited tone curve. This tone curve is associated with the central pixel in
each tile. Individual pixels are then mapped to output values by bilinearly interpolating
the output values found for the four tone curves (from the four neighbouring centres).

Finally, the target distribution for the histogram of the output image need not be
uniform in any sense. Following initial recommendations by [26], the majority of CLAHE
applications to underwater images seek a target histogram modelled by a Rayleigh distri-
bution (RD) [27].

3. Weibull Tone Mapping (WTM)

In CLHE, the proxy brightness distribution is related to the actual brightness distribu-
tion, where the proxy cumulative histogram (the CLHE tone curve) has a bounded slope.
This implies that the proxy histogram itself adheres to the slope constraints.

Here, we wish to further constrain the shape of the proxy histogram beyond just
slope-limitations. Specifically, we represent brightness histograms by proxies defined by
the Weibull Distribution. To ease the exposition, we present the approach in the continuous
domain. However, in practice, all computations are carried out in the discrete domain.

In its two-parameter form, a Weibull distribution is defined as:

hW(b; λ, k) =
k
λ

(
b
λ

)k−1
e−(b/λ)k

, b ≥ 0, λ > 0, k > 0, (7)

where b is the brightness value, λ is the scale parameter and k is the shape parameter.
Typically, RGB images are eight-bit encoded, leaving 28 = 256 possible pixel values in

the interval [0, 255]. In this work, for mathematical simplicity, we assumed pixel values
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exist. ∈ [0, 1]. By default the Weibull distribution has a brightness scale (x-axis) that
stretches to infinity. Yet, for the Weibull distributions of interest in this paper we found
there are not significant Weibull probabilities for values larger than 2.55 (e.g., see [28]). We,
therefore, truncated the Weibull distribution, such that b ∈ [0, 2.55], and divided by 2.55 to
scale the distribution to the [0, 1] interval.

The Weibull parameters, λ and k, control the shape of the WD, broadly accounting
for the peak position and the slope or spread of the distribution, respectively, as can be
seen in Figure 5. These parameters encapsulate underwater image brightness distributions
well [9,21]. It has also been demonstrated that the WD can explain the contrast statistics of
natural images [29,30] and is correlated with our own perception of natural images [31].

Figure 5. Parameter control over WD properties: (A) λ modification and (B) k modification.

3.1. Creating a Proxy Brightness Distribution Using the Weibull Distribution

Here we wish to use Weibull distributions to drive tone-mapping. The steps in our
Weibull Tone Mapping approach are summarised in Figure 6. First, analogously to CLHE,
we wish to approximate the histogram h(b) of a brightness image L, by a proxy histogram
h′(b). However, here the proxy histogram is the ’closest’ Weibull distribution. The Weibull
proxy, h′ = hW(b; λ, k), is found by finding the Weibull parameters, λ and k, that minimise
the Kullback–Leibler (KL) divergence—as a measure of closeness:

min
λ,k

∫ 1

0
h(b)log(

h(b)
hW(b; l, k)

) db (8)

The KL-divergence is a probabilistic measure of the difference between the distribu-
tions h(b) and hW(b; l, k). If the two distributions are highly similar, then the KL-divergence
is low, with 0 reached only when h(b) = hW(b; l, k). Thus, we seek the λ and k that returns
the lowest KL-divergence. We approach the problem discretely, searching parameter pairs
of λ ∈ {0, 0.1, 0.2, · · · , 3} and k ∈ {0, 0.1, 0.2, · · · , 15}. These create a large diversity of
histogram shapes that fit suitably within the brightness range. In Figure 5A we see how
increasing λ results in a WD in which the peak location is right-skewed, simulating a
histogram of a ’brighter image. Whereas in (B), we see how decreasing k creates a flatter
and wider histogram. If attributed to an image, this would infer higher contrast.

