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Abstract: Graph convolutional neural network architectures combine feature extraction and convolu-
tional layers for hyperspectral image classification. An adaptive neighborhood aggregation method
based on statistical variance integrating the spatial information along with the spectral signature of
the pixels is proposed for improving graph convolutional network classification of hyperspectral
images. The spatial-spectral information is integrated into the adjacency matrix and processed by
a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood
selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature
extraction, this method proves effective in capturing the spectral and spatial features with variable
pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and
Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly
improve classification accuracy. For example, the overall accuracy for Houston University data
increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify
hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy
in discriminating the seeds under increased ambient temperature treatments.

Keywords: graph convolutional network; adaptive neighborhood; laplacian matrix; hyperspectral
image classification; hyperspectral rice seed images

1. Introduction

Hyperspectral images (HSI) contain rich spectral and spatial information useful for
material identification. Recently, many methods based on deep learning tools have been
developed resulting in an increase in the classification accuracy and segmentation precision
of these images [1]. One of these methods is the use of graphs together with deep learning.
Many data structures that are non-Euclidean can be represented in the form of graphs [2,3].
Nowadays sophisticated sensing and imaging technologies are available for the acquisition
of complex image datasets. The resultant images have higher information content requir-
ing non-Euclidean space representations. Therefore, the use of graph theory combined
with deep learning in images has proved to be more effective for processing these images.
Based on convolutional networks and deep networks, the concept of Graph Convolutional
Networks (GCN) has been developed and applied to image [4]. An image with a regular do-
main (regular grid in the Euclidean space) is represented as a graph, where each pixel in the
image represents a node, and edges are the connections between adjacent nodes [5]. GCNs
are used to model long-range spatial relationships in HSI where a CNN fails [6]. One of the
most important parts of the development of the GCNs is the generation of the adjacency
matrix and the derivation of the Laplacian [7–9]. The adjacency matrix of undirected graphs
represents the relationship between vertices, in this case pixels. Quin et al. [10] proposed
a GCN method that markedly improved the classification accuracy in HSI by taking the
spatial distance between nodes and multiplying it by the adjacency matrix which contained
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spectral signature information. L Mou et al. [11] built the graph by using correlation to
measure the similarity among pixels and thereby identifying pixels belonging to the same
category. They built a two-layer GCN that improved the classification results. A drawback
of using GCN is the computational cost involved in constructing the adjacency matrix.
To address this problem, the authors in [12] constructed an adjacency matrix using pixels
within a patch containing rich local spatial information instead of computing the adjacency
matrix using all the pixels in the image. Another important work in reducing the compu-
tational cost is the one proposed by Hong et al. in [6], where the authors built a method
called MiniGCN, which allows training large-scale GCN with small batches. The adjacency
matrix is constructed using K-nearest neighbors, taking the 10 nearest neighbors of the
central pixel into consideration. For representing a HSI as a graph, many authors rely
on building the adjacency matrix using k-nearest neighbors [13,14], because it is an easy
method to understand and apply, but this method does not sufficiently capture the spectral
characteristics of hyperspectral data [15]. The superpixel approach [16,17] creates the graph
from superpixel regions to reduce the graph size.

Some authors have implemented neighbor selection using threshold, for example,
in hyperspectral unmixing applications [18]. Others have implemented adaptive shapes [19]
in classification methods that does not involve GCNs. In this work, we propose a novel
way of adaptively creating the adjacency matrix based on a neighbor selection approach
called AN-GCN. The general idea is to iterate over each pixel, aggregating neighbors that
belong to the same class as the central pixel based on a variance measure creating an
adjacency matrix. The algorithm selects a different number of neighbors for each pixel
thereby adapting to the spatial variability of the class in which the pixel belongs with the
aim of improving the classification and solving the uncertainty problem that arises due
to border pixels. The construction of the adjacency matrix is a crucial step for a GCN to
succeed in HSI classification [13]. The performance of AN-GCN is compared with GCN
methods that do not combine other machine learning stages in the architecture. An optimal
graph representation of the HSI as the adjacency matrix impacts the classification result
significantly. Recently, hyperspectral images are being used in agriculture for the analysis
of rice seeds [20–22], because an accurate phenotype measurement of the seeds using
non-destructive methods helps in evaluating the quality of the seeds, and contributing
to improvement in agricultural production [23]. Another reason for using hyperspectral
images for the classification of rice seeds is to save work and time, since these processes
are conventionally done manually by expert inspectors in the area [20,24]. Hyperspectral
rice seed images have been classified using only conventional machine learning methods,
and there is no report of using GCN based methods. To test the effectiveness of AN-GCN
method in classifying hyperspectral images of rice seeds, less than 10% of the rice image
data is used for training the AN-GCN and the remaining is used for testing and validation.
The main contributions of this work are (1) a novel way of computing the adjacency matrix
using adaptive spatial neighborhood aggregation to improve the performance of GCN
in HSI classification; (2) Performing classification of rice seed HSIs grown under high
temperatures using the AN-GCN approach.

