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Machine health monitoring and fault diagnosis have played crucial roles in auto-
matic and intelligent industrial plants. Machine-learning-, deep-learning-, and artificial-
intelligence-based intelligent fault diagnoses are essential in industrial settings, in order
to help reduce the downtime that is caused by machine failures. These techniques can
be integrated with advanced sensor technologies to enhance the accuracy of their results.
Additionally, some specific artificial intelligence algorithms can help to identify potential
problems and alert engineers on time. However, there are still several issues that require
further investigation, with intelligent fault diagnosis methodologies being among them,
e.g., early fault detection features, the few-shot sample machine learning algorithm, data
augmentation techniques for deep learning, the data fusion method for domain adaptation,
feature representation with self-supervision, and interpretable deep learning algorithms.
Ultimately, machine health monitoring and fault diagnosis techniques are essential tools
for ensuring a machine’s safety and efficiency.

This Special Issue aims to highlight the state-of-the-art techniques that are used for
machine health monitoring and fault diagnosis, especially for intelligent fault diagnosis
algorithm development, fault feature extraction, and intelligent machine monitoring.

This Special Issue has received 26 manuscripts, 18 of which have been accepted, and 8
of which were rejected by the peer-review processes. These accepted manuscripts can be
divided into four types: (1) status detection; (2) degradation process; (3) fault diagnosis;
and (4) failure detection with sensors. Their details have been illustrated as follows:

1. Status Detection

In [1], a novel automated algorithm for the modal parameter identification of rotating
machinery was described. The innovation of this study was that it targeted a rotor mode
and is applicable to different systems and environments. This algorithm extracted the
rotor and fundamental frequency damping ratios from a stability diagram that was given a
user-defined parameter.

In [2], a multimodal process monitoring method, which was based on variable-
length sliding window-mean augmented Dickey–Fuller (VLSW-MADF) test and a dynamic
locality-preserving principal component analysis (DLPPCA), was proposed.

The work that was developed in [3] presented a new algorithm for impeller blade
monitoring, based on a relative shaft vibration signal measurement and analysis, which
was designed to run from a long-term perspective as part of a remote monitoring system in
order to automatically track a natural blade frequency and its amplitude.

In [4], a method using multidimensional k-means for the condition monitoring of
electrode wear was established. With the aid of this method, the relationship between the
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serial time data of the resistance and the mechanical properties variation of the electrodes
was described.

2. Degradation Process

A method for evaluating bearing performance degradation, by using an adaptive
sensitive feature selection and multi-strategy optimization support vector data description
(SVDD), was developed in [5]. In combining the technique for order preference by similarity
with an ideal solution (TOPSIS) and K-medoids, monotonicity, correlation, and robustness
indicators were used to determine an adaptive sensitive feature set for evaluation.

In [6], a new cluster migration distance (CMD) algorithm was proposed to address
the problem in which traditional performance degradation indicators cannot accurately
describe degradation trending on time. By calculating the offset trajectory of a fea-
ture cluster centroid in a continuous bearing running process, the CMD can appropri-
ately handle the complex and variable features in the fault evolution process of a water
pump bearing.

In [7], they used a ring oscillator (RO)-based test structure to extract data and build a
dataset that could be used to predict aging trends and determine the primary aging mech-
anisms of 28 nm FPGAs. Moreover, they proposed a method to correct the temperature-
induced measurement errors that are found in accelerated tests. Furthermore, they em-
ployed four machine learning (ML) technologies that were based on accurate measurement
datasets, in order to predict these FPGA aging trends.

In [8], a method based on an improved particle swarm optimization (PSO) was pro-
posed to analyze the bearing performance degradation. This proposed method can effec-
tively resolve the problems of online parameter selection and the low predictive accuracy
of long–short time memory (LSTM) methods. A kernel joint approximate diagonalization
of eigen-matrices (KJADE) method was used to fuse the bearing vibration signals and form
an effective feature vector, and an SS was calculated to acquire a performance degrada-
tion index. Subsequently, an improved PSO algorithm was used to optimize the LSTM
parameters, in order to obtain an optimal performance degradation prediction model.

3. Fault Diagnosis

In [9], a model for data augmentation was proposed. This study proposed a method
for the unbalanced fault diagnosis of rotating machinery that combined time–frequency
feature oversampling (TFFO) with a convolutional neural network (CNN). The proposed
model built a balanced dataset by simultaneously expanding time domain signals and
time–frequency domain features, and by performing a comprehensive data expansion from
different dimensions.

