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Abstract: Adaptive human–computer systems require the recognition of human behavior states to
provide real-time feedback to scaffold skill learning. These systems are being researched extensively
for intervention and training in individuals with autism spectrum disorder (ASD). Autistic individuals
are prone to social communication and behavioral differences that contribute to their high rate of
unemployment. Teamwork training, which is beneficial for all people, can be a pivotal step in securing
employment for these individuals. To broaden the reach of the training, virtual reality is a good option.
However, adaptive virtual reality systems require real-time detection of behavior. Manual labeling of
data is time-consuming and resource-intensive, making automated data annotation essential. In this
paper, we propose a semi-supervised machine learning method to supplement manual data labeling
of multimodal data in a collaborative virtual environment (CVE) used to train teamwork skills. With
as little as 2.5% of the data manually labeled, the proposed semi-supervised learning model predicted
labels for the remaining unlabeled data with an average accuracy of 81.3%, validating the use of
semi-supervised learning to predict human behavior.

Keywords: human-behavior sensing; emotion recognition; human–machine interaction; automated
labeling; semi-supervised machine learning

1. Introduction

Human–machine interaction is a broad field of research that investigates the interaction
between human interfaces and dynamic systems [1]. In applications of human–machine
interaction, such as virtual reality and computer-based training and interventions, the
machine must be able to measure and react to human emotions to enhance real-time
feedback and allow for more adaptive systems. Current solutions require manual data
labeling by human observers to train machine learning models that can predict human
engagement behavior. This process is time-consuming and limits accessibility across
low-resource settings, making robust automated labeling essential to the success of such
systems [2]. For example, Liu et al. developed two computer-based cognitive tasks that
invoke three affective states for intervention in children with autism spectrum disorder
(ASD). We will interchangeably use the terms ‘autistic individuals’ and ‘individuals with
ASD’ to respect both views on identity-first and person-first language [3,4]. These tasks
required manual labeling by therapists to develop a supervised affective model [5]. An
additional study developed an immersive virtual reality system to train emotional skills in
students with ASD. One goal of the system is to update the social situations according to
the student’s emotions. To implement this real-time state change, an evaluator is required
to recognize the emotion of the child and guide them in the environment [6]. On the
other end of the spectrum, unsupervised machine learning methods, which do not require
labeled data, may work on occasion in these interventions, but they are not as reliable.
O’Hara et al. used unsupervised learning to classify human expressions, gestures, and
actions. While they did achieve high performance with different unsupervised methods, the
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generalizability of the models varied because they were sensitive to the subject identity [7].
Semi-supervised machine learning is an alternative that does not require as much manual
labeling as supervised learning, but is not as sensitive as unsupervised learning.

Semi-supervised machine learning is a technique used to predict the labels associated
with partially labeled data. It is a mixture of unsupervised learning, which trains a model
using unlabeled data, and supervised learning, which uses a fully labeled dataset. There
are two branches of semi-supervised learning: inductive and transductive. Inductive
methods aim to find a classification model for all of the data points, while transductive
methods are only concerned with assigning labels to the unlabeled data points [8]. For
our application, we need a trained classification model so we can utilize it on new data;
therefore, we will implement an inductive model. One common methodology for semi-
supervised learning is self-training, which is an inductive wrapper method. The algorithm
iteratively trains a supervised learning model to create pseudolabels which are predictions
with high confidence [9]. Self-training can be used to supplement manual data annotation
in labeling human behavior, which is necessary to enable more adaptive systems.

Semi-supervised learning is used in literature in a wide variety of applications to sup-
plement manual data labeling. One study used semi-supervised learning with multimodal
data to classify the manic states of patients with bipolar disorder [10]. Another study inves-
tigated supplementing manually labeled driver distraction data with unlabeled data. Using
this mix of labeled and unlabeled data, they developed a semi-supervised classification
model that predicts driver distraction with higher accuracy than completely supervised
models. This is because the semi-supervised models were less prone to overfitting, al-
lowing them to generalize better on unseen data [11]. Finally, a study used self-training
for multimodal emotion recognition, which showed significantly better results than using
semi-supervised learning with unimodal data [12]. While this machine learning methodol-
ogy can be applied to many applications, this paper evaluates the use of semi-supervised
learning to supplement manual data annotation of human behavior in a teamwork training
task for young adults with ASD.