In [9], we have access to an input image and a user-adjusted output image, enhanced
using a user-crafted tone curve (Figure 2). Thus, for input and output histograms, hin(b)
and hout(b), we find the Weibull proxies, h′in(b) and h′out(b), by minimising KL-divergence.
This results in proxy WDs that closely match the input and output brightness distributions,
as demonstrated in Figure 7A, in solid and dashed lines, respectively.
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Weibull
Tone Mapping

Find weibull proxy
of input brightness

2

*Set weibull proxy
of output brightness

3

Derive WTM
tone curve

4

Convert RGB image
to brightness

1

Tone map input
brightness image

5

Convert brightness
image to RGB

6

Input
image

Output
image

Figure 6. Weibull Tone Mapping flow chart. * Note that, in Step 3. we specify parameters (λ & k) to
create a desired WD (Equation (7)). This creates an original WTM enhancement. However, Step 3 can,
alternatively, approximate an existing tonal enhancement from its adjusted brightness distribution
(Equation (8)). Further description of the flow chart steps is provided in text.

3.2. Calculating the Weibull Tone Map

The tone curves that map the input and output Weibull proxy distributions to a
uniform brightness histogram are tin(b) and tout(b), respectively, as seen in Equation (3).
Where the corresponding CDF (or cumulative histogram), of a WD hW(b), is the tone
mapping function t() (as with HE). It is denoted as:

tW(b; λ, k) = 1− e−(b/λ)k
, b ∈ (0, ∞), (9)

The inverse of these tone curves, denoted as t−1
in (b) and t−1

out(b), therefore, map the
uniform distribution to the input and output proxies. In WTM, we map the original input
brightness image Lin(x, y) using the tone curve t(), so that the input proxy brightness
histogram matches the output proxy. We apply:

t(b) = t−1
out(tin(b)) (10)

This results in a tone map that closely approximates that created by an analyst,
as shown in Figure 7B.
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Figure 7. WTM method showing (A) WTM proxies of an Input and Output (user-adjusted) brightness
PDF and (B) the corresponding tone maps that transform PDFs from Input to Output. Dashed and
smooth lines depict User and WTM respectively.

In Figure 8, the corresponding images are shown, demonstrating that application of
the WTM tone map to image (A), results in image (C), that is almost indistinguishable
from the user-adjusted output image in (B). The tonal adjustments in this case produced
a slightly darker, but better contrasted, output image. Visibility of textural details im-
proved, aiding assessment of substrate complexity and, thus, annotation of the habitat type.
In general, over a large set of user-adjusted images, approximating tone curves in this way
generated outputs that were visually similar. Moreover, to the extent that there are visual
differences, these were ‘liked’ by users. Indeed, Weibull Tone Mapping delivered outputs
that were slightly preferred by observers, compared to the images generated by the users
themselves [9].

Figure 8. WTM example: (A) Input image, (B) User-adjusted Output, (C) WTM approximation of
Output image (B) and (D–F) parameterised WTM adjustments of (A).

3.3. WTM as a Parameterised Enhancement Tool

In our WTM method, we approximate input and output brightness histograms, (hin(b)
and hout(b)), by proxies that follow the Weibull distribution (h′in(b) and h′out(b)). Then, the
tone mapping, t(), that is applied to the input brightness image is the curve that maps the
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input to output proxy. The output brightness image is mapped from the input, according
to L̂out(x, y) = t(Lin(x, y)).

In the context of the parameterised tool we develop here, we continue to use the
Weibull proxy for the input brightness distribution. However, the behaviour of the output
distribution is determined by the user, by adjusting the two parameters that drive the
Weibull distribution. In effect, they define the output proxy distribution. An analyst can
simultaneously look at the tone-mapped output image while continuing to adjust the
Weibull parameters until a preferred result is found.

Under the hood, the users adjust the Weibull parameters, λ and k, as seen in Equation (7).
A high λ is associated with a histogram peak towards the brightest region in the dynamic
range of the image, whereas a high k decreases the slope, narrowing the peak and its spread
across the same dynamic range. Thus, increasing λ in ĥout(b) results in a WTM output
image, L̂out(x, y), that is brighter than its input, Lin(x, y). Here, we used the .̂ notation to
indicate a user-defined proxy). If we select a lower k than the input WD for the target
WD, this causes L̂out(x, y) to appear to have more contrast than Lin(x, y), with increased
visibility of edge pixels and textures. In Figure 8D–F we show a range of possible output
images following the parameterised WTM.