The work in [10] proposed a rolling bearing fault diagnosis method that was based
on the whale gray wolf optimization algorithm–variational mode decomposition–support
vector machine (WGWOA-VMD-SVM), which was designed to solve the unclear fault
characteristics of rolling bearing signals, owing to its nonlinear and nonstationary charac-
teristics. A rolling bearing signal was decomposed using variational mode decomposition
(VMD), and a support vector machine (SVM) was used as the fault diagnosis model.

In [11], a novel model was proposed for an intelligent bearing fault diagnosis in
rotating machinery. The main contribution of this model is the construction of an effective
image dataset using a combination of an improved fast kurtogram (IFK) that was based on
nonlinear mode decomposition (NMD) and a gramian angular field (GAF). The proposed
model used IFK to achieve a high computational efficiency and improve its SNR. Next,
GAF provided images that preserved the absolute temporal relationships of the signals, so
that the CNN could perform a fault classification.

In [12], a novel intelligent rolling bearing fault diagnosis method, based on a Markov
transition field (MTF) and a residual network, was proposed. Encoding one-dimensional
time series signals into two-dimensional images with a Markov transition field preserved
the time dependence of the raw signals and discarded the prior knowledge, in order to set
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the parameters during the conversion. On this basis, a residual network was applied to
identify the fault types through image classification.

In [13], a rolling bearing fault diagnosis method was proposed based on successive
variational mode decomposition (SVMD) and an energy concentration and position accu-
racy (EP) index. The EP index effectively indicated a target mode for the characteristic fault
information, and a line-searching method that was guided by the EP index optimized the
balancing parameter of the SVMD.

In [14], a method of compressing and reconstructing diesel engine vibration signals
was proposed by using sparse Bayesian optimization block learning, which combined
a compressive sensing technology with the fault diagnosis. Its specific steps were as
follows. The method achieved the optimal compression and reconstruction efficiency,
was verified by several assessment indicators, and had a good classification accuracy.
However, there was still room for improvement, particularly in the signal repair and
noise reduction preprocessing, as well as in the integration of the algorithm into the data
acquisition hardware.

In [15], an integrated vision transformer (ViT) model, which was based on wavelet
transform and a soft voting method for the bearing fault diagnosis, was proposed. A vibra-
tion signal was decomposed into sub-signals in different frequency bands using discrete
wavelet transform (DWT), and was transformed into time–frequency representation (TFR)
maps using continuous wavelet transform (CWT). Multiple individual ViT models were
used to preliminarily diagnose the faults, and a final diagnosis result was obtained by a
fusion method that was based on the soft voting method.

4. Failure Detection with Sensor

In [16], the authors analyzed the heat generation of normal bearings and faulty bear-
ings during the operation, and the influence of different working conditions on the heat
generation of these bearings. In this study, based on the structural characteristics of the bear-
ings, a new transient temperature analysis model for damaged bearings was established,
considering the influence of the thermal–solid coupling effect on the bearing structure.

In [17], the authors analyzed different types of sensor faults for the fault detection
of a healthy drive, using a variety of index-based methods. In total, seven main indices
were employed and analyzed for the sensor fault diagnosis, including the moving mean,
average, root mean square, energy, variance, the first-order derivative, the second-order
derivative, and an auto-correlation-based index.

In [18], a novel virtual sensor for predictive maintenance, which was called a mini-
term, was introduced. One of its main advantages was that its installation did not involve a
large financial outlay. The evolution of the TAV (technical availability), mean time to repair
(MTTR), EM (number of work orders (emergency orders/line stop)), and OM (labor hours
in EM) showed a very important improvement, as the number of mini-terms increased and
the Miniterm 4.0 system became more reliable.

5. Conclusions

The theme of this Special Issue focuses on machine health monitoring and fault di-
agnosis techniques, especially intelligent fault diagnosis. This Special Issue highlights
18 articles that can be divided into four categories: condition monitoring [1–4], degradation
process prediction [5–8], intelligent diagnostic algorithms [9–15], and sensor fault detec-
tion [16–18]. In addition to the traditional bearing vibration signals, the research objects
include the electrode signals, blade vibration signals, diesel engine vibration signals, and
bearing heat signals. Therefore, in the field of fault diagnosis, in addition to the traditional
bearing vibration signal analysis, other objects or signals can also be used as diagnostic
features, which is worth studying. Regarding the algorithm design, the development
of artificial intelligence algorithms also provides new solutions for other signal analyses
and processing. Artificial intelligence algorithms and multi-sensor signals, combined
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with intelligent fault diagnosis algorithms, will be a very important development trend
in the future.
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