ASD is a neurodevelopmental disorder influenced by environmental and genetic fac-
tors that is classified by challenges in social communication and interaction [13]. These
challenges result in difficulties when working in teams, leading to obstacles in securing
and retaining employment. Approximately 4 million of the 5.4 million adults with ASD in
the United States are either unemployed or under-employed, relative to their abilities [14].
Studies have shown that unemployment can lead to increased stress, depression, and
anxiety, as well as reduced self-esteem [15,16]. Therefore, it is essential to address deficits in
social interactions as they cast a shadow on outstanding qualities, such as precise technical
abilities, high tolerance for repetitive tasks, and reliability that autistic individuals can bring
to companies [17,18]. Recently, virtual reality and computer-based training and interven-
tions for individuals with ASD have been heavily researched because of their replicability
and modifiability. Collaborative virtual environments (CVEs) capitalize on the strengths of
virtual training and can be used to teach teamwork skills to autistic individuals. Teamwork
skills are associated with improved productivity and workplace performance [19]. They are
among the core skills sought by employers and can influence hiring decisions [20]. There-
fore, supporting autistic adults to acquire work-relevant teamwork skills may contribute
to not only job acquisition, but also improve workplace social communication skills [21],
problem-solving [22], and self-confidence [23]. Previous studies have shown the efficacy in
teamwork training for adolescents with ASD. For example, community-based vocational
programs can be instrumental in teaching technical and soft skills [24]. However, these
programs are uncommon and expensive, resulting in an inability to receive the resources
necessary to obtain meaningful employment [23]. An alternative to traditional teamwork
training is virtual reality (VR)-based training. VR has been shown to be an effective tool
for training social, emotional, and daily living skills [25,26]. One study utilized a virtual
environment course to teach college students creative thinking. The virtual environment
improved the student’s empathy and problem-solving abilities [27]. An additional study
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utilized virtual reality for social cue detection which enabled the participants to practice
rapport [28]. Building on these studies, our previous work developed CVE-based team-
work training tasks. However, to effectively encourage teamwork skills, the CVE must
provide real-time prompts based on the user’s current behavior state (engaged, struggling,
or waiting) [29]. In our previous workshop paper, we introduced automated behavior
labeling during collaborative tasks using an unsupervised K-means clustering model to
predict participant behavior which showed promising results on the preliminary data [30].
However, due to the rigidity of unsupervised learning, additional methods to supplement
manual data labeling are necessary. This work investigates the more advanced and adaptive
method of semi-supervised self-training.

Current research in the field of human–machine interaction relies on manual data
labels or unsupervised learning to implement adaptive systems. Our work seeks to address
the limitations of these two methods and offer an alternate solution by developing a semi-
supervised self-training affective model. The contributions of this paper are as follows:

• In this paper, we expand our novel multimodal dataset of autistic and neurotypical
individuals working together to complete a collaborative task in virtual reality.

• Using this dataset, we developed a semi-supervised self-training affective model.
In doing so, we determined the percentage of labeled data needed for consistent
high-accuracy results between our model and ground-truth labels.

• We compared the performance of our semi-supervised model to both a supervised and
unsupervised model to prove the effectiveness of this model. Our semi-supervised
model outperformed the unsupervised model and performed comparably to the
supervised model. The semi-supervised model is an improvement over the supervised
model when considering the trade-off between performance accuracy and manual
data labeling.

The following section summarizes the experimental design and data collection. Sec-
tion 3 describes the methods used for semi-supervised self-training and establishes metrics
for performance evaluation. Section 4 analyzes the results and discusses their implications.
Finally, the paper is concluded with a summary of the contributions of this work as well as
potential future research directions.

