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Abstract: In recent years, considerable work has been conducted on the development of synthetic
medical images, but there are no satisfactory methods for evaluating their medical suitability. Existing
methods mainly evaluate the quality of noise in the images, and the similarity of the images to the
real images used to generate them. For this purpose, they use feature maps of images extracted in
different ways or distribution of images set. Then, the proximity of synthetic images to the real set is
evaluated using different distance metrics. However, it is not possible to determine whether only one
synthetic image was generated repeatedly, or whether the synthetic set exactly repeats the training set.
In addition, most evolution metrics take a lot of time to calculate. Taking these issues into account,
we have proposed a method that can quantitatively and qualitatively evaluate synthetic images. This
method is a combination of two methods, namely, FMD and CNN-based evaluation methods. The
estimation methods were compared with the FID method, and it was found that the FMD method
has a great advantage in terms of speed, while the CNN method has the ability to estimate more
accurately. To evaluate the reliability of the methods, a dataset of different real images was checked.

Keywords: echocardiogram; artificial intelligence; echocardiography; generative adversarial
networks; convolutional neural network; FID; FMD; IS; synthetic medical image

1. Introduction

In the last few years, the use of artificial intelligence (AI) to analyze images, videos,
text, and audio, in order to interpret, detect, classify, and diagnose diseases, has attracted
the growing interest of researchers [1,2]. The development of medical AI-based software
requires a huge amount of data such as blood test results, X-rays, Computed tomography
(CT), Magnetic resonance imaging (MRI) Echocardiography (Echo) images, etc. However,
developing and labeling such datasets is a costly and time-consuming process, as those
processes are usually carried out by human experts.

Currently, there are limited numbers of publicly available echo databases, which are
too small or big but unlabeled. Therefore, there is a high demand for synthetic image-
creation methods. So, in recent years, building synthetic echocardiogram image datasets
has received considerable attention [3–5]. Generative adversarial networks (GAN) [6],
autoencoders (AEs) [7], and U-nets [8] have become the most efficient and popular methods
to generate synthetic images, and hundreds of their hybrid algorithms have been proposed
so far [9,10].

Obviously, as the number of algorithms increases, the need to evaluate their quality
and reliability also grow, respectively. Traditional methods of image quality assessment
were used usually to evaluate synthetic medical images. However, natural images (i.e.,
images of people, cars, animals, and other things around us) are slightly different from
medical images.
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Firstly, natural images are normally RGB images, i.e., 2D with 3 channels, while
medical images can be presented in different forms, such as 2D Gray scale (1 channel), 2D
with 4 channels, 3D, and 4D. Secondly, the relative pixel intensity in the natural image
is determined to detect edges and gradients. Quite in reverse, the intensity of each pixel
in medical images can convey information relevant to the problem, and even noise can
provide information about pathologies in tissues or organs. For example, algorithms
for detecting fibrosis have been developed based on speckle noises in echocardiogram
images [11]. Whereas in normal images, speckle noises are considered unnecessary and are
tried to be reduced as much as possible. Thirdly, in medical images, variation in location
plays a crucial role, but the location of an object is not important in normal images.

For this reason, in works [12,13], it is shown that using transfer learning with famous
networks (i.e., Inception, Resnet, VGG) to classify medical images does not give good
results, as those networks are only trained on natural images. Similarly, the methods used
to evaluate natural images cannot be used to evaluate medical images. Because popular
image quality evaluation methods such as FID, IS uses the Inception network to evaluate
images. However, in recent studies, the FID measurement was used as an evaluation
method [14–16], even though this leads to incorrect evaluation of image quality. Moreover,
calculating the FID value takes a lot of time and memory. It is especially disruptive when it
is used as an additional loss in training GAN networks. Therefore, it is an important task to
develop an easy-to-compute evaluation method specifically designed for medical images.
In recent years, special evaluation methods have been proposed for MRI, CT, and PET,
but these methods cannot be used directly to evaluate artificial echocardiogram images.
Despite this, any special method has been proposed in this field so far.