4. Experiments

In [9,21], we established that WTM delivered preferred tonal enhancements for ana-
lysts, in the sense that the enhanced images helped them to identify marine benthic habitats
from imagery. Here, we explore the usability and performance of WTM implemented
as a parameterised tone mapping tool. We investigate whether users find this approach
sufficient, compared to classic and manual control-point tone-mapping approaches, that
are more complex. The experimental design and the results are summarised in the follow-
ing sections.

4.1. Domain-Expert Tone-Mapping

We asked 10 image analysts at our collaborator Gardline Ltd. (Great Yarmouth, UK) to
tonally adjust underwater images, using our bespoke GUI (Figure 9), so that details required
to annotate the content of the image (i.e., the habitat) were made as conspicuous as possible.
Participants were instructed to find a suitable WTM enhancement by manipulating two
sliders that modified the parameters, λ & k, of the target output WD. For user clarity, λ &
k were respectively named as Brightness and Contrast in the GUI. These terms have two
advantages. First, they are intuitively understood by the users; appearing in almost all
image adjustment tools. Second, the effect of WTM on an image often resembles a sort of
brightness and contrast change. This is entirely to be expected as the WD parameters, λ and
k, broadly map to the terms brightness (peak of a distribution) and contrast (distribution
width or spread). Additionally, as explained in WTM (Section 3), the WD of an input image
is mapped to the WD of a target and these distributions are described in terms of their
peak/brightness and width/contrast. In effect, the tone map that modifies one WD to
another is effectively making a brightness and contrast adjustment (by definition).

When a suitable WTM (contrast and brightness) adjustment could not be found,
an analyst could construct custom tone mapping, by pressing Advanced. This action would
plot the current WTM tone map that they could then modify using 6 control points fixed
along the x-axis at c ∈ [0, 0.2, . . . , 1]. Only movements that maintained a monotonically
increasing tone map were possible. Movements to each control point created a new
tone map using a Piecewise Cubic Hermite Interpolating Polynomial [32], or PCHIP
interpolation, through each point. All tone maps in this study were vectors of 256 values.
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Figure 9. Experiment GUI.

Each analyst received GUI training on how to make WTM and custom tone mapping
adjustments, with separate test data, before conducting the experiment. Following this
training, they were each asked to adjust (enhance) a unique dataset of 42 RGB JPEG images
(3236 × 4320), randomly selected from a larger underwater image dataset provided by
Gardline Ltd. The random selection contained images of 6 broad habitat classes (7 im-
ages per habitat), representing the breadth of biological and physical features expected
in the Gardline dataset. These classes are summarised in Table 1 and image examples
of each are shown in Figure 10. As we had 10 analysts, their adjustments resulted in
42 × 10 = 420 unique image enhancements. Augmenting this set, a further common sample
set of 18 images (3 per habitat class) was shared with each analyst. Each analyst viewed
the common sample set twice, creating a further (18 × 2) × 10 = 360 enhancements. This
allowed us to investigate the intra- and inter-person variability of the tonal adjustments.

Table 1. Habitat classes encountered within the image dataset.

ID Broad Habitat Included Sub-Habitats

SS1 Soft Substrate (SS) Heavily bioturbated SS,
Single sea pen & Sea pen community

SS2 SS Sponge Community -

HS1 Hard Substrate (HS) Gravel area, Scattered Cobbles,
Cobble and boulder area, Boulder area

HS2 HS Sponge Community -

Cor1 Reef Framework Coral rubble zone,
Dead & Live Desmophyllum pertusum reef framework

Cor2 Soft Corals Lone soft coral, Multiple soft coral colonies,
HS soft coral community

This study was conducted under ISO standard 3664:2009 conditions [33]; with par-
ticipants sitting approximately 70 cm from the display in a darkened room. On average,
analysts took ∼30 min to complete the experiment.
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Figure 10. Example of Habitat classes in image dataset: SS1 (Soft Substrate), SS2 (Soft Substrate
Sponge Community), HS1 (Hard Substrate), HS2 (Hard Substrate Sponge Community), Cor1 (Reef
Framework) and Cor2 (Soft Corals). See Table 1 for further class details.