2. Materials and Methods

This section presents the AN-GCN method based on the construction of the adjacency
matrix by adaptive neighbor selection. The goal is to characterize the homogeneity between
pixels for better discrimination between classes. Pixels that have a degree of homogeneity
most likely belong to the same class. For this, a variation metric is used to measure
homogeneity [25].

S2 = ∑(Xi − X̄)/n− 1, (1)

where Xi are the pixel intensity values per band that belong to a radius R, and n is the
number of bands in each pixel.

A radius R is selected based on unit distances using spatial coordinates as is shown
in the scheme of Figure 1. If R = 1, the algorithm selects only the four closest neighbors,
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a higher value of radius would select more neighbors. An initial radius is set to R = 100.
In order to select homogeneous regions, a variance measure is applied to the area covered
by radius R. The threshold values shown in Table 1 is applied to the variance value for
the different HSIs for decreasing the area covered by radius R, so that only pixels from
homogeneous neighborhoods are selected.

Figure 1. Scheme of neighbors selection using a variance radius.

Table 1. Threshold values for selecting neighborhood pixels for each HSI.

Scenes Threshold Value

Indian Pine 0.16
University of Houston 0.25

Botswana 0.026
Rice seeds 0.16

If the variance is larger than the threshold value, the coverage radius is decreased
until the desired variance threshold is reached. If the variance is smaller than the threshold,
the selected neighbors meet the criterion, and the pixels in the neighborhood belong to the
same class, thereby resulting in successful class discrimination.

The threshold value for each HSI is determined by calculating the average variance
of the set of pixels that are known to belong to the same class, then a unique threshold is
chosen for all classes. The threshold value is different for each HSI. The neighbor selection
is applied to each pixel of the HSI. Each pixel will have a different neighborhood depending
on the homogeneity of the region surrounding it. Once the neighborhood region with the
pixel neighbors for each center pixel is selected, the adjacency matrix Aad is built using the
radial basis function (RBF).

Ai,j = Exp(‖xi − xj‖)/σ2, (2)

where xi and xj are the pixel intensity vectors per band for pixels i and j, σ2 is a
control parameter.

After the construction of the adjacency matrix, the GCN algorithm is applied. The Lapla-
cian matrix computed from the adaptive neighborhood adjacency matrix is used to measure
how much the function value is changing at each node (graph gradient).

Lad = In − D−
1
2 AadD−

1
2 , (3)

where D is a diagonal matrix of node degrees and A is the adjacency matrix. The nor-
malized Laplacian matrix is positive semi-definite, and with this property the Laplacian
can be diagonalized by the Fourier basis U, therefore the Equation (3) can be written as
Lad = UΛUT , where U is a matrix of Eigenvectors and Λ is a diagonal matrix of Eigenvalues
λ. The Eigenvectors satisfy the orthonormalization property UUT = I. The graph Fourier
transform of a graph signal X is defined as F (X) = UTX and the inverse F (X)−1 = UTX̂,
where X is a feature vector of all nodes of a graph. Graph Fourier transform makes a
projection of the input graph signal to an orthonormal space whose bases is determined
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from the Eigenvectors of the normalized graph Laplacian [5]. In signal processing the
graph convolution process with a filter g is defined as:

X ∗ g = F (X)−1(F (X)�F (g)), (4)

where � is the element-wise product. The filter is defined by g = diag(UT g) and the
convolution Equation (4) using the transform of a graph signal is simplified as

X ∗ g = UgUTX, (5)

due to the computational complexity of Eigenvector decomposition in Equation (5), and as
the filter g is not localized, which means that it may take nodes far away from the cen-
tral node, Hammond et al. [26], approximate g using Kth order truncated expansion of
Chebyshev polynomials. The Chebnet Kernel is defined as

g =
k

∑
i=0

θiTi(Λ̂), (6)

where i represents the smallest order neighborhood, θi are the Chebyshev coefficients, k
represents the largest order neighborhood, T is the Chebyshev polynomial of the kth order
and Λ̂ = 2Λ/λmax − I. Replacing the filter of Equation (6) in the convolutional Equation (5)
is obtained,

X ∗ g = U(
k

∑
i=0

θiTi(Λ̂))UTX, (7)

X ∗ g =
k

∑
i=0

θiUTi(Λ̂)UTX, (8)

As UTi(Λ̂)UT = Ti(L̂), the Equation (8) can be written as

X ∗ g =
k

∑
i=0

θiTi(L̂)X, (9)

where L̂ = 2L/λmax − I and taking k = 1 and the largest eigenvalue of λmax = 2 [27],
Equation (9) can be written as:

X ∗ g = (θ0T0(L̂) + θ1T1(L̂))X, (10)

where T0(L̂) = 1 and T1(L̂) = L, the Equation (10) becomes:

X ∗ g = (θ0 + θ1L)X, (11)

To avoid over-fitting GCN assumes θ = θ0 = θ1, and replacing the Equation (3) for L
in Equation (11), the following equation is obtained:

X ∗ g = θ(I + D−
1
2 AadD−

1
2 )X, (12)

Therefore, using a normalization proposed by [27] I + D−
1
2 AadD−

1
2 → D̂−

1
2 ÂadD̂−

1
2

where Âad = Aad + I and D̂ii = ∑j Âadij. GCN uses a propagation rule for updating the
weights in the hidden layer iteratively until the output of the GCN converges to the target
classes. The propagation rule for GCNs is:

D̂−
1
2 ÂadD̂−

1
2 XΘ, (13)
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where Θ is a matrix of filter parameters (weigths). Most articles related to GCN represent
the propagation rule as follows:

Hl+1 = σ(D̂−
1
2 ÂadD̂−

1
2 H(l)W(l) + b(l)), (14)

where matrix H(l) denotes the features output in the lth layer (input). σ is the activation
function, W(l)and b(l) are the learned weights and biases.

In order to reduce the computational cost of AN-GCN, batch processing of MiniGCN [6]
is followed. The batches of pixels are extracted as in CNNs, followed by the construction of
subgraphs for each batch from the adjacency matrix Ab

ad. The propagation rule described
in Equation (14) for each subgraph is:

Ĥbi
l+1 = σ(D̂bi

− 1
2 Âbi

adD̂bi
− 1

2 Hbi
(l)

Wbi
(l)

+ bbi
(l)
), (15)

where bi are the batches of pixels or subgraphs used for network training. The final output
of the propagation rule is a vector that joins all the subgraph outputs.

Ĥl+1 = [Hb1
(l+1), Hb2

(l+1), Hb3
(l+1)...H

bN
(l+1)], (16)

The pseudocode for creation of the adjacency matrix for AN-GCN is described in
Algorithm 1 and the pseudo-code for the AN-GCN is given in Algorithm 2. Figure 2 shows
the architecture of AN-GCN. Batch normalization is implemented before GCN layer.

Figure 2. AN-GCN architecture.

Algorithm 1 Adjacency Matrix for AN-GCN

1 Input: Original HSI, Ground Truth
2 for Each pixel in HSI do
3 Set a radius R
4 Find Homogeneity of pixels inside R using variance
5 while Variance > threshold value do
6 Decrease R until meet the desired threshold
7 If R < 1 then Set minimum possible radius to 1
8 end if
9 end while

10 Calculate weights of pixel inside R that meet the criterion using Equation (2)
11 end for
12 Construct Adjacency matrix
13 Compute the Laplacian matrix

A graphical user interface is developed for constructing the image and ground truth
mosaics for the pixel-based classification of rice seed HSIs. The hyperspectral rice seed
images are calibrated using the workflow illustrated in Figure 3a. The input is a rice seed
hypercube 3 dimensional array.
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Algorithm 2 Pseudo code of AN-GCN for HSI classification

1 Input: Original HSI, Laplacian Matrix L, Labels, epochs = 200, batch size = 100
2 Initialize W and b parameters
3 for Each batch of pixels do

4 Ĥl+1
b = σ(D̂b

− 1
2 ÂbD̂b

− 1
2 Hb

(l)Wb
(l) + bb

(l))

5 Return Ĥl+1
b , Loss

6 Softmax
7 Optimize loss function using Adam
8 Update parameters
9 end for

10 Output: Predicted label for each pixel using argmax.

where Ic represents the calibrated image, Id is the dark reference, and Iw is the white refer-
ence acquired by the sensor. After calibration, the image is segmented using two methods.
The first is the Otsu thresholding algorithm which is applied to identify the seeds from the
background. In the second step, the segmentation is improved using a Gaussian filter with
a σ = 0.7, and the labeling is performed using 2 nearest neighbor connectivity. The “ground
truth block” generates the labels for the seeds and the background. In addition, a “crop
image block” is available to select a Region Of Interest (ROI), from an input calibrated or
segmented image. Once the images are cropped, a parallel block is implemented to create
the mosaics for training and classification using the GCN architecture. A Hyperspectral
Seed Application has been developed to perform the above processes. The GUI of the App
is illustrated in Figure 3b, and is implemented in python using pyqt5 libraries.

