
Citation: Xie, F.; Liang, G.; Chien,

Y.-R. Highly Robust Adaptive Sliding

Mode Trajectory Tracking Control of

Autonomous Vehicles. Sensors 2023,

23, 3454. https://doi.org/10.3390/

s23073454

Academic Editors: Mustafa Ilhan

Akbas and Jun Chen

Received: 13 February 2023

Revised: 14 March 2023

Accepted: 22 March 2023

Published: 25 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Highly Robust Adaptive Sliding Mode Trajectory Tracking
Control of Autonomous Vehicles
Fengxi Xie 1,† , Guozhen Liang 1,† and Ying-Ren Chien 2,*

1 Department of Electrical Engineering and Computer Science, Technische Universität Berlin,
10623 Berlin, Germany

2 Department of Electrical Engineering, National Ilan University, Yilan 260007, Taiwan
* Correspondence: yrchien@niu.edu.tw
† These authors contributed equally to this work.

Abstract: Autonomous driving technology has not yet been widely adopted, in part due to the
challenge of achieving high-accuracy trajectory tracking in complex and hazardous driving scenarios.
To this end, we proposed an adaptive sliding mode controller optimized by an improved particle
swarm optimization (PSO) algorithm. Based on the improved PSO, we also proposed an enhanced
grey wolf optimization (GWO) algorithm to optimize the controller. Taking the expected trajectory
and vehicle speed as inputs, the proposed control scheme calculates the tracking error based on an
expanded vector field guidance law and obtains the control values, including the vehicle’s orientation
angle and velocity on the basis of sliding mode control (SMC). To improve PSO, we proposed a
three-stage update function for the inertial weight and a dynamic update law for the learning rates
to avoid the local optimum dilemma. For the improvement in GWO, we were inspired by PSO and
added speed and memory mechanisms to the GWO algorithm. Using the improved optimization
algorithm, the control performance was successfully optimized. Moreover, Lyapunov’s approach is
adopted to prove the stability of the proposed control schemes. Finally, the simulation shows that the
proposed control scheme is able to provide more precise response, faster convergence, and better
robustness in comparison with the other widely used controllers.

Keywords: autonomous vehicles; trajectory tracking; high robustness; vector field guidance law;
sliding mode control; improved particle swarm optimization; improved grey wolf optimization

1. Introduction

In recent years, researchers have demonstrated that autonomous vehicles (AVs) can
possibly reduce road accident rates and enhance transportation efficiency [1–3], thus drawing
massive attention from both industrial and academic fields.

Trajectory tracking is one of the basic functions of AVs, which aims to follow a desired
trajectory within a certain period of time and then to maintain motion stability contin-
uously [4]. Control theory is a fundamental element in various domains [5]. Recently,
different kinds of methods and controllers associated with trajectory tracking have been
developed. For PID, Han et al. proposed a lateral path-following controller, which can
fine-tune the control parameters by integrating a neural network [6]. In regards to multi-
task control (e.g., tracking precision, driving comfort, and ride stability), due to the limited
capacity for handling several control objectives, a PID controller is not the ideal control
scheme for the trajectory tracking of AVs [7–11]. For fuzzy logic control, El et al. designed
a Takagi–Sugeno fuzzy controller, in which the stability was proved by integrating linear
matrix inequalities in a Lyapunov stability analysis [12]. In addition to PID control, SMC is
also widely used in improving system robustness. Compared with PID, SMC requires fewer
parameters to be adjusted and has a faster response. It is considered a powerful control
technique for suppressing external disturbances [13–17]. He et al. proposed a backstepping
SMC controller to collision-free path tracking [18]. Guo et al. introduced an adaptive fuzzy
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sliding-mode controller for the steering and brake control [19]. In order to achieve trajectory
tracking of an unmanned agricultural tractor, Matveev et al. developed a nonlinear SMC
control strategy, which showed a robust performance [20]. However, SMC has a significant
drawback, namely chattering, and a number of methods have been proposed to effectively
mitigate the chattering effect and to improve the robustness of the system [21–25].

For trajectory modeling, input parameters include vehicle states such as velocity, ori-
entation angle, and acceleration. However, these states could only be obtained through
specific equipment. To this end, researchers have designed robust estimators by integrat-
ing cameras, global navigation satellite system (GNSS), and inertial measurement unit
(IMU) [26–30]. These techniques could be used in the future whole-vehicle test verification
of our proposed approach.