2. System Design

The following subsections describe the system design and data collection protocol for
the collaborative virtual environment.

2.1. Collaborative Tasks

Multimodal data were collected across three collaborative tasks designed and devel-
oped in Unity3D that simulate a work environment [31]. The three tasks include a furniture
assembly task, a PC assembly task, and a fulfillment center task as shown in Figure 1. In the
furniture and PC assembly tasks, two participants worked together to assemble furniture
and a PC, respectively. In the fulfillment center task, both participants were tasked with
transporting a pallet in the warehouse from the shelf to a loading area using a forklift.
We employed a participatory design process where we engaged with stakeholders and
end-users from various backgrounds to design meaningful collaborative tasks. We worked
with industry representatives from two companies, a certified behavioral interventionist,
two career counselors from two vocational rehabilitation centers, and three autistic adults.
Stakeholders were involved in both the design and development stages of the collaborative
tasks. These tasks were designed to incorporate numerous collaboration principles across
all tasks [32]. The participants needed to exchange information, take turns, and coordinate
their movements together to achieve the goals in each task. Table 1 describes each collabo-
rative task and their various aspects of collaboration. The design, development, and system
architecture of the three collaborative tasks used in this work were presented in detail in
our previous work [29].
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Figure 1. Collaborative tasks used for data collection.

Table 1. Description of the collaborative tasks.

Task Input Method
(Ease of Use) Description Aspects of Collaboration

Fulfillment Center Mouse and Keyboard
(Easy)

Drive a forklift to pick up and
deliver crates from a storage shelf
to a collection area in a warehouse

The two forklifts had varying
height capacities making teamwork

integral for success.

Furniture Assembly Haptic Device
(Required Extra Practice)

Assemble various pieces of
furniture such as a coffee table

and a bookcase using either
assembly instructions or an image

of the completed furniture.

The participants had varying
information in their instructions.

Also, each participant was tasked
with different aspects of assembly

making collaboration vital
for assembly.

PC Assembly Gamepad
(Required Minimal Practice)

Build a computer by putting
together different pieces of

computer hardware.

The two users had different pieces
of computer hardware as well as
extra components. In addition,
participants had mismatched
assembly instructions making
teamwork and communication
essential for task completion.

2.2. Data Collection and Processing

Data were collected in a system validation study with six pairs of participants (twelve
total participants) working in CVE-based teamwork tasks described in Section 2.1. The pairs
consisted one individual with ASD and one neurotypical individual that were matched
based on age and gender. Table 2 lists participant information. The study required the
participants to work in pairs to complete three collaborative tasks designed to encourage
teamwork and collaboration skills. To begin the study, participants were informed about
the experiment before completing consent forms. The participants were then directed
to separate rooms to have their eye trackers calibrated before logging on to the shared
virtual environment. This study was approved by the Institutional Review Board at
Vanderbilt University.

Table 2. Participant metrics.

Metrics ASD (N = 6) TD (N = 6)

Age Mean (SD) 20.5 (2.81) 22.83 (3.60)

Gender (% Male) 50% 50%

Figure 2 shows the collaborative virtual environment experimental setup. The par-
ticipants joined a shared virtual environment in separate rooms. Each participant had
three modalities for data capture: a headset, a controller, and an eye tracker. The game
controller was task dependent. A haptic controller was used in the furniture assembly
task, a mouse and keyboard were used in the PC assembly task, and a gamepad was used
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in the fulfillment center task. Based on the methods for feature extraction in [18], binary
features were extracted from these three modalities to capture aspects of teamwork. From
the headset, speech data were extracted to capture the interaction between the participants.
Four features were extracted from the game controller to determine if the participants were
actively moving toward the goal or away from the goal. Finally, two features were extracted
from the eye tracker to capture where each participant was focused. The features extracted
from each modality and their descriptions are listed in Table 3.
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Table 3. Features extracted from multimodal data with descriptions and examples.