The GUI is operated in the following manner. The user uploads the HSI of the seed and
the white and dark references in the provided widgets. There are buttons for calibrating
and saving the image. The user has the option to assign categorical labels to the seed classes,
which can be based on the temperatures the seeds are exposed to, or different varieties
of seeds. Once the integer labels are selected, the images are labeled and saved. Another
useful function provided by the GUI is for cropping an HSI. As HSIs are large and occupy
more space, the user can crop the images by specifying the row and column coordinates
enclosing the seed. Finally, a mosaic with seed images of different categories is created
by concatenating the individual images in the horizontal or vertical direction. A button is
provided for visualization of the images at any stage.

Datasets

Four hyperspectral image datasets are used to test the proposed AN-GCN method. The
training set is generated by randomly taking pixels in each class, the class 0 corresponding
to the backgroung is not considered for training. Once the pixels for training and testing
are selected, the adjacency matrix corresponding to the training and testing pixels is also
selected. Table 2 gives the specification for each dataset.

Table 2. Hyperspectral dataset specifications.

Scene Spatial Size (Pixels) Spatial
Resolution

Spectral Size
(Bands)

Spectral
Resolution

(nm)
Sensor

Indian Pines 145 × 145 20 m pixels 200 400–2500 AVIRIS
Houston

University 349 × 1905 2.5 m pixels 144 380–1050 ITRES-CASI

Botswana 1476 × 256 30 m pixels 145 400–2500 HYPERION EO-1
Rice seed 150 × 900 1100–1600 pixels 268 600–1700 Micro-HyperspecrImaging
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(a)

(b)

Figure 3. (a) Workflow for HSI seed images and ground truth mosaic construction, (b) HSI seed
calibration application.

(1) Indian Pine Dataset: This scene is taken from North-Western Indiana with an
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) optical sensor over the Indian
pine test area. Each band contains 145 × 145 pixels with a total of 224 bands. Indian
Pine scene contains 16 classes. The spectrum for a pixel from each of the 16 classes is
shown in Figure 4. Among the classes are crops, vegetation, smaller roads, highways,
and low-density housing, which are named in Table 3 along with the training and testing
set used for training and testing the AN-GCN. 20 noisy bands due to water absorption are
removed leaving a total of 200 bands.
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Figure 4. Spectrum of each material in the Indian Pines hyperspectral image.

Table 3. Number of training and testing samples for the different classes in Indian Pine dataset.

Class No. Class Name Training Testing

1 Corn Notill 50 1384
2 Corn Mintill 50 784
3 Corn 50 184
4 Grass pasture 50 447
5 Grass trees 50 697
6 Hay Windrowed 50 439
7 Soybean Notill 50 918
8 Soybean Mintill 50 2418
9 Soybean clean 50 564
10 Wheat 50 162
11 Woods 50 1244

12 Buildings Grass Trees
Drives 50 330

13 Stone Steel Towers 50 45
14 Alfalfa 15 39
15 Grass Pasture Mowed 15 11
16 Oats 15 5

total 695 9671

(2) University of Houston dataset: This hyperspectral dataset is acquired using an ITRES-
CASI sensor. It contains 144 spectral bands between 380–1050 nm; with a spatial domain of
349 × 1905 pixels per band and a spatial resolution of 2.5 m. The data is taken from the
University of Houston campus and contains the land cover and urban regions with a total
of 15 classes as shown in Table 4, along with the training and testing set used for training
and testing the AN-GCN.

(3) Botswana dataset: This scene is taken over the Okavango Delta, Botswana in 2001–2004
using an EO-1 sensor. It contains 242 bands between 400–2500 nm. After the denoising
process is applied, 145 bands remain [10–55, 82–97, 102–119, 134–164, 187–220]. Each band
contains 1476 × 256 pixels with a spatial resolution of 2.5 m.

(4) Rice Seeds dataset: Hyperspectral images of rice seeds grown under high day/night
temperature environments, and control environment are taken with a high-performance
line-scan image spectrograph (Micro-HyperspecrImaging Sensors, Extended VNIR ver-
sion) [23]. This sensor covers the spectral range from 600 to 1700 nm. The dataset contains
268 bands and 150 × 900 pixels per band. there are four temperature treatments shown in
Table 5.
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Table 4. Number of training and testing samples for the different classes in Houston Univer-
sity dataset.

Class No. Class Name Training Testing

1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking lot 1 192 1041
13 Parking lot 2 184 285
14 tennis court 181 247
15 Running track 187 473

Total 2832 12,197

Table 5. Temperature treatments for rice seed HSI dataset.

Treatment Class Day/Night Temperature ◦C

Control 28/23
HDNT2 (High day night temperature 2) 36/28
HDNT1 (High day night temperature 1) 36/32

HDT (High day temperature) 36/23
HNT (High night temperature) 30/28

The rice seed images are calibrated using the workflow outlined in Figure 5. The work-
flow is composed of five stages described as follows: the first stage consists of reading the
input image and selecting a region of interest (ROI) containing rice samples. Once the ROI
is obtained, an initial segmentation based on histogram selection is performed. The rice
seeds are thresholded from the background, if their intensities xh are within the interval
50 < xh ≥ 100.