For all of the aforementioned control schemes, to achieve good performance, the gain
of their controller needs to be manually adjusted, and in different application scenarios,
the gain value of the controller can be very different and people may spend a lot of
time on fine-tuning the parameters. In order to overcome this difficulty and to make the
control scheme more effective, an optimization algorithm can be carefully designed for
adaptive control parameter tuning. Traditional optimization techniques, such as gradient-
based methods, may not always work efficiently or may even fail to converge to a global
optimum. In contrast, PSO and GWO are population-based optimization algorithms that
mimic the behavior of a swarm or a pack of animals, respectively, aiming to search for
the global optimum in a multidimensional solution domain. Firstly, designing a good
cost function is an important part of the optimization algorithm [31]. Fateh et al. applied
PSO to optimize robust control of robot manipulators [32]. A fuzzy controller can also be
tuned by PSO [33,34]. To obtain a robust and adaptive PID controller, Elkaranshway et al.
adopted PSO for parameter fine-tuning [35]. However, the inertial weight and learning
rates of the PSO algorithm introduced in previous work were usually set to a constant,
often leading to a local optimum dilemma. While PSO is commonly used in optimizing
control schemes, there are also other algorithms that can be adopted, such as the GWO. As
a meta-heuristic optimization algorithm, GWO has been shown to have better exploration–
exploitation trade-off, faster convergence, and the ability to handle multiple objectives
when compared with PSO [36]. GWO is also less susceptible to premature convergence
than PSO [37]. Furthermore, GWO has been improved with the use of crossover operators
and hybridization with other algorithms, such as the sine cosine algorithm, leading to even
better performance. Therefore, GWO may be an alternative for optimizing control schemes.

In this paper, we combine the vector field guidance law approach with trajectory
tracking control. In recent years, the vector field approach has been well introduced to
provide a better solution for many control problems [38]. By creating a vector field around
the target path, we ensure that the tracking error approaches zero asymptotically, even if
the vehicle undergoes external disturbances [39]. More recently, scholars have been trying
to extend the vector field approach in different path-control-related problems [40–42].

However, it is noteworthy that the fundamental mission of autonomous vehicles is
to ensure passengers’ safety [43]. Therefore, the controller should be adaptable. Even in
dangerous scenarios (driving at high speed on complex trajectories), the controller can
autonomously tune its gain and minimize errors. Current studies mainly focus on path
following and do not meet the adaptive requirements of autonomous vehicles. Addi-
tionally, the predefined curves in previous studies are simple and differ from practical
traffic scenarios.

Given this problem, this paper implements a high-accuracy and adaptive trajectory
tracking controller by integrating sliding mode control and novel evolutionary optimization
algorithms. This study has three contributions: (1) A vector field guidance law has been
designed and extended from a simple curve to a sine trajectory and a polynomial trajectory,
which assembles the lane-change trajectory in practical traffic scenarios. (2) A sliding
mode controller of velocity and angle are designed separately to ensure better performance,
and improved optimization algorithms, named IPSO and PGWO, are designed. (3) We
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integrate the designed vector field guidance law, optimization algorithm, and sliding
mode controllers to create an adaptive control scheme and formulate the corresponding
Lyapunov function to demonstrate system stability. We compare the proposed control
scheme against other commonly employed methods. The simulation results prove that our
design outperforms traditional methods in complex scenarios and considerably enhances
the system’s robustness.

Regarding the arrangement of this paper, Section 2 introduces the vehicle kinematic
model. In Section 3, the structure and the theory of optimized control strategy are described.
Section 4 presents and analyzes the simulation results of different controllers. Finally, Section 5
summarizes the workflow of this study and discusses possible future improvements.

2. Preliminaries

Referring to Figure 1, we obtain the vehicle’s kinematics model:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = σ−1v tan(δ)

v̇ = F

(1)

where σ > 0 represents the distance between the front axle and the rear axle of this vehicle.
To better describe the trajectory of an autonomous vehicle, we use the midpoint of the rear
axle as the reference point, which can also be represented as (x, y). In an inertial frame
with Cartesian coordinates (X, Y), x and y are the longitudinal position and lateral position
of the vehicle, respectively. v is the vehicle velocity at the point (x, y), while θ ∈

(
−π

2 , π
2
)

is the angular orientation of the vehicle with respect to the X axis. In fact, lateral control
of the vehicle is achieved by changing the steering angle of the car. Here, we derive the
relationship between the orientation angle θ and the steering angle of the front wheels by
analyzing the kinematics of the vehicle. F represents the acceleration of the vehicle.