Moreover, FID or IS score cannot distinguish very subtle differences in echo images.
Here is an example to explain it better. The first sign to diagnose Hypertrophic cardiomy-
opathy (HCM) based on an echocardiogram is the LV thickness assessed at the level of the
septum and free wall. More precisely, if it is 15 mm or thicker, it means that this patient
may have HCM. The ratio of septal to free wall thickness is equal to 1.3–1.5 and is also
considered a suspicious sign of HCM [11].

However, since the LV value usually changes with the contraction and expansion of
the heart, this value should be measured during mid-diastole. That is, the ventricle of a
healthy heart expands during diastole (it will be largest when the mitral valves are closed
(Figure 1a) and narrows during the systole (it will be narrowest when the mitral valves
are open (Figure 1b). For this reason, the LV value is measured in the middle of diastole
time. Now just imagine if the training dataset consists of healthy patients’ echo images.
Naturally, this dataset includes images of diastolic and systolic phases of the cardiac cycle.
The image generator takes the details/features from these two real images and generates a
new one (an image of the heart with an LV as wide as an end-diastolic LV but with open
valves can probably be generated) (Figure 1c). While this synthetic image is considered
a high-quality image by most evaluation criteria, it actually does not describe the target
disease, but it describes another disease, i.e., in the abovementioned case, it represents
HCM signs.

Therefore, in order to fill this gap, a new evaluation approach was proposed in this
paper. A brief summary of the proposed method is provided below. The assessment is
carried out in two stages:

1. Quantitative evaluation: the assessment of the quality (noise, similarity) of the images.
2. Qualitative evaluation: the assessment of the reliability of the images.
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Figure 1. From the image of a healthy heart when its mitral valves open (a) and closed (b), a synthetic
heart image with the open mitral valve and thickened LV (c) is made. (Figure (a,b) are taken from [17],
while (c) is made manually.)

It was proposed to use a slightly modified version of the Fréchet inception distance
(FID) metric to evaluate the quality of images and it was named the Fréchet MedicalNet
distance (FMD) score. The main advantage of the proposed metric is low calculation
time compared to the FID score, so it can be used as an additional loss coefficient of the
discriminator during training GAN networks and can prevent the gradient from vanishing.
This can save a lot of time compared to using a simple FID. This is discussed in detail in
paragraph four.

Synthetic data consists of artificially generated data and is a quite powerful tool
to overcome the aforementioned problems. Because synthetic data are generated rather
than collected or measured, they can be of much higher quality than real data. Moreover,
privacy constraints can be applied so that the synthetic data does not reveal any important
information, such as patients’ clinical records. The deep neural network was used as a
major tool to evaluate the reliability of the synthetic images. In order to train this network,
synthetic images of two different classes are used as training datasets, whereas real images
are used as validation datasets. Network accuracy and convolution matrix are used as the
main evaluation parameters.

This paper consists of the following sections. The second section presents and an-
alyzes the related works. The third section describes image generation processes. The
fourth section contains information about the proposed methods, related architecture,
mathematical apparatus, and obtained results. The fifth section discusses the proposed
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synthetic image evaluation approach. Finally, the sixth and the seventh are future work
and conclusion, respectively.

2. Related Work

GANs are a powerful deep generative model trained with an adversarial procedure.
GANs have undergone several modifications since they were first proposed to solve sev-
eral different problems in different domains, e.g., physics [18], healthcare [19], or object
detection [20]. To analyze the state-of-the-art in what concerns GANs used for synthetic
data generation, as well as synthetic data generation methods, we reviewed recently pub-
lished scientific papers [21–23]. Pose-driven attention-guided image generation for person
re-Identification proposed in [24] by Amena et al. introduces attentive learning and trans-
ferring the subject pose through an attention mechanism based on GAN. In [25], the study
aimed to synthesize artificial lung images from corresponding positional and semantic
annotations using two generative adversarial networks and databases of real computed
tomography scans. researchers implemented an efficient strategy for synthesizing artificial
CT lung images from annotation masks and semantic labels and assessing the quality and
realism of the generated images. To create a collection of artificial one-, two-, and four-cell
embryo images, generative adversarial networks were trained on real human embryo cell
images. The algorithm’s ability to manipulate the size, position, and quantity of artificially
generated embryo cell images was confirmed by the results. These images can then be used
to train and validate additional embryo image processing algorithms when real embryo
images are not available or when the number of real embryo images is insufficient for
neural network training [26].