Modality Binary Feature Description Example of ‘1’ for Each Feature

Headset Speech If the participant is speaking, the
feature is ‘1’ otherwise it is ‘0’.

Participant 1 is encouraging participant
2 in the PC assembly task by saying

“Great Job!”

Task-Dependent
Controller

Controller Activated If the controller is activated, the
feature is ‘1’ otherwise it is ‘0’.

Participant 1 moves the haptic
controller in the furniture

assembly task.

Object Manipulated
If the controller is activated in an area

of interest, the feature is ‘1’
otherwise it is ‘0’.

Participant 2 moves the haptic
controller to move a table leg in the

furniture assembly task.

Moving Towards Goal

Uses distance to determine if the
participant is progressing toward the

goal. If they are, the feature is ‘1’
otherwise it is ‘0’.

Participant 1 is moving a table leg
towards the desired position in the

furniture assembly task.

Moving Away from Goal

Uses distance to determine if the
participant is moving away from to
goal. If they are, the feature is ‘1’

otherwise it is ‘0’.

Participant 2 is struggling to move a
table leg in the furniture assembly task

and is moving away from the
desired position.

Eye Tracker

Focused on Object
If the gaze is focused on an area of

interest, the feature is ‘1’ otherwise
it is ‘0’.

Participant 1 is looking at the
motherboard in the PC assembly task.

Not Focused on Screen
If the gaze is not focused on the middle

of the screen, the feature is ‘1’
otherwise it is ‘0’.

Participant 2 is looking at the couch in
the furniture assembly task which is in

the outer portion of the screen.

2.3. Manual Data Labeling

After extracting features, the data were manually annotated to provide ground-truth
labels to validate the proposed method for semi-automated labeling. Three classes of be-
havior were chosen to encapsulate various aspects of teamwork in the CVE in consultation
with behavior professionals. The first two behaviors chosen were engaged and struggling.
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Engaged captures active collaboration between the participants and involvement with the
collaborative task. Struggling occurs when the participant is either not interacting with the
system, not advancing toward the goal, or disengaging with their partner. However, while
participating in collaborative tasks, there were times when the participants were neither
engaged nor struggling. Therefore, an additional behavior, waiting, was added. Waiting
represents taking turns during teamwork. This behavior occurs when a participant is not
actively working toward the goal, but their partner is. Under the guidance of a behavior
professional, two individuals that were familiar with the experimental protocol labeled the
six sessions of data independently and compared labels to ensure consistency. The labels
were determined using a flow chart of coding rules shown in Figure 3 in correspondence
with session videos. This flow chart did not always provide the annotators with a clear class
choice. In this case, they decided on the class based on the video and their perception. After
labeling all six sessions separately, the labels were compared. The two annotators reached
a 98% agreement. The disagreements were settled through discussion. The class distribu-
tions of the three behaviors for the six labeled sessions were as follows: engaged—15.37%,
waiting—50.27%, struggling—34.36%. The following section details the methods that were
taken to develop a semi-supervised model that supplements manual data labeling.
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3. Methods

The following subsections explain the semi-supervised algorithm used to automate
behavior labeling in a collaborative virtual environment and the performance metrics
that will be used to evaluate the results. The semi-supervised algorithm was written in
MATLAB [33].

3.1. Semi-Supervised Self-Training Algorithm

Figure 4 summarizes the semi-supervised self-training algorithm used to supplement
manually labeled data in a sparsely labeled dataset. However, our dataset was fully labeled
to validate this algorithm. When training the model, a minimal set of labeled data was
selected at random, and the remaining labels were withheld for comparison with the
model’s predictions. The amount of labeled data supplied to the model is discussed in the
following section.



Sensors 2023, 23, 3524 7 of 13

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Flow chart for manual data annotation. 

3. Methods 
The following subsections explain the semi-supervised algorithm used to automate 

behavior labeling in a collaborative virtual environment and the performance metrics that 
will be used to evaluate the results. The semi-supervised algorithm was written in 
MATLAB [33]. 