Figure 5. Workflow for preprocessing of rice seed hyperspectral images.

The initial segmentation extracts the rice seeds in the regions of interest. However,
some isolated pixels belonging to the background class are present within the rice seed
region. To remove these pixels a Gaussian filter with a standard deviation of 0.7 is applied
to the cropped image. In addition, similar regions are connected using connected com-
ponent labeling using k-connectivity. Here, a 3 × 3 kernel with 2-connectivity is used to
connect disconnected regions and assign a label. Once the refinement of the segmentation
is performed, the label assignment stage assigns labels to each pixel using the tuple (0, class
number), where 0 represents the background.
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For rice seed HSI, two types of classification were made. The first is to classify each
treatment by exposure time, that is, for the same time, the different treatments are taken
as a class, where the class number is assigned as follows: 1 for HDT class, 2 for HDNT1
class, 3 for HDNT2 class, 4 for HNT class, and finally 5 for Control class. The second type
of classification was to classify the rice seeds for different exposure times for the same
treatment; for this case, the classes were assigned as follows: 1 for 168 class, 2 for 180 class,
3 for 204 class, 4 for 216 class, 5 for 228 class and finally 6 for 240 class.

The images are calibrated using the Shafer Model [28] described in Equation (17), Icλ

is the constant reflection value at a predetermined wavelength, Iλ is the measurement of
reflection, Wl is the white reference obtained from the calibration of a Teflon tile, and B is
the black reference.

Icλ =
Iλ − B
W − B

(17)

The rice seed HSI preprocessing workflow is performed for the five classes of images.
The last stage is the mosaic generator which stitches the five groundtruth images, and the
five calibrated HSIs into two mosaics, respectively. These two mosaics are then input to the
GCN for classification.

3. Results

The performance of the AN-GCN method is evaluated by comparing its classification
results with pure GCN based results reported by other authors in the literature, especially
MiniGCN. Three metrics: Overall Accuracy (OA), Average Accuracy (AA), and Kappa
score are used for this comparison. Increased accuracies using AN-GCN are highlighted in
bold in the Tables. To further test the effectiveness of AN-GCN, several tests are done using
fixed nearest neighbors and compared with the proposed method of adaptive neighbors.

To demonstrate that the adaptive neighbor selection method aggregates pixels that
belong to the same class, the Laplacian matrix used for training the Botswana scene is
plotted. This scene is taken since it is a small matrix compared to the other HSI images
and the subgraphs belonging to the classes can be plotted. In Figure 6, a portion of the
matrix is shown, where the subgraphs (pixels) belonging to the same class can be visualized.
For example, pixels 20, 21, 29, 3 and 8 belong to class 7, corresponding to Hippo grass class.

Figure 6. Subgraphs of Laplacian matrix from Botswana dataset.

A test is carried out to show that the construction of the adjacency matrix influences
the final classification. For this test, the Indian Pine scene is used as a reference and the
adjacency matrix is built using fixed neighbors, starting by taking the first 4 neighbors for
each pixel. Then the matrix is built for 8 neighbors, 12, 20 neighbors and as a final step the
matrix is built with the proposed method as shown in Table 6. Once the different matrices
are built, each one is used in the GCN classification model. In the GCN training process,
the same parameters shown in Algorithm 2 are used for each of the matrices and the final
classification results of Overall Accuracy (OA), Average accuracy (AA) and kappa score
using different numbers of neighbors are shown in Table 6.



Sensors 2023, 23, 3515 11 of 18

Table 6. Comparison of classification using different K-nearest neighbors in Indian Pines dataset.

K-Nearest
Neighbors OA (%) AA (%) Kappa Score

k = 4 82.71 87.12 0.8003
k = 8 79.14 85.53 0.7568
k = 12 78.91 83.49 0.7555
k = 20 75.47 76.62 0.7121

Adaptive
Neighborhood 88.36 91.13 0.8453

For the construction of the adjacency matrix for the Indian Pine scene, a variance
threshold of 0.16 is used for the selection of neighbors. The classification results are shown
in Table 7, obtaining a perfect classification for classes: wheat, stone-steel-towers, alfalfa,
grass-pasture-mowed and oats. Figure 7 shows the Indian Pines classification map where
the different pixel classification results can be seen.

(a) (b)

Figure 7. Classification map in Indian Pine dataset. (a) Groundtruth map. (b) AN-GCN.

Table 7. Classification performance (%) of various GCN methods for Indian Pines dataset.