The development of different new methods of generating synthetic images has made
it urgent to evaluate these methods, more precisely, evaluating the quality of the image
they produced. For this reason, metrics were proposed to estimate synthetic image quality.
However, medical images such as MRI, CT, and Echo images are usually different from typ-
ical images (i.e., from images of people, cars, animals, clothes, etc.). They are noisier, blurry,
and difficult to detect edges and features in the images, especially echocardiogram images.
Every little change in them can be a sign of some diseases. So, special and accurate evalua-
tion metrics need to assess the quality of synthetic medical images. A number of papers
have been published in recent years to meet this need. They proposed different methods
and metrics. The advantages and disadvantages of the methods are given in Table 1.

In [27–29], a review and deep analysis of the evaluation methods of synthetic images
were given, and important analytical conclusions about their disadvantages and advantages
were drawn. When generative models began to be used in healthcare, the simplest Image
Quality Assessment methods were first used to evaluate the quality of the generated
images. The most popular of them were methods such as Structural similarity index
measure (SSIM) [30], Mean squared error (MSE) [31], Mean absolute error (MAE) [32],
Peak signal-to-noise ratio (PSNR) [33]. However, these algorithms were very simple and
insufficient. For example, when calculating MAE and SSIM, matching pairs of images are
required for synthetic images to compare.

As it is impossible to find real and synthetic paired images, many authors [34] used
MAE to evaluate generated CT, MRI, or PET image quality. These images are 4D images;
thus, their GAN network generated slices of the 4D images. Additionally, some authors
proposed to calculate the MAE value between images of successive slices [32]. Although
this method can be used to evaluate synthetic MRI and CT images, it is impossible to use
them for echo images as well because the echo images are 2D images and they do not have
slices. In addition, this method cannot evaluate the proximity of the generated image to
real ones, which is one of the method’s considerable disadvantages [35].



Sensors 2023, 23, 3440 5 of 20

Table 1. Related works pros and cons.

Name of Method/Metric Showed High Accuracy Only In Advantage Disadvantage

MAE/MSE/SSIM [30–32] Synthetic PET/CT/MRI images Has high accuracy in
assessing noise in images

Require reference image for
each synthetic image,

Cannot be used for assessing
echocardiogram
synthetic image

NIQE [36] Image quality assessment
Do not require reference

image for each
synthetic image

It can only correctly evaluate
noisy synthetic images.

Cannot evaluate better quality
synthetic images with

high accuracy.

IS [37] Natural images assessment
Do not require reference

image for each
synthetic image.

It can only evaluate the
distribution of generated
images. Adapted to the

evaluation of natural images;

FID [15] Natural images assessment

It can estimate the distance
between the distribution
of generated image set

and that of real image set.

Long calculation time;
Adapted to the evaluation of

natural images;

FastFID [16] Natural images assessment Fast calculation time Adapted to the evaluation of
natural images;

DQA [38] MRI images Higher
evaluation accuracy

Adapted to the evaluation of
MRI images;

HYPE [39] Medical and natural images Has highest accuracy;
Used as a gold standard; Costly and time consuming

Proposed Method Echocardiogram images Fast and reliable Combination of two methods

All the abovementioned methods require reference/ground truth. Naturally, it is
impractical to find such an image, because generative models generate images that have a
multivariate statistical relationship with a set of real images, but not twins of real images.
Therefore, non-reference methods, such as the naturalness image quality evaluator (NIQE),
began to be used with a combination of other methods [36]. The statistical distribution of
the image is evaluated not by that of another base image but by calculating the deviations
from the statistical regularities of the image itself. Because of this, it cannot evaluate the
similarity between the real set and the synthetic set, it can only evaluate the quality of
the image. However, in the work [36], it was noted that the use of the NIQE method in
the earlier epochs of GAN, gives good results. As in the initial epochs of the training, the
images will be of poor quality and slightly noisy.