4.2. WTM Suitability for Underwater Imagery

Domain experts in this study overwhelmingly used the 2-slider WTM to adjust the
underwater imagery, with 81% of the total image dataset satisfactorily enhanced without
recourse to the control-point tone curve adjustment. Moreover, on average, individual
observers selected WTM for 81% (±19) of their images. In fact, 60% of observers chose
WTM almost (≥90%) exclusively in their images. This would suggest that tonal adjustments
offered by WTM are highly suitable for enhancing underwater imagery, in accordance
with [9,21].

Observers in this study designed their bespoke enhancements to improve image
quality to aid image annotation. These enhancements were subjective and tailored and,
thus, might not adhere to aesthetic improvements in the conventional sense, such as
those that score highly with objective reference metrics. Indeed, studies have shown that
objective assessments of image quality do not always correspond well with subjective
perception [34,35]. That being said, we found the enhancements in this study were also
beneficial objectively. In Table 2 we present the following three popular no-reference
quality metrics for underwater image enhancement: (1) Underwater Image Quality Metric
(UIQM) [36], (2) Underwater Color Image Quality Evaluation (UCIQE) index [37] and (3) a
colourfulness, contrast and fog density (CCF) metric [38]. The UIQM evaluates image
colourfulness, sharpness and contrast, whereas UCIQE measures the degradation of colour
in the CIELAB colour space. CCF is inspired by underwater imaging absorption and
scattering characteristics to predict colour loss, blurring and fog/haze. For each, better
image quality is associated with a higher value. Image quality was, thus, improved in
enhanced output images, though not significantly in terms of UCIQE (colourfulness).
However, this is unsurprising, given that the higher values of this metric are associated
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with a more colourful image, yet the tonal adjustments in this study preserved chromaticity.
Assessing the output metrics in more detail, we see that the limited cases of custom control-
point adjustments improved image quality more, on average, than the WTM-enhancements.
However, in the following experiment we show that this was independent of the tone
mapping method and linked to the enhancements themselves.

Table 2. Mean image quality metrics for input images and enhanced outputs. Mean output metrics
are also displayed according to enhancement type: WTM and custom control-point adjustment.

Image UIQM UCIQE CCF

Input 0.68 (±0.02) 0.66 (±0.02) 7.84 (±0.2)
Output 0.74 (±0.02) 0.68 (±0.02) 8.47 (±0.18)

OutputWT M 0.72 (±0.02) 0.68 (±0.02) 8.29 (±0.19)
Outputcustom 0.85 (±0.04) 0.72 (±0.06) 9.18 (±0.47)

1. 95% confidence intervals are shown in parentheses. 2. Best results are highlighted in bold.

Intra-observer variability in this study was low for image pairs in the common set,
see Table 3. In row Agreement, we detail the proportion of times analysts used the same
tool (WTM or control-point) for each of the 18 images in the control set, which they viewed
twice. This showed that they typically selected the same enhancement tool, with 80% of
analysts choosing the same tool in >90% of their common images. Mean intra-observer
agreement was, therefore, also high, at 93% (±8).

In the remaining rows (Table 3), we consider the average relative extent to which the
observers’ tool parameters varied between image pairs when they selected the same tool.
Parameters here refer to λ & k for WTM-enhanced images or each of the control-points
in the interactively tone-mapped images. We compared variance between observers and
parameters using a coefficient of variation (CV), or normalized standard deviation. CV is a
standardized measure of dispersion around the mean, calculated as CV = σ

µ , where σ is
the standard deviation and µ the mean. A CV of zero indicates zero dispersion from the
mean and, thus, equal values.