3.1. Semi-Supervised Self-Training Algorithm 
Figure 4 summarizes the semi-supervised self-training algorithm used to supplement 

manually labeled data in a sparsely labeled dataset. However, our dataset was fully la-
beled to validate this algorithm. When training the model, a minimal set of labeled data 
was selected at random, and the remaining labels were withheld for comparison with the 
model’s predictions. The amount of labeled data supplied to the model is discussed in the 
following section.  

 
Figure 4. Semi-supervised self-training algorithm. Figure 4. Semi-supervised self-training algorithm.

The algorithm begins by training a supervised machine learning model on the minimal
labeled subset of the multimodal data. The supervised model chosen was a support vector
machine (SVM) with a Gaussian kernel. The SVM algorithm aims to find the hyperplane
that best separates the classes of data points. This is achieved through optimizing the
hyperplane that minimizes the soft margin between classes [34,35]. We chose this model
because SVMs have a low computational complexity while providing high accuracy re-
sults in many applications [36]. We utilized MATLABs built in SVM functions for this
dual-optimization classification approach [33]. MATLAB automatically optimizes the hy-
perparameters during training. After training the model on the small subset of labeled
data, it is then used to make predictions on the remaining unlabeled data. The model
returns both the predictions and the confidence of each prediction. The confidence of
the predictions is the posterior probability of the prediction. The posterior probability of
inseparable classes is the sigmoid function:

P
(
sj
)
=

1
1 + exp

(
Asj + B

) (1)

where A and B are the slope and y-intercept of the hyperplane [37]. The confidence of
each prediction is checked, and if it is greater than 50%, that prediction is added as a
pseudolabel to the labeled dataset. A total of 50% was chosen to ensure that no classes
were equally probable (e.g., engaged = 50%, waiting = 50%, struggling = 0%) and to
ensure as little ambiguity between classes as possible. A new supervised model is trained
using the updated labeled dataset consisting the original ground-truth labels and the
new pseudolabels. The process of checking the confidence of the prediction and adding
pseudolabels to the labeled set is continued until over half of the data points are in the
labeled dataset. Due to the ambiguity of human behavior, there is not always a clear
behavior state. Therefore, as the process is iterated, the remaining data are more ambiguous,
meaning that fewer predictions reach the threshold confidence and fewer pseudolabels
are added to the labeled dataset. After fifty percent of the data points were in the labeled
dataset, the confidence of the predictions rarely exceeded the threshold.

After completing this process, the final labeled dataset is compared to the ground-truth
labels to determine how well the model performed. The following subsection discusses the
performance metrics used to determine model performance.

3.2. Performance Metrics

When training the semi-supervised model, the labeled data subset was chosen ran-
domly. Depending on the subset chosen, the class distribution of behavioral states (i.e. en-
gaged, waiting, and struggling) varied. This resulted in a highly variable performance
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across multiple models that was dependent on the labeled data supplied at the very begin-
ning. Additionally, the performance depended on the percentage of labeled data supplied
at the beginning. Therefore, when evaluating performance, both dependencies needed to
be considered.

The dataset contained six fully labeled sessions. Four sessions were chosen randomly
to develop the training dataset for the machine learning model, and the final two sessions
were used as a hold-out test set. The chosen training set contained 2014 data points and
the test set contained 1487 data points. Within the training set, the labeled and unlabeled
subsets were supplied randomly. A total of 500 trials were completed with different
labeled subsets of data supplied at the beginning to take into effect the first dependency.
Additionally, four sub-trials were completed to investigate the amount of labeled data
needed to develop a reliable model to evaluate the second dependency. These sub-trials
supplied the training set with 2.5% labeled data, 5% labeled data, 10% labeled data, and
25% labeled data.

To evaluate the performance of each sub-trial, the accuracy of all 500 trials was consid-
ered as well as the average accuracy across the 500 trials. Ideally, most of the trials would
result in high accuracy predictions on the test set with few trials resulting in low accuracy
predictions. We defined high accuracy to be above 80% and low accuracy to be below 70%.
We also hoped to achieve this with as small of a subset of labeled data as possible. The
final consideration was the performance of self-training semi-supervised learning versus
the performance of our previous work using unsupervised learning and fully supervised
methods. The results are presented and discussed in the following section.