Figure 1. Vehicle model.
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3. Controller Design
3.1. Control Scheme of Proposed Controller

The architecture of the IPSO-SM controller is shown in Figure 2. The desired trajectory
and velocity are used as input in the model. With the help of the expanded vector field
guidance method, a set of desired yaw angles will be generated from the input trajectory.
The orientation and velocity controller will output the optimal yaw angle and velocity
according to the current angle error and velocity error, respectively, under the optimization
of IPSO. Then, after the calculation of the vehicle kinematic model, the current position of
the vehicle will be the output.

Figure 2. Control scheme of the proposed controller.

3.2. Vector Field Guidance Law

The vector field guidance law has been expanded from the simple curve [39] to the
complex curve in this paper. For a certain trajectory, v, vc is defined as the closest point
and vv is the location of the vehicle; then, the distance vector ν1(vc) and the scalar distance
ν1(vc) are defined as

ν1(vc) = vc −vv

ν1(vc) = ||vc −vv||
(2)

with ν2(vc) as the curve’s tangent vector at vc.
To facilitate the calculation, two operators are defined here.

κ1 = (2/π) arctan
(

k f ν1

)
κ2 =

√
1− κ2

1

(3)

where k f ∈ R+.
The guidance vector vv is designed as

Θ(vc) = −κ1
ν1(vc)

ν1(vc)
+ κ2ν2(vc) (4)

To achieve accurate angle control, the desired yaw angle is calculated for each position
of the vehicle in motion. Since Θ is a series of vectors forming a trajectory, Θ(1) and Θ(2)
are used to denote the first and second values of trajectory vector, respectively. Then, the
desired yaw angle is

ψd = arctan
(

Θ(1)
Θ(2)

)
(5)
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where the subscript d means a desired value, which should be tracked. The yaw angle of
the vehicle is assumed to be capable of tracking the desired yaw angle ψd. Substituting (4)
into (5) yields the derivative of position error pe

ṗe = V sin
(
ψd − ψp

)
= V sin

(
ψd − arctan

(
ν2(1)
ν2(2)

))
.

(6)

where ψp denotes the current yaw angle. Then, to simplify the calculation, we define

ν3 = κ1
ν1(vc)

ν1(vc)
+ (1− κ2)ν2(vc) (7)

Therefore, (6) can be simplified to (8):

ṗe = −V sin
(

arctan
(

ν3(1)
ν3(2)

))
(8)

To prove the stability of the method, we use the position error pe to design a Lyapunov
candidate V1:

V1 =
1
2

p2
e , (9)

where p2
e is always > 0 when pe is not equal to zero. Additionally, according to (8), because

ν1(vc) and ν2(vc) are a set of orthogonal vectors, it is then arctan
(

ν3(1)
ν3(2)

)
< π/2; then,

sin
(

ψd − arctan
(

ν2(1)
ν2(2)

))
> 0. Thus, ṗe < 0 holds. Therefore, ∃σ1 > 0, the derivative of V1

can be obtained as
V̇1 = pe ṗe

≤ −σ1V1.
(10)

3.3. Orientation Angle Controller Design

To achieve lateral control of the vehicle, it is necessary to minimize the yaw error.
Define ψ as the current yaw angle of the vehicle, so the angle error eψ,1 is

eψ,1 = ψ− ψd (11)

Similar to Section 3.2, a Lyapunov candidate is considered as (12):

V2 =
1
2

e2
ψ,1 (12)

The differential of this candidate is described as (13):

V̇2 = eψ,1 ėψ,1

= eψ,1(ψ̇− ψ̇d)
(13)

In order to bring the defined error closer to the true error, here, we introduce the
nominal error. Define the nominal yaw angle error as (14), where kψ,1 > 0.

eψ,2 = ψ̇− ψ̇d + kψ,1eψ,1 (14)

Combining Equations (13) and (14) yields

V̇2 = eψ,1eψ,2 − kψ,1e2
ψ,1 (15)
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Based on the principle of sliding mode control, we define the sliding mode surface s1,
which consists of angle errors

s1 = kψ,2eψ,1 + eψ,2 (16)

where kψ,2 is the sliding mode surface parameter and kψ,2 > 0.
According (11) and (14), the differential of eψ,1 can be described as (17):

ėψ,1 = ψ̇− ψ̇d

= eψ,2 − kψ,1eψ,1
(17)

To prove the stability of the orientation angle controller, a Lyapunov candidate V3 for
this controller should be designed in order to ensure that the Lyapunov function decreases
along the sliding mode surface and to reduce the number of variables, and simplifying
the expression of the Lyapunov function, V3 should include s1 and V2. Therefore, it is
considered as follows:

V3 = V2 +
1
2

s2
1 (18)

After differentiating, we substitute (16) and (17) into this and then derive (19):

V̇3 = V̇2 +
1
2

ṡ2
1

= eψ,1eψ,2 − kψ,1e2
ψ,1 + s1 ṡ1

= eψ,1eψ,2 − kψ,1e2
ψ,1 + s1

(
kψ,2 ėψ,1 + ėψ,2

)
= eψ,1eψ,2 − kψ,1e2

ψ,1 + s1
[
kψ,2

(
eψ,2 − kψ,1eψ,1

)
+ ψ̈− ψ̈d + kψ,1 ėψ,1

]
(19)

In order to speed up the convergence of the sliding surface and to make the whole
process smoother and less chattering, the reaching law is designed as

ṡ1 = −kψ,3|s1|α1 sgn(s1)−
(

1
2kψ,2

+ e fψ(s1)|s1|β1

)
s1, (20)

in which kψ,3 > 0, 1 > α1 > 0, 1 > β1 > 0, and fψ(s1) is designed as

fψ(s1) =

{
|s1|(|s1| − ∆ψ), |s1| ≥ ∆ψ

− 1−|s1|/∆ψ

|s1|+∆ψ
, |s1| < ∆ψ

, (21)

where ∆ψ denotes the thickness of the sliding mode surface.
Combining the above equations, the sliding mode controller is designed as

ud = −kψ,3|s1|α1 sgn(s1)−
(

1
2kψ,2

+ e fψ(s1)|s1|β1

)
s1 − kψ,2

(
eψ,2 − kψ,1eψ,1

)
+ ψ̈d − kψ,1 ėψ,1 (22)

Then, the desired steering angle of the front wheels can be designed as

δd = arctan
(

v−1σud

)
(23)
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Then, substituting (20) into (19), the Lyapunov candidate V3 can be described as

V̇3 = eψ,1eψ,2 − kψ,1e2
ψ,1 + s1

[
−kψ,3|s1|α1 sgn(s1)−

(
1

2kψ,2
+ e fψ(s1)|s1|β1

)
s1

]
= eψ,1eψ,2 − kψ,1e2

ψ,1 − kψ,3|s1|α1 |s1| −
1

2kψ,2
s2

1 − e fψ(s1)|s1|β1 s2
1

= eψ,1eψ,2 − kψ,1e2
ψ,1 −

1
2kψ,2

(
kψ,2eψ,1 + eψ,2

)2 − kψ,3|s1|α1+1 − e fψ(s1)|s1|β1 s2
1

= −kψ,1e2
ψ,1 −

1
2kψ,2

(
k2

ψ,2e2
ψ,1 + e2

ψ,2

)
− kψ,3|s1|α1+1 − e fψ(s1)|s1|β1 s2

1

(24)

According to (12) and (19), V2 ≥ 0 and V3 ≥ 0. Additionally, kψ,1 > 0, kψ,2 > 0,
kψ,3 > 0, and e fψ(s1)|s1|β1 > 0. Therefore, the conclusion that ∃σ3 > 0 can be given such
that V̇3 ≤ −σ3V3.

3.4. Velocity Controller Design

The controller of velocity is similar to the orientation angle controller; however, in
the orientation angle controller, the desired yaw angle of the vehicle is calculated by the
guidance law, while the desired velocity of the vehicle here is defined artificially. Define
the velocity error ev,1 as (25), where v is the current velocity and vd is the desired velocity.

ev,1 = v− vd (25)

For the velocity error, similar to Section 3.3, consider a Lyapunov candidate:

V4 =
1
2

e2
v,1 (26)

Differentiate it as
V̇4 = ev,1 ėv,1

= ev,1(v̇− v̇d)
(27)

Similar to the orientation controller, in order to improve the robustness of the controller,
here, the nominal velocity error is defined as

ev,2 = v̇− v̇d + kv,1ev,1 (28)

where kv,1 > 0.
Combining (27) and (28) yields (29), here, the differential of V4 can be described with

the velocity error and nominal velocity error.