For each observer, we determined the CV for each parameter (in each image pair)
and summarised by the mean across image pairs (MCV). In WTM-enhanced pairs, we
denoted this as MCVλ and MCVk in Table 3. For simplicity and brevity, we do not report
the MCV for each control-point (or tone-map parameter). Instead, we first derived the
average control-point CV in each image pair (creating one summary measure) and, then, as
before, derived the mean of this across image pairs, denoted as MCVc in Table 3. Lastly,
if an enhancement tool was not used by an observer, we denoted the absent MCV values
by ‘-’ in Table 3.

Table 3. Intra-observer variability across image pairs.

Observer 1 2 3 4 5 6 7 8 9 10 Mean Std

Agreement 1 1 1 1 0.61 0.94 0.94 1 0.94 0.83 0.93 (±0.08) 0.12
MCVλ 0.11 - 0.06 0.07 0.05 0.08 0.08 0.08 0.09 0.03 0.07 (±0.01) 0.02
MCVk 0.11 - 0.13 0.12 0.08 0.13 0.1 0.12 0.12 0.07 0.11 (±0.01) 0.02
MCVc - 0.19 - - 0.28 - - - 0.14 0.06 0.17 (±0.09) 0.09

1. Agreement = proportion of matching decisions across image pairs. 2. MCVλ, MCVk = mean CV for λ & k in
WTM enhanced pairs. 3. MCVc = mean CV for control-points in control-point enhanced pairs (CV here refers to
mean CV across 6 control-points). 4. Hyphen denotes when enhancement tool was not selected. 5. 95% confidence
intervals are shown in parentheses.

When using WTM, analysts typically introduced more variation between image pairs,
in terms of k, a proxy for contrast, than λ, a proxy for brightness. Comparatively, there
was more variation in control-point adjustments between images, with the exception of
observer 10 whose control-points varied by MCV = 0.06, on average. Increased MCV
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is unsurprising with the control-point tool, as the potential for difference increases with
more parameters (or control-points); here requiring 6 compared to 2 in WTM. These results
demonstrated that WTM parameters were more similar and, thus, analyst adjustments
were more consistent.

Variability between observers (inter-personal) is particularly likely in studies such as
this, as observers manipulate images according to their own aesthetic preferences. In terms
of tool preference, we found, on average, that 81% (± 4) selected the same enhancement
type across images; specifically, the favoured tool in the dataset, WTM, see Table 4. There
was a comparable proportion to the full dataset.

Table 4. Inter-observer variability across image pairs.

Agreement MCVλ MCVk MCVc

0.81 (± 0.04) 0.13 0.21 0.26
1. Agreement = proportion of matching decisions across image pairs. 2. MCVλ, MCVk = mean CV for λ & k in
WTM enhanced pairs. 3. MCVc = mean CV for control-points in control-point enhanced pairs (CV here refers to
mean CV across 6 control-points). 4. 95% confidence intervals are shown in parentheses.

Using MCV, we assessed similarity of selected parameters across images for each
tool. Note that here MCV refers to the average across all CV values i.e., across all observer
image pairs. As with intra-personal variance, we found that observer adjustments using
WTM were more similar across images than those enhanced with the control-point tool.
For images enhanced with WTM, observers were again more varied in their selection of k,
than λ. For the remaining images, control-point adjustments were, comparatively, more
variable on average. Assessing the MCV in all of these cases provides only relative compar-
ison. It is not possible to say what is a good value. However, a value closer to zero suggests
higher similarity of observer adjustments when using WTM. This general behaviour of
end-user WTM preferences is promising for future development of an automatic WTM.

4.3. Simplification of Control-Point Tonal Manipulations

In previous work [9], it was found that, often, an analyst-defined control-point tone
curve could be well approximated by WTM. That is, the control-point tone curve could be
interpreted as the tone adjustment that maps a Weibull approximation of the input bright-
ness distribution to the Weibull approximation of the control-point-adjusted brightness
distribution. Thus, we wondered if the same result would be found here in the case of
control-point adjusted images. In this paper, when an analyst could not obtain a suitable
output using the WTM slider adjustment, they resorted to a custom control-point manip-
ulation. Here, we ask whether—like the prior experiments—these custom adjustments
might also be interpreted as a WTM. If this was found to be the case this would imply that
the WTM sufficed in general, but that finding the best WTM could not always be easily
found using the two slider adjustment.