4. Results and Discussion

To begin, we wanted to determine the amount of labeled data needed for consistent
results using our proposed method of semi-supervised self-training. Four sub-trials were
completed with varying amounts of labeled data supplied. Each sub-trial consisted 500 tri-
als with randomly supplied ground-truth labels. Figure 5 shows the results across all trials.
The test sessions used the model trained on the denoted percentage of labeled data in the
training set. No labeled data were supplied from the test sessions.
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As shown in Figure 5, with as little as 2.5% of the ground-truth labels supplied, over
75% of both the training and test trials resulted in models with greater than 80% accuracy.
By doubling the supplied labels to 5%, the average accuracy increases by approximately
2.5%. After that, the average accuracy levels off to the maximum possible, and there are
few trials with an accuracy of less than 80% accuracy. Therefore, with any random 10% of
the total data having ground-truth labels supplied, semi-supervised machine learning can
train a model that has maximum predictive accuracy.

In addition to accuracy, it is important to ensure that all the classes are being predicted.
Engaged only constitutes around 15% of the data; therefore, it is possible to achieve over
80% accuracy without ever predicting engaged. Figure 6 shows the confusion matrices for
both the training and test sessions using predictions made with the semi-supervised model
trained on 10% of the training data. As shown, the semi-supervised model occasionally
incorrectly distinguishes between waiting and struggling, but otherwise consistently pre-
dicts the correct labels for the remaining data. The misclassification between struggling
and waiting is due to the nuanced differences between these two classes. In addition to
the confusion matrices, we looked at state progression charts for both participants to see
when misclassifications occur. Figure 7 consists the state progression charts for one of the
training sessions and one of the test sessions. As shown in the figure, the predictions from
the semi-supervised model closely follow the trend of the actual behavior changes during
the collaborative tasks. The misclassifications, in general, happen when the participant
is quickly moving back and forth between two behavior states. The model over-predicts
waiting during these scenarios. For our application, this is ideal behavior. The future
application of this work is to provide real-time feedback based on the predictions of the
semi-supervised model. If the participant is struggling, the system will prompt the users to
work together, and if the users are engaged, the system will provide positive reinforcement.
When the participants are waiting, the system will not interfere. If the state is ambiguous,
the system should not interfere as it may cause confusion. Therefore, the model predicting
waiting in uncertain times allows the system to function as intended.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15 
 

 

participants to see when misclassifications occur. Figure 7 consists the state progression 
charts for one of the training sessions and one of the test sessions. As shown in the figure, 
the predictions from the semi-supervised model closely follow the trend of the actual be-
havior changes during the collaborative tasks. The misclassifications, in general, happen 
when the participant is quickly moving back and forth between two behavior states. The 
model over-predicts waiting during these scenarios. For our application, this is ideal be-
havior. The future application of this work is to provide real-time feedback based on the 
predictions of the semi-supervised model. If the participant is struggling, the system will 
prompt the users to work together, and if the users are engaged, the system will provide 
positive reinforcement. When the participants are waiting, the system will not interfere. If 
the state is ambiguous, the system should not interfere as it may cause confusion. There-
fore, the model predicting waiting in uncertain times allows the system to function as 
intended. 

 
Figure 6. Confusion matrices. Figure 6. Confusion matrices.