Class No. MIniGCN [29] GCN [27] MiniGCN [30] GCN [12] Non-Local
GCN [11] MiniGCN [6] AN-GCN

1 79.12 ± 7.04 56.71 ± 4.42 68.07 53.54 89.03 72.54 85.04
2 56.13 ± 6.46 51.50 ± 2.56 53.97 53.01 100.00 55.99 81.76
3 22.16 ± 16.37 84.64 ± 3.16 66.84 87.77 93.51 92.93 95.65
4 91.80 ± 1.10 83.71 ± 3.20 77.37 90.89 94.12 92.62 88.59
5 98.68 ± 0.69 94.03 ± 2.11 93.38 87.95 98.18 94.98 96.84
6 99.64 ± 0.36 96.61 ± 1.86 98.36 97.97 78.78 98.63 99.54
7 75.57 ± 5.67 77.47 ± 1.24 69.52 53.81 99.38 64.71 91.94
8 81.29 ± 5.56 56.56 ± 1.53 63.04 54.99 94.94 68.78 81.39
9 57.35 ± 4.07 58.29 ± 6.58 64.64 38.28 97.27 69.33 90.07
10 60.00 ± 37.42 100 ± 0.00 98.06 98.05 100.00 98.77 100.00
11 93.93 ± 2.04 80.03 ± 3.93 86.17 84.58 97.44 87.78 94.61
12 56.67 ± 8.12 69.55 ± 6.66 69.64 65.80 100.00 50.00 90.61
13 — 98.41 ± 0.00 90.70 97.85 100.00 100.00 100.00
14 — 95.00 ± 2.80 17.57 91.30 83.09 48.72 100.00
15 — 92.31 ± 0.00 100.00 85.71 88.24 72.73 100.00
16 — 100 ± 0.00 80.00 100.00 86.70 80.00 100.00

OA(%) 80.19 ± 0.57 69.24 ± 1.56 71.33 65.97 87.92 75.11 88.51
AA (%) 72.70 ± 3.76 80.93 ± 1.71 74.83 77.54 93.79 78.03 93.50

Kappa 0.7631 ±
0.065 65.27 ± 1.80 67.42 0.6184 0.8625 0.7164 0.8692



Sensors 2023, 23, 3515 12 of 18

The results obtained for Houston university are reported in Table 8. The AN-GCN
obtains the best classification values of OA, AA, Kappa score compared to the other reported
GCN methods. A perfect classification is obtained for classes: healthy grass, synthetic grass,
soil, water, tennis court and running track.

Figure 8 shows the classification map of the AN-GCN method for the Houston univer-
sity scene, where Figure 8a is the groundtruth and Figure 8b is the classification map using
the proposed model.

(a)

(b)

Figure 8. Classification map for Houston university. (a) Groundtruth map. (b) AN-GCN.

Table 8. classification performance(%) of various GCN methods for Houston University dataset.

Class No. MiniGCN [31] DIGCN [31] DRGCN [32] GCN [27] CAD-
GCN [16] MiniGCN [6] AN-GCN

1 94.85 ± 3.58 93.07 ± 2.73 82.8 88.16 ± 1.90 94.45 ± 3.49 98.39 100.00
2 98.35 ± 1.71 94.17 ± 2.93 93.38 97.20 ± 0.48 96.43 ± 2.83 92.11 98.34
3 98.09 ± 1.74 95.00 ± 1.68 98.95 97.91 ± 0.13 95.17 ± 4.11 99.6 100.00
4 95.60 ± 2.13 90.47 ± 4.09 90.03 96.55 ± 0.41 94.82 ± 2.38 96.78 99.62
5 98.64 ± 0.72 100.00 ± 0.00 97.02 89.79 ± 0.71 98.91 ± 1.51 97.73 100.00
6 96.58 ± 1.80 94.10 ± 3.86 98.3 98.21 ± 1.15 97.48 ± 3.48 95.1 100.00
7 76.05 ± 1.53 96.06 ± 2.80 88.77 73.67 ± 1.94 91.58 ± 3.16 57.28 95.94
8 77.28 ± 3.75 73.36 ± 5.63 80.06 65.71 ± 4.64 74.63 ± 4.82 68.09 97.06
9 78.98 ± 2.24 94.33 ± 3.33 94.18 70.27 ± 3.03 86.75 ± 3.58 53.92 91.76

10 82.92 ± 3.80 88.76 ± 7.63 99.66 74.71 ± 2.32 94.24 ± 3.34 77.41 99.23
11 70.07 ± 3.69 90.68 ± 4.32 97.42 75.36 ± 2.37 94.65 ± 2.73 84.91 97.97
12 85.87 ± 3.99 87.08 ± 4.25 91.93 79.29 ± 4.80 89.55 ± 1.93 77.23 97.98
13 80.93 ± 2.57 92.79 ± 4.34 84.51 12.09 ± 2.68 96.80 ± 3.68 50.88 90.88
14 97.73 ± 1.87 100.00 ± 0.00 100 86.03 ± 3.31 100 ± 0.00 98.38 100.00
15 99.04 ± 0.76 97.90 ± 1.62 95.07 95.29 ± 1.67 98.02 ± 1.42 98.52 100.00