V̇4 = ev,1ev,2 − kv,1e2
v,1 (29)

Define the sliding mode surface s2, which consists of ev,1 and ev,2:

s2 = kv,2ev,1 + ev,2 (30)

where kv,2 is the sliding mode surface parameter and kv,2 > 0.
According (25) and (28), differentiate ev1 as (31):

ėv1 = v̇− v̇d

= ev,2 − kv,1ev,1
(31)

Consider a Lyapunov candidate V5, which consists of V4 and s2:

V5 = V4 +
1
2

s2
2 (32)
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Combining (29), (30), and (32) yields

V̇5 = V̇4 +
1
2

ṡ2
2

= ev,1ev,2 − kv,1e2
v,1 + s2 ṡ2

= ev,1ev,2 − kv,1e2
v,1 + s2(kv,2 ėv,1 + ėv,2)

= ev,1ev,2 − kv,1e2
v,1 + s2[kv,2(ev,2 − kv,1ev,1) + v̈− v̈d + kv,1 ėv,1]

(33)

In order to speed up the convergence of the sliding surface and to make the whole
process smoother and less chattering, the reaching law ṡ2 is designed as

ṡ2 = −kv,3|s2|α2 sgn(s2)−
(

1
2kv,2

+ e fv(s2)|s2|β2

)
s2 (34)

in which kv,3 > 0, 1 > α2 > 0, 1 > β2 > 0, and fv(s2) is designed as

fv(s2) =

{
|s2|(|s2| − ∆v), |s2| ≥ ∆v

− 1−|s2|/∆v
|s2|+∆v

, |s2| < ∆v
(35)

in which ∆v denotes the thickness of the sliding mode surface.
The sliding mode controller is designed as

Fd = −kv,3|s2|α2 sgn(s2)−
(

1
2kv,2

+ e fv(s2)|s2|β2

)
s2 − kv,2(ev,2 − k1ev,1) + v̈d − kv,1 ė1 (36)

Then,

V̇5 = ev,1ev,2 − kv,1e2
v,1 + s2

[
−kv,3|s2|α2 sgn(s2)−

(
1

2kv,2
+ e fv(s2)|s2|β2

)
s2

]
= ev,1ev,2 − kv,1e2

v,1 − kv,3|s2|α2 |s2| −
1

2kv,2
s2

2 − e fv(s2)|s2|β2 s2
2

= ev,1ev,2 − kv,1e2
v,1 −

1
2kv,2

(kv,2ev,1 + ev,2)
2 − kv,3|s2|α2+1 − e fv(s2)|s2|β2 s2

2

= −kv,1e2
v,1 −

1
2kv,2

(
k2

v,2e2
v,1 + e2

v,2

)
− kv,3|s2|α2+1 − e fv(s2)|s2|β2 s2

2

(37)

According to (26) and (32), V4 ≥ 0, V5 ≥ 0. Additionally, kv,1 > 0, kv,2 > 0, kv,3 > 0,
and e fv(s2)|s2|β2 > 0. Therefore, the conclusion can be given that ∃σ5 > 0 such that
V̇5 ≤ −σ5V5.

3.5. Stability Analysis

Sections 3.2–3.4 introduced the controllers as parts of the proposed approach. The
Lyapunov candidates of each part are designed, and the stability of them are proved
separately. To prove the stability of the whole proposed controller, a Lyapunov function
that includes all of the Lyapunov candidates of the sub-controllers should be designed.
Consider the following Lyapunov candidate:

V = V1 + V3 + V5

=
1
2

(
p2

e + e2
ψ,1 + s2

1 + e2
v,1 + s2

2

) (38)

where V1, V3, and V5 are all quadratic, and they are added together, so there are no extra
parameters in V. This means that the Lyapunov candidate V has included all of the
characteristics of the sub-controller candidates, and its stability can be easily proved.
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Applying (10), (24), and (37) into (39) yields

V̇ ≤ −σ1V1 − σ3V3 − σ5V5

≤ −σV
(39)

where σ = min[σ1, σ3, σ5].
Therefore, the conclusion can be drawn that location deviations pe and eψ,1, eψ,2, s1, ev,1,

ev,2, and s2 are bounded and can be eliminated to a small neighborhood around zero.

3.6. Optimization Algorithm
3.6.1. Traditional PSO and GWO Algorithm

• In traditional PSO, a set of n ∈ Z+ particles is defined with particles in each iteration,
such as a certain ith particle in the kth iteration with a velocity and a position, sepa-
rately denoted by vi(k) and xi(k). The updating law of the particles is designed as

vi(k + 1) = wvi(k) + c1r1(k)[pi(k)− xi(k)] + c2r2(k)
[
pg(k)− xi(k)

]
xi(k + 1) = xi(k) + vi(k)

(40)

in which pi is the best position in the position history of the ith particle, pg is the global
best position of all the particles, c1 is the self-learning factor, c2 is the team-learning
factor, and w is the inertial weight. Normally, the parameters of w, c1, and c2 are set
to constant values, while r1 ∈ (0, 1) and r2 ∈ (0, 1) are random numbers. Although
the PSO algorithm is logically simple and fast in finding the optimal solution, it often
converges directly when a local optimal solution is found while ignoring the global
optimal solution. This is often referred to as the local optimum problem and indicates
that there is still room for improvement.