Our results imply that semi-supervised machine learning can be used to supplement
manual data labeling of human behavior with consistent high-accuracy results. Based
on this, the results can be compared to our previous work using unsupervised K-means
clustering to manually label a behavior state in the same CVE workplace. The methods and
results using clustering are discussed in detail in our previous work [30]. The unsupervised
clustering results presented here deviate slightly from the results in our previous workshop
paper because more sessions of data have been collected. Therefore, the previous code
was repeated using the same four sessions of data for training and two sessions as a test
to mimic the protocol for our semi-supervised model. In addition to comparing our semi-
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supervised method to our previously developed unsupervised method, we wanted to
compare it to supervised learning models as a baseline. Therefore, we tested three different
supervised models for comparison. Figure 8a shows the accuracy across three different
supervised models. The best model, which is a support vector machine with a Gaussian
kernel, is compared to the unsupervised and semi-supervised model in Figure 8b. The
semi-supervised accuracy shown is achieved using the model with 10% ground-truth labels
from Figure 5.
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It is shown that a completely supervised model outperforms both the unsupervised
and semi-supervised models, which is to be expected. However, the self-training test
accuracy is comparable to the supervised model, supporting that semi-supervised learning
methods can achieve high-accuracy results with limited labeled data. When comparing
only unsupervised learning and semi-supervised learning, the training accuracy is higher
using unsupervised learning, but the test accuracy is higher for self-training. Clustering is
more rigid than self-training, which can lead to overfitting and less generalizability on new
data, while self-training is less rigid. Based on this, we expected self-training to generalize
better on unseen data than K-means which is demonstrated in these results. There is a
trade-off between supplying a subset of ground-truth labels resulting in generalizability
to new data and providing no ground-truth labels and having less generalizability. In
general, human behavior is highly variable. Two individuals could both be engaged in
collaborative tasks while still acting differently. Therefore, generalizability is important in
our application, making semi-supervised self-training a reliable option for supplementing
manual data labeling.

5. Conclusions

In this paper, we discussed the use of semi-supervised self-training to complement
the manual labeling of human behavior. Although manual labeling is a reliable source for
ground-truth labels, it can be time-consuming and resource-straining. As such, there is a
need for an alternative method to automatically analyze the interpersonal social behavior
of the users in team-based tasks.

This paper investigated collaborative multimodal data using semi-supervised machine
learning to label users’ interpersonal behavior during team-building tasks in a CVE. In
doing so, we determined the percentage of ground-truth labels needed to generate a reliable
semi-supervised model in our application. With as little as 2.5% of the labels supplied, the
average accuracy across all data was 81.8%. However, there were low accuracy models
in the 500 random trials, which means that if the labels were supplied at random, this
method may not yield a model that generalizes well on new data. By increasing the number
of labels to 10%, semi-supervised machine learning resulted in consistent high accuracy
results across all 500 trials with an average test accuracy of 84.5%. Finally, we validated the
use of semi-supervised self-training against hand-labeled data and compared the results
to our previous method using K-means clustering and a fully supervised SVM model.
Semi-supervised learning enabled accuracy within 1.6% of a fully supervised model on
the hold-out test set and improved upon the unsupervised model by 4.1%. Due to its
generalizability on new data and a reduced need for tedious manual labeling, it is the
best choice model for predicting behavior states in a CVE to eventually provide real-time
prompts that encourage teamwork.

The ability to automate behavior labeling in human–machine systems is critical for
enhancing real-time feedback and making adaptive systems. With the methodology de-
scribed in this work, we were able to develop a reliable affective model with as little as
2.5% of the data manually labeled, reducing the workload and human error drastically. In
doing so, we can now implement a closed-loop feedback mechanism to provide real-time
feedback that encourages teamwork based on participant engagement. Our hope is that
this mechanism will enhance skill learning and provide an accessible tool for young adults
with autism to practice collaborative skills.

While the results discussed above show promise, it is essential to highlight the lim-
itations of the study and important targets for future research. First, our sample size
was relatively small. Recruiting more participants would allow us to further validate the
robustness of our model. Next, the model utilized does not consider temporal information
that human behavior can depend on. Additionally, our model is deterministic, meaning the
output is always the same for the same input. However, this is not always true for human
behavior which could contribute to the misclassification of the waiting and struggling states.
Based on the results described in this paper, future work will implement a closed-loop
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feedback mechanism that provides real-time feedback based on the participant’s behavior
as determined using semi-supervised machine learning.
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