OA(%) 87.00 ± 0.71 91.72 ± 0.64 92.15 80.35 ± 0.61 92.51 ± 0.73 81.71 97.88
AA (%) 88.73 ± 0.58 92.52 ± 0.16 92.8 80.02 ± 0.46 93.57 ± 0.60 83.09 97.92

Kappa 0.8594 ±
0.077

0.9103 ±
0.069 0.9151 0.7872 ±

0.066
0.9189 ±

0.078 0.8018 0.9770

Table 9 shows the training and testing set used for the Botswana HSI and reports
the classification accuracies obtained this dataset. For the construction of the adjacency
matrix, a threshold of 0.024 is used, shown in the Table 1. The results show that AN-GCN
obtains the highest accuracy values for 13 of the 14 classes that make up the Botswana
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scene. The highest reported classification accuracy of AA (99.2%), OA (99.11%) and Kappa
score (0.9904) are obtained with the AN-GCN method.

Table 9. Number of training and testing samples for the different classes and classification perfor-
mance (%) of various GCN methods for Botswana dataset.

Class Name Training Testing Class No. GCN [12] S2GCN [10] AN-GCN

Water 30 250 1 100.00 100.00 100.00
Hippo grass 30 81 2 98.02 100.00 100.00
Floodplain
grasses 1 30 226 3 98.01 100.00 100.00

Floodplain
grasses 2 30 190 4 97.67 100.00 98.38

Reeds 30 244 5 80.67 89.97 93.72
Riparian 30 244 6 65.43 92.97 98.74
Firescar 30 234 7 96.14 96.60 100.00

Island interior 30 178 8 98.03 92.59 100.00
Acacia

woodlands 30 289 9 80.25 100.00 100.00

Acacia
shrublands 30 223 10 94.76 77.78 98.17

Acacia
grasslands 30 280 11 86.89 100.00 100.00

short mopane 30 156 12 86.74 85.11 100.00
Mixed mopane 30 243 13 91.42 100.00 100.00
Exposed soils 30 70 14 82.11 100.00 100.00

Total 420 2908 AA (%) 89.22 94.45 99.22
OA (%) 89.72 95.36 99.11
Kappa 0.8745 0.9399 0.9904

For HSI rice seeds the classification results are shown in Tables 10 and 11. The first
table corresponds to the classification results by treatment for a specific time, the exposure
time of 204 and 228 h had the best OA, AA and Kappa score values and time 240 had the
lowest values.

Table 10. Classification performance for rice HSI image datasets for different temperature treatments.

Class No Treatments 168 h 180 h 204 h 216 h 228 h 240 h

1 HDT 0.95 0.99 0.97 1.00 0.98 0.98
2 HDNT1 0.95 0.95 0.98 0.86 0.93 0.97
3 HDNT2 0.81 0.86 0.94 0.94 0.98 0.90
4 HNT 0.95 0.81 0.96 0.89 0.98 0.65
5 Control 0.98 0.99 0.97 1.00 0.95 0.94

OA 0.93 0.92 0.96 0.93 0.96 0.91
AA 0.93 0.92 0.96 0.94 0.96 0.89

Kappa
score 0.92 0.90 0.95 0.91 0.95 0.89

Table 11 corresponds to the classification results for the different exposure times for
the same treatment. The HDT treatment obtained the best OA, AA, and Kappa score
classification values.

Figure 9 shows the classification map for the different classes at a specific time and
Figure 10 shows the classification map for the different exposure times for the same treatment.



Sensors 2023, 23, 3515 14 of 18

Figure 9. Classification map of HSIs of rice seeds from different hours of exposure for each tempera-
ture treatment.

(a)

(b)

(c)

(d)

Figure 10. Classification map for rice HSI datasets for different temperature treatments: (a) HDT,
(b) HDNT1, (c) HNT, (d) HDNT2.
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Table 11. Classification performance for rice HSI datasets for different exposure times.