• The optimization algorithm GWO is inspired by the hunting process of wolves. In
the traditional GWO algorithm, there are N individuals in D-dimensional space at
X =

(
x1, x2, . . . , xD), which represents the grey wolf population. Define the solution

with the best result as α and the solutions with the second and third best result as β
and δ. Then, a candidate would be defined as ω, the whole hunting process is led by
the leading wolves, and the candidate ω will follow them. First, they will track and
chase their goal, and the action can be described as follows:

D =
∣∣C · Xp(k)− X(k)

∣∣
X(k + 1) = Xp(k)− A · D

(41)

where D is the distance between the prey and grey wolves, Xp is the position of the
prey, and X is the position of the wolves. A = 2a · rand(0, 1)− a and C = 2 · rand(0, 1).
a is one of the factors that decrease linearly from two to zero. Then, they will start to
hunt, and α, β, and δ will lead the grey wolf population to surround the prey, which
can be described as follows:

Dα = |C1 · Xα − X|
Dβ =

∣∣C2 · Xβ − X
∣∣

Dδ = |C3 · Xδ − X|
(42)

where Dα, Dβ, and Dδ represent the distance between α, β, and δ and the candidates.
C1,C2, and C3 are random vectors, and X is the position of the current wolf. Now,
we define

X1 = Xα − A1 · (Dα)

X2 = Xβ − A2 ·
(

Dβ

)
X3 = Xδ − A3 · (Dδ).

(43)
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Then, the position of the wolf in the next step can be calculated as

X(k + 1) =
X1 + X2 + X3

3
(44)

Therefore, the current grey wolf will move around the prey and get close to it. In
Equation (41), A is a random factor in the range of (−2a, 2a); when |A| is greater or
equal to one, the grey wolf will keep searching for a better solution, and when |A| is
smaller than one, then the grey wolf will be forced to attack the prey. This method can
avoid the local optimization problem.

3.6.2. Improvement in PSO Algorithm

• Improvement in inertial weight
In the PSO algorithm, inertial weight is considerably important for reaching an optimal
trade-off between local search and global search, determining how the movements
of the previous particle will be propagated to the current particle. On one hand, low
values will reduce the influences of previous particles, encouraging the current particle
to search in different directions and regions. This kind of behavior can be regarded as
exploitation. On the other hand, high values will keep the current particle searching
in the same direction. Compared with the behaviors of low values, this process can
be considered as an exploration. In order to reach an ideal compromise between the
search accuracy and the search speed, we propose a three-stage inertial weight update
law as (45):

w(k) =


wstart,

(
0 < k 6 1

3 kmax

)
(wstart − wend + 1) rand(1) + 0.3,

(
1
3 kmax < k 6 2

3 kmax

)
wend,

( 2
3 kmax < k 6 kmax

) (45)

where wstart is a relatively large value, wend is a relatively small value, rand(1) is a
random value in the range of 0 to 1, k is the number of current iteration, and kmax is
the maximum iteration number. As shown in (45), the particles are initialized with a
relatively high inertial weight value at the early stage

(
0 < k 6 1

3 kmax

)
, ensuring a

fast search for the optimal value. Meanwhile, the assigned high initial values prevent
the particle weight from becoming too low in the later iterations and falling into the
local optimum. During the middle phase

(
1
3 kmax < k 6 2

3 kmax

)
, we adopt a random

update approach for the inertial weight to achieve a balanced exploratory and a smooth
exploitative search procedure. The core of the weight update function here consists of
an assigned interval bounded by wstart and wend and its multiplier random number
rand(1) ∈ (0, 1). The proposed update law can help to avoid premature convergence.
In the close-out iterations

( 2
3 kmax < k 6 kmax

)
, the particle weight values will be

reduced to a relatively low value, maintaining a conservative search for the optimal
solution. The proposed three-stage inertial weight update law allows for an enhanced
optimization performance.