In Table 5, we summarise the colour difference between WTM approximations and
their custom-enhanced counterparts. We adopted the CIELAB Delta E (or ∆E∗ab) as a
measure of colour difference. First, we converted a custom-adjusted RGB image to its
corresponding CIELAB (CIE 1976 L∗a∗b∗) image, where, at each pixel, we had a L, a
and b triplet. Describing CIELAB is beyond the scope of this paper, but suffice to say
that L represents brightness, whilst a and b encode the chromatic aspects of an image,
see [39]. Second, we calculated the CIELAB image for the WTM approximation. Denoting
dependence on the custom- and WTM-adjusted images using the subscripts c and w,
respectively, the ∆E∗ab difference for one pair of corresponding pixels is calculated as:

∆E∗ab =
√
(L∗c − L∗w)2 + (a∗c − a∗w)2 + (b∗c − b∗w)2 (11)

Significantly, CIELAB was designed to be a perceptually uniform space that correlates
with perceived colour difference [39]. In that regard, a ∆E∗ab of approximately 1 coincides
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with a just noticeable difference. In terms of images, if the average ∆E∗ab calculated between
images (across all pixel pairs) is up to 5, then images appear the same, or similar [40].

Table 5. Summary statistics for mean ∆E∗ab (across pixel pairs) between custom tone-mapped images
and their WTM approximation.

Mean % Images < 5 % Images < 1

2.98 (± 0.52) 91 11
1. 95% confidence intervals are shown in parentheses.

We found that the average colour difference between our WTM- and custom-adjusted
image pairs was small, with an average ∆E∗ab of 2.98 (±0.52). Furthermore, a significant
proportion (91%) had a mean ∆E∗ab < 5, demonstrating that, for the most part, custom tone
maps could be convincingly approximated using WTM. In Figure 11 we show example
images that were tone-mapped by an expert, and their WTM approximations. The colour
differences between each pair was <5, and, in each case, the differences were near indistin-
guishable to the observer. These results indicated that when a control-point adjustment was
made (∼20% of adjustments) the adjusted images could be well-approximated by the WTM
model (i.e., the closest WTM adjustment resulted in a similar image visually). Additionally,
these successful WTM approximations (mean ∆E∗ab < 5) did not jeopardize image quality
in an objective sense, with metrics equivalent to their custom counterpart, see Table 6.

Custom tone maps that could not be well matched by WTM were varied in behaviour,
see Figure 12. In general, they appeared to be complex operations, with, sometimes, multi-
ple transitions between very low and steeper gradients. This is a morphology that is not
consistent with WTM tone maps, which are smoother and simpler. Aesthetically speaking
these tone curves can, counter-intuitively, lead to too little and too much contrast in parts
of an image and cause it to appear unnatural. However these outlier tone adjustments
were preferred by the analysts as they helped them to see details important to identify
the image content; in this case, the habitat. Thus, they did not need to be aesthetically
pleasing. That said, there were few outliers and only 9% of control-point tone maps were
not well-approximated by the Weibull approximation method. Combining the successful
WTM approximations (mean ∆E∗ab < 5) with the observer-selected WTM enhancements,
we found that, for >98% of image adjustments, there was a suitable WTM to enhance
the image in a way that was useful for the analyst. This offers the promise of supporting
analysts to make quicker adjustments of their images, with control-point tone adjustments
rarely required.

Figure 11. Example of WTM approximation of custom control-point adjustments. Colour difference
between the custom and WTM image is summarised by mean ∆E∗ab across pixel pairs.
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Table 6. Mean image quality metrics for custom tone-mapped images and their successful WTM
approximations (mean ∆E∗ab < 5).

Image UIQM UCIQE CCF

WTM approx. 0.85 (±0.04) 0.72 (±0.06) 8.94 (±0.43)
Custom 0.85 (±0.04) 0.71 (±0.06) 9.14 (±0.48)

1. 95% confidence intervals are shown in parentheses. 2. Best results are highlighted in bold.