Later, many methods based on measuring the similarities/distances between statistical
distributions in a set of images or the distances in different feature maps of real and synthetic
images were used (for example, deep quality assessment (DQA) metrics [38], learned
perceptual image patch similarity (LPIPS) [40], inception score (IS) [37], and FID scores) [15].
IS score cannot assess the diversity of the images set, i.e., the exact or same images generated
by saturated, overfitted or mode collapsed network will be overestimated. It only takes
into account the distribution of synthetic images and cannot assess distances between
the distribution of real and synthetic image sets. Moreover, it is an image resolution-
sensitive method. Furthermore, when compared to human expert evaluation, it shows
an unsatisfactory evaluation ability for medical images. Further drawbacks can be found
in [28]. Therefore, in recent years, this method is considered unsatisfactory for use in the
evaluation of medical images and is almost not used.

Fid was suggested by Heusel [14] as an alternative to IS. Unlike IS, it could also
estimate the similarity of images to real images using the distance between activation



Sensors 2023, 23, 3440 6 of 20

distributions of datasets obtained from a special layer of the InceptionV3 network. The FID
was shown good correlation with human visual perception [30]. For this reason, FID values
are used mainly in the evaluation of medical images recently [14–16]. However, it still has
a number of drawbacks; the most important is high bias. Additionally, FID cannot detect
the GAN that remembers the training set.

In addition to the above automated methods, evaluation approaches, which involve
humans/experts, have also been used, for example, the visual turing test [41], five-point
Likert scale [38], and human eye perceptual evaluation (HYPE) [39]. Although these
methods are considered the most accurate methods and are the gold standard, they are
costly and time-consuming.

3. Image Generation Processes
3.1. The Working Principle of the GAN

One of the research fields in medical image processing is generating synthesized
images based on generative adversarial networks (GANs). GANs are a framework that
uses an adversarial process to estimate generative deep learning models, proposed by Ian
J. Goodfellow et al. [42] in 2014. The GAN architecture was named the most interesting
idea of the decade. In fact, it was capable of producing sharper, brighter, and more realistic
images than AE, U-Net, or other generative networks. One of its advantages was the
high level of diversity of the images it produced. The GAN architecture consists of two
networks which compete with each other. The architecture of the general GAN is illustrated
in Figure 2. This architecture consists of typical generator and discriminator networks.
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A generative model G tries to generate images similar (but not identical) to the real
target set from uniformly distributed noise, such as Gaussian noise. While discriminative
model D tries to distinguish the generated image from the real one, i.e., determines whether
the generated image is synthetic or natural. The total loss function of this network (min-max
loss function) is determined using Equations (1) and (2) as follows:

minmax
GD

V(G, G) (1)

V(D, G) = Ex∼Pdata(x) [logD(x)] + Ez∼Pz(Z)[log(1 − D(G(z)))] (2)

where D(x) is the discriminator that evaluates the probability that the given data x is real, Ex
is the expected value for all true datasets, G(z)− z is the image formed at the output of the
generator when noise is given, D(G(z)) is the discriminator that evaluates the probability that
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the synthetic image is real, and Ez is the expected value of the result of all random noise entered
into the generator (in fact, the expected value of all generated synthetic examples is G(z)).

From the formula, it is clear that generator losses do not directly affect the network; an
increase in generator losses leads to a decrease in total losses because, as the generator loss
increases, the generated image quality decreases and becomes noisier. Then, discriminator
will easily distinguish such poor-quality images from real ones. Training this network
is very challenging. One main issue is the vanishing gradient. As the discriminator’s
classification ability increases, the loss value it transmits to the generator becomes very
small and the gradient loss function approaches zero: 1 − logD(G z) ≈ 0. As a result, the
generator receives no information, and the learning process is terminated. When such a
problem occurs, it can usually be overcome using other loss functions instead of adversarial
loss, such as Wasserstein loss and their combination [43–47] or adding additional loss to
the main loss function as a penalty.

In recent years, many papers have proposed various loss functions [9,47], such as
Ladversarial,Limage, Lperceptual, Lstructure [46], Lself−reg, Lsharp, and Lshape [9] can be added to
the main loss function or can be used in different combinations or instead of it. However,
many of them are difficult to calculate, or impossible to reuse and check because the authors
do not provide complete information about them, or use private datasets. Therefore, the
simplest method is to use the FID score as a loss penalty. In order to find the FID value,
the root mean square of the matrices and traces should be calculated, and the calculations
are very time-consuming and slow down the process of training the network. Especially
during the generation of high-resolution synthetic images from large datasets, adding the
FID value as an additional loss further complicates the training process.