• Improvement in learning factor
c1 can be interpreted as the impact of each particle’s previous experiences, while c2
is the influence of global learning. If c1 > 0, c2 = 0, all particles perform the search
independently. In the circumstance of a high value c1 and a low value c2, the particles
focus mainly on searching for their best solutions, leading to divergence. In contrast, if
c1 = 0, c2 > 0, the particles will all reach the same solution. Combining a low value c1
and a high value c2 will result in a sub-optimal solution in the search. Inappropriate
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learning factor value will lead to poor performance of the PSO algorithm. Therefore,
the new learning factor is designed as (46) and (47).

c1(k) = e

(
Pi(k)−Pg(k)

|Pg(k)+ε|

)
(46)

c2(k) = e(−pi(k)+pg(k)) (47)

where pi(k) is the historical individual optimum in the k-th iteration, pg(k) is the
population optimum in the k-th iteration, and ε is a small constant value. We adopt pg
as a penalty term in the update function of c1(k) to control its value within a reasonable
interval and vice versa. The exponential form is introduced to increase the sensitivity
to the variations in the fitness values.

3.6.3. Improvement in GWO Algorithm

Traditional grey wolf algorithms converge slowly and tend to fall into local optima. In
the flow of the algorithm, the algorithm keeps selecting the three best-positioned wolves
in the pack as the alpha wolf, and the pack approaches the direction of the alpha wolf.
However, the wolves do not have a concept of speed when searching for prey, which means
that the wolves are likely to travel too fast as they approach the prey and fail to find better
prey as they go. Additionally, grey wolves do not keep track of where they have reached
individually during their travels. These problems will tend to lead traditional grey wolf
algorithms into local optimal problems. In the PSO algorithm, the particles update their
velocity and position based on the individual optimum and the global optimum. Therefore,
inspired by the PSO algorithm, in this study, the grey wolves will have memory, that is,
they will calculate their own optimal solution during the hunting process and calculate the
solution with the best position in the whole population, the grey wolves will travel at a
certain range of speed, and the whole process can be described as follows:

vi(k) = Xp(k)− A ·
∣∣C · Xp(k)− Xi(k)

∣∣
Xi(k + 1) = Xi(k) + vi(k)

(48)

where vi(k) is the velocity of the ith wolf, X(k)g is the global best solution of all the wolves,
and X(k)ip is the personal best solution of the ith wolf. Xp(k) is the leading wolves’ solution,
which is a value calculated from the global best solution and the personal best solution of a
current wolf, which is described as follows:

Xp(k) =
Xg(k) + Xip(k)

2
(49)

3.6.4. Optimization of Controller

The cost function is designed as

J =
∫ ∞

0
a
∣∣eψ,1(t)

∣∣+ b|δd(t)|+ c|ev,1(t)|+ d|Fd(t)|dt (50)

where a, b, c, d > 0. Additionally, the optimization objective is the control parameters
including kψ,1, kψ,2, kψ,3, kv,1, kv,2, kv,3, κ1, κ2, α1, β1, α2, and β2.

With these strategies, we use the proposed optimization algorithm to optimize the
controller. The optimization process will be illustrated by the following pseudo-code (see
Algorithms 1 and 2):
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Algorithm 1: IPSO.
Initialize all parameters and values;
foreach Iteration k do

foreach Particle i do
Update w(k) as (45);
Update c1(k), c2(k) as (46), (47);
Update velocity and position of particles as (40);
Calculate fitness value as (50);
Compare the fitness value with pi;
Update fitness value;

Set the best fitness value as pg

Algorithm 2: PGWO.
Initialize all parameters and values;
foreach Iteration k do

foreach Wolf i do
Update Xp as (49);
Update velocity and position of particles as (48);
Caculate fitness value as (48);
Compare the fitness value with Xip;
Update fitness value;

Set the best fitness value as Xg

4. Simulation Results and Discussion

In this section, leveraging Matlab/Simulink, the performance of the proposed con-
troller is evaluated through three representative examples. The proposed control algorithm
was also compared against two different types of controllers, including a PID controller
and an SMC controller.

The parameters of this control scheme are listed in Table 1.

Table 1. Main parameters of the controller.

Parameter Value Units Parameter Value Units

kψ,1,min 0 − α1,min 0 −
kψ,1,max 0.005 − α1,max 1 −
kψ,2,min 0 − β1,min 0 −
kψ,2,max 10 − β1,max 1 −
kψ,3,min 0 − α2,min 0 −
kψ,3,max 10 − α2,max 1 −
kv,1,min 0 − β2,min 0 −
kv,1,max 0.005 − β2,max 1 −
kv,2,min 0 − wstart 0.8 −
kv,2,max 10 − wend 0.5 −
kv,3,min 0 − kmax 20 −
kv,3,max 10 − ε e−50 −

a 10,000 − b 0.1 −
c 0.1 − d 0.001 −

Simulation on a Complex Trajectory

The test scenario is a complicated trajectory. We set the velocity of the controlled
vehicle to 20 m/s. We compared the proposed method with other widely used algorithms
such as cuckoo search optimization-based Sliding mode control (CO-SM), sliding mode
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control (SM), backstepping control (BP), PD control, and PID control. The trajectory tracking
result is shown in Figure 3. The cost function value of different evolutionary algorithms
is shown in Figure 4. Figure 5a–c demonstrates the angular orientation error and the
location deviation.