Figure 12. Example of observer tone-maps using WTM and the custom (control-point) enhancement.
Custom tone-maps here could not be approximated by WTM i.e., they did not meet mean ∆E∗ab (<5)
threshold for approximation.

4.4. Behaviour of WTM Enhancements

The experiments demonstrated that the majority of analysts preferred Weibull Tone
Mapping to support their benthic image analyses. In this section, we discuss these en-
hancements in more detail, contextualising them by considering the influence of image
content. Note that, when describing these tonal adjustments, we also include the WTM
approximations that had a mean ∆E∗ab < 5.

In general, analysts decreased λ between input and output Weibull Distributions in
the experiment (61% of images). Decreasing λ (a proxy for brightness) shifts the peak
of a brightness histogram towards a lower pixel intensity. This adjustment, thus, causes
a brightness reduction in images following WTM. This may have helped to lessen the
intensity of the light cone and halo-effect, which are common problems in artificially lit
underwater imagery.

Of the images that were darkened, 45% were classified as soft substrate (SS) habitats
(SS1 & SS2), as described in Table 1. In Figure 13A we show the mean standardized (Z-Score)
difference in WTM parameters, between input and output WDs, for each habitat class in the
image dataset. Note that the differences presented for average λ refer to cases where only
λ was decreased. The full results are presented in Appendix A. From this, we note that not
only did SS habitats 1 & 2 represent a large proportion of darkened images, but the extent
to which they were darkened was larger than average. In Figure 13B we detail the average
standardised (Z-Score) λ value across all input WDs for each habitat class. From this, we
see that SS images in this dataset were significantly brighter, on average, demonstrated
by a high λ value, likely due to the light and homogeneous appearance of sand and mud.
Decreasing λ, in output images, may have helped reduce the bright illumination (reflective)
effects on the seafloor, whilst highlighting the appearance of burrows (a distinguishing
habitat feature).
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Figure 13. WTM parameter variation with image class (habitat): (A) mean difference in WTM
parameters between input and output WD and (B) mean WD parameters across input images. All
values are presented as standardised Z−Scores for fair comparison. The λ and k differences in (A)
refer only to cases in which they were decreased and increased, respectively. Error bars represent 95%
confidence intervals.

Of the remaining images (55%), in which λ was decreased, the other habitats (HS1,
HS2, Cor1 & Cor2) were represented roughly equivalently; on average, ∼14% each. Yet
the extent to which λ was reduced in each was variable, see Figure 13A. Most notably,
the brightness of images classified as hard substrate (HS) (HS1 & HS2, Table 1), on aver-
age, reduced significantly less. Images of these more structurally complex habitats were
significantly darker than SS images (Figure 13B), containing increased shadow presence
around topographic features, such as boulders and cobbles. Small reductions in λ would
help to diminish the unwanted brightness effects mentioned prior, yet minimise visibility
reduction of distinguishing features within shadowed/darker image regions. Reef frame-
work (Cor1) and soft coral (Cor2) habitats (Table 1) can also feature such shadowing, due
to their pronounced height above the seafloor, in association with topographic highs. Yet
these images were, on average, darkened to a greater extent than HS habitats. Corals,
such as stony coral Desmophyllum pertusum in habitat Cor1 and soft coral Paragorgia arborea
in habitat Cor2, typically appeared very bright (Figure 13B) and sometimes dominated
the field-of-view. A logical enhancement may, therefore, be to reduce brightness. This
is particularly true when increasing contrast, as the intensity of pixels in the regions of
interest are elevated and potentially saturated.