Class No
Exposure

Time
(Hours)

HDT HDNT1 HDNT2 HNT

1 168 0.99 0.74 0.83 0.92
2 180 0.98 0.84 0.90 0.96
3 204 0.98 0.97 0.89 0.89
4 216 0.95 0.71 0.84 0.79
5 228 0.88 0.74 0.88 0.98
6 240 0.96 0.97 0.97 0.95

OA 0.96 0.81 0.88 0.91
AA 0.96 0.83 0.88 0.91

Kappa score 0.96 0.77 0.86 0.89

4. Discussion
4.1. Indian Pines

The results obtained for the classification of the Indian Pines scene are reported in
Table 7. A considerable improvement in classification accuracy using AN-GCN can be
seen when comparing with other GCN methods, especially the reported MiniGCN meth-
ods [6,29,30]. AN-GCN method improves the accuracy by more than 13 percent affirming
the importance of adjacency matrix creation. Incorporating neighborhood information
adaptively results in better discrimination between classes, especially in the boundary
region between classes. The classification map is shown in Figure 7. For a better visual
comparison, the Indian Pine groundtruth is provided in Figure 7a and the classification
map from the AN-GCN method is shown in Figure 7b. Compared to the groundtruth, it
can be seen that some pixels of the Wood class (blue color) are misclassified into Building-
grass-trees drives (yellow color) because these classes have similar spectral signatures.
However, the AN-GCN classification map looks similar to the groundtruth map with
minimal misclassification errors.

Table 6 gives the results obtained for the test samples from the Indian Pines scene,
showing that the adaptive spatial neighbor selection performs better than fixed neighbor-
hood selection. Another test to check that there is better class discrimination using adaptive
neighbors is to plot the training Laplacian matrix. In Figure 6, a subgraph of the Laplacian
matrix for the Bostwana dataset is shown. It is observed that there are subgraphs grouping
pixels that belong to the same class showing the effectiveness of the adaptive neighbors
in aggregating pixels of the same class and avoiding pixels of a different class in being
grouped together thereby improving the training of the GCN and the final classification
results of the HSI.

4.2. Houston University

The training and testing set and the classification accuracies obtained for the Houston
university dataset are reported in Table 8. The results show an increase in classification
accuracy with respect to the other GCN-based methods. The minimum classification
accuracy for the AN-GCN method is 90.88% corresponding to the parking lot 2 class,
showing the effectiveness of this method compared to the other methods. One of the classes
that has the lowest classification accuracy using almost all methods is the Commercial
class. This behavior is also reported in [16]. However, with the AN-GCN method, this class
achieves a higher classification accuracy of 97.06%, showing that AN-GCN has superior
performance compared to the other methods. In Figure 8a,b, the groundtruth and the
classification map obtained using the AN-GCN method are shown, respectively. Due to
the improvement of classification performance using the AN-GCN method, it is difficult to
observe the misclassification of some pixels. However, when observing the right side of the
classification map in detail, some missed pixels can be identified.
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4.3. Botswana

The classification results for the Botswana Scene are given in Table 9, along with
the number of training pixels and testing pixels used. Botswana presents outstanding
results using the AN-GCN method having a higher value of overall accuracy, average
accuracy, and Kappa score compared to the other methods. There are only a few reported
classification results using GCN for the Botswana dataset, however, the AN-GCN method
is efficient in classifying this dataset.

4.4. Rice Seeds

The GCN architecture performs well in classifying the rice seed HSIs from different
temperature treatments, as well as classifying the seeds from subclasses of six temperature
exposure duration. The GCN integrates spatial and spectral information adaptively per-
forming a pixel-based classification obtaining a good classification performance for all four
temperature treatments as well as for sub-classes of varying temperature exposure duration.

The classification results shown in Table 11, show lower values in the classification
than those shown in Table 10. These results are expected, since for this case the different
exposure hours are being taken from the same treatment, but even so, the proposed method
is able to discriminate the exposure times for the same treatment, showing that the rice
seed undergoes changes as the exposure time to high temperature increases. The rice seed
HSIs from the highest day and night temperature of 36/32 degree Celsius give the lowest
accuracy, showing that higher temperatures alter the seed spectral-spatial characteristics
drastically making it indiscriminable from other treatment classes.

Comparing these results with those reported in [23], the authors had obtained a
classification accuracy of 97.5% only for two classes using a 3D CNN with 80% of the data
for training. While using the AN-GCN method, four treatments classes and six temperature
exposure duration classes are classified using only 10% of the data for training giving
satisfactory classification results.

5. Conclusions

This paper presents a new method for neighborhood aggregation based on statistics
which improves the graph representation of high spectral dimensional datasets such as
hyperspectral images. This method performs better than recent state-of-the-art implemen-
tations of GCNs for hyperspectral image classification. The presented method selectively
adapts to the spatial variability of the neighborhood of each pixel and hence acts as a
significant measure of discriminability in localized regions. An increased classification
accuracy of 4% is obtained with the University of Houston and Botswana datasets, and an
increase in accuracy of 1% is obtained with the Indian Pine dataset. The AN-GCN method
successfully characterizes intrinsic spatial-spectral properties of rice seeds grown under
higher than normal temperatures and classifies hyperspectral images of these seeds with
high precision using less than 10% of the data for training, placing the AN-GCN as a
preferable method for agricultural applications compared to other CNN-based methods.
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