Figure 3. Trajectory tracking comparison.

Figure 4. The cost function value.
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(a)

(b)

(c)
Figure 5. Simulation results of complex trajectory at 20 m/s: (a) angular orientation, (b) angular
orientation error, and (c) location deviation.
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In Figure 3, it can be seen that the optimized controllers have better performances
than the traditional controllers. The PGWO-SM controller has the smoothest and best
response. In second and third place are the IPSO-SM and CO-SM controllers. In Figure 4,
the cost function value of PGWO-SM is more optimal than IPSO-SM and CO-SM. After
three iterations, the PGWO-SM controller has already found the optimal solution, but
IPSO-SM and CO-SM can only find their optimal solution at about 20 iterations. Then, it
is followed by the unoptimized controllers, in the following order: SM, BP, PID, and PD
controllers. Figure 5a,b demonstrate that the optimized controller is more stable than the
other controllers in terms of angular orientation. The angular orientation of the PGWO-SM
and IPSO-SM controllers are smoother than the SMC and PID controllers, and the angular
orientation error of PGWO-SM converges within 1.5 s, which is faster than IPSO-SM and
CO-SM, and is significant faster than the other unoptimized controllers; when the vehicle is
steered, the error is typically within 0.05 degrees for PGWO-SM and within 0.1 degrees for
IPSO-SM and CO-SM. However, the errors for the other traditional controllers are between
0.2 and 0.6 degrees, much greater than the errors for the optimized controller. The local
deviation is shown in Figure 5c. When the vehicle is steering at high speed, the PGWO-SM
local deviation is usually in the range of 0–0.3 m, with significantly more minor fluctuations
in amplitude and duration than the other algorithms. The simulation results show that
the optimized controller is significantly more responsive and robust than the conventional
SM and PID controllers, while the PGWO-SM controller performs better than the IPSO-SM
and CO-SM controllers. To describe the result more clearly, the results are quantified and
shown in Table 2. The mean position error and maximal error are calculated here, and this
result further proves that our proposed controller is better and can improve the robustness
of the system.

Table 2. Comparison of mean value and maximal position error for the simulation results.

Controller Mean Position Error (m) Maximal Position Error (m)

PGWO-SM 0.0434 0.6229
CO-SM 0.0640 1.0375

IPSO-SM 0.0529 0.8137
SM 0.0942 2.2759
BP 0.1161 2.2262
PD 0.1507 2.7368
PID 0.1511 2.7215

In summary, to simulate a complex and hazardous driving scenario, we designed a
challenging curved trajectory and controlled the vehicle to travel at high speeds. However,
the proposed controller achieves excellent trajectory tracking performance even in such
scenarios by minimizing deviations between real and desired trajectories, ensuring rapid
convergence even in the presence of large disturbances. Moreover, the controller produces
smooth steering angle changes throughout the vehicle’s journey, making it highly suitable
for practical vehicle control applications in challenging road conditions.

5. Conclusions

We summarized the contributions of the proposed approach as follows: In order
to achieve high tracking accuracy in different trajectories, a vector-field-based adaptive
sliding mode controller has been presented and described by the bicycle kinematic model.
In the proposed method, the vector field guidance law was successfully expanded from
simple trajectories to different curves. Additionally, separate control loops for orientation
angle and velocity were proposed based on the sliding mode principle. Moreover, two
optimization algorithms named IPSO and PGWO were introduced to optimize the sliding
mode controller so that the controller was able to output the optimal orientation angle and
velocity. We conducted a comparison with the other four algorithms, and the simulation
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results illustrated that the proposed controller had a faster, smoother, and more precise
response compared with the traditional controllers. However, evolutionary algorithms are
more demanding in terms of arithmetic power. Furthermore, in this paper, the gain in the
controller is searched by the optimization algorithm offline. In the future, more efficient
optimization algorithms should be developed, and an online optimization algorithm-based
controller for trajectory tracking should be built. Integrated with the research of the
longitudinal control approaches, we are going to apply the proposed scheme in a collision
avoidance system and eventually apply it to a real car.
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