Intensifying contrast is an important tonal adjustment in underwater images [11,12,41],
to lessen undesirable image effects induced by light absorption in the water medium and
scattering due to particulates (i.e., marine snow) [19]. It is no surprise, therefore, that contrast
was enhanced in 74% of images. Analysts achieved this with WTM by decreasing k (a proxy
for contrast), which flattened the peak of the brightness histogram. In 43% of images in
which k was decreased SS habitats (SS1 & SS2) were contained. This reduction in k was
also significantly greater for these habitats on average, as shown in Figure 13A. Images of
SS habitats were the most poorly contrasted in this work, indicated by the high k values
in Figure 13B. Images typically lacked edge details and contained more cryptic fauna,
such as those that burrow into the sediment. Increasing contrast would, therefore, allow
analysts to improve seafloor texture visualisation; in this case, obtaining absence of gravels
and pebbles in order to classify an SS habitat. Distinguishing between habitats SS1 &
SS2It would also allow easier searching for sponge presence; a factor equally applicable to
discriminating between HS habitats (HS1 & HS2), which represented 37% of k decreased
images. However, as evident from Figure 13A, contrast was increased significantly less
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than average in HS images. HS images, as well as the soft coral and reef images (Cor1 &
Cor2), typically appeared better contrasted (Figure 13B) and highly textured. The degree to
which k was reduced in each of these was, therefore, likely to be less. Few soft coral and
reef images received a contrast enhancement by analysts and those that did were adjusted
significantly less than average. Enhancing contrast in these images, thus, appears less
important to analysts. In fact, of the 26% of images in which a contrast reduction was
enforced, by increasing k, 66% were classified as soft coral or reef.

A final remark on the behaviour of the WTM adjustments was that 17% compressed
the dynamic range. Shrinking the dynamic range reduces contrast, but can, however, also
be used to lessen the intensity of stark bright and dark regions. It is no surprise, therefore,
that this dynamic compression mostly occurred in images containing soft corals (51%) and
Reef (38%). These images are typically dominated by bright corals in the image foreground,
surrounded by a very dark background. Reducing these intensities would allow for better
visualisation of cryptic features.

As expected, these results demonstrated that the types of tonal adjustments made by
end-users are logical. They are clearly driven by the underlying brightness distributions
of underwater images, which, in turn, are a product of artificial lighting interactions with
the seafloor. For example, a positive trend exists between the brightness of images and
the extent to which they are darkened, as well as a negative trend between general seabed
complexity and the degree of contrast enhancement.

5. Conclusions

Building on our prior work, we showed here that the Weibull distribution is highly
suitable for both modelling, and adjusting, the brightness histograms of underwater images.
Its properties are driven by two reasonably intuitive parameters which roughly conform to
the brightness (peak) and contrast (spread) of a distribution. These preserve the natural
behaviour of pixel intensities in underwater imagery well, but can also provide enhance-
ments to support annotation through their modification using our Weibull Tone Mapping
(WTM) algorithm.

We demonstrated, here, that the characteristics of user tonal enhancements are tightly
linked to the content of underwater imagery and their associated brightness distribu-
tions, and the purpose the imagery serves (in this case habitat annotation). This explains
the increased preference amongst analysts for bespoke tone-mapping adjustments over
more general automatic tonal enhancements identified in prior work. Although time-
consuming, control-point tonal manipulations offer end-users more complex and targeted
tonal enhancements. That being said, this work showed that, given the choice, annota-
tors rarely opted for control-point tonal manipulations. Instead, they preferred to utilise
WTM, specifying desirable Weibull brightness distributions by simply manipulating its
two parameter-sliders. Furthermore, in the few cases where a control-point tone map was
sought, the majority behaved like WTM.

Since most analysts enhance imagery according to the Weibull distribution, WTM is a
useful mechanism to grant analysts the ability to modify an image, such that it maintains
Weibull properties. It also strikes a good trade-off between the flexibility of bespoke control-
point manipulation and the simplicity and speed of an automated tone-mapper. Thus, it
can easily be used as a live modification tool alongside annotation. WTM also lends itself
well to future automation, by highlighting properties that an automated enhancement
should have to support underwater image analysis. We note that. although the design
and current function of WTM is domain-specific (underwater imaging), its usage could
extend outside of this scope. For example, future work could investigate its performance in
medical imaging or images collected for terrestrial- or aerial-based ecological surveys.
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Figure A1. Mean standardized (Z−Score) difference in WTM parameters between all input and
output WDs. Error bars represent 95% confidence intervals.
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