3.2. GAN Architecture and Parameters

In this work, we use a typical GAN network to evaluate the echo images generated by
the GAN network. In the GAN architecture, the generator network consists of five blocks,
each of which consists of a successive Convolution Transpose layer, Batch Normalization,
and ReLU layers, only the last Convolution Transpose layer is followed by the Tanh layer,
instead of Batch normalization, and ReLU layers. The Discriminator network consists of five
consecutive Convolution blocks, which include the Convolution layer, Batch normalization,
and LeakyReLU layer. Unlike the generator, a LeakyReLU layer was chosen as an activation
layer in the discriminator network. Batch normalization and LeakyReLU layers were
changed with the Sigmoid and Flatten layers in the last block of the discriminator. The
parameters of both networks are given in Tables 2 and 3. The Adam optimizer was used
to train the network. The learning rate was equal to 0.0002. The decay factor for the first
momentum—β_1—and the decay factor for infinity norm—β_2—were equal to 0.5 and
0.999, respectively.

Table 2. The parameters of the Generator architecture.

No. Names of the Layers Number of
Convolutional Layer Filters

Convolutional Layer Filter
Size/Stride/Padding

1. Input + Reshape

2. ConvTranspose2d + BatchNorm + ReLU 512 4/1/0

3. ConvTranspose2d + BatchNorm + ReLU 256 4/2/1

4. ConvTranspose2d + BatchNorm + ReLU 128 4/2/1

5. ConvTranspose2d + BatchNorm + ReLU 64 4/2/1

6. ConvTranspose2d + Tanh 1 4/2/1
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Table 3. The parameters of the Discriminator architecture.

No. Names of the Layers Number of
Convolutional Layer Filters

Convolutional Layer Filter
Size/Stride/Padding

7. Input

8. Conv2d + BatchNorm + LeakyReLU(0.2) 64 4/2/1

9. Conv2d + BatchNorm + LeakyReLU(0.2) 128 4/2/1

10. Conv2d + BatchNorm + LeakyReLU(0.2) 256 4/2/1

11. Conv2d + BatchNorm + LeakyReLU(0.2) 512 4/2/1

12. Conv2d + Sigmoid + Flatten 1 4/1/0

3.3. Dataset

EchoNet (dynamic cardiac ultrasound database) was used to train the GAN network
and classification Convolutional neural network (CNN) [36]. This dataset consists of
echocardiogram videos from 10,030 individual patients. Although the videos were not
classified by disease, they provide information about the dimensions and some parameters
of the presented heart. More specifically, a separate CSV file contains information about the
ejection fraction (EF), end-systolic volume (ESV), and end-diastolic volume (EDV) values
of the heart in each video. These echo videos contain only an apical-4-chamber (A4C) view
of the heart, and their resolution size is 112 × 112. Then, we put appropriate files from the
dataset into two folders (i.e., classes) according to the heart’s ESV and EDV values. It is
known that the EDV of some hearts corresponds to the ESV of others. Therefore, when
the videos are divided into frames, the data of two sets can be intersected. For this reason,
we put the hearts’ videos where ESV < 20 and EDV < 2 into the first folder/class, and
the hearts’ videos where ESV > 70 and EDV > 70 were put into the second folder/class in
Figure 3. In this paper, we aimed to train two networks: GAN and CNN.
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The first is a GAN network for generating artificial images. The second is the CNN
network, which will be used in the proposed method. Therefore, after dividing the data
into folders according to their size, the files in each folder were divided into 3 parts in the
8:1:1 ratio. Notably, 8× parts of data were taken for training the CNN network, 1× part
was taken for the validation of the CNN network, and 1× part was taken for training the
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GAN network. After that, the videos were divided into frames and placed in appropriate
folders. This distributed dataset is graphically illustrated in Figure 3.

3.4. Training the GAN Network and the Results

Training a GAN network is a very complex process, and it is trained over very long
iterations. Our goal was to train images Belonging to two different classes: Class 1 is a class
of heart images with ESV < 20 and EDV < 20, which is conditionally called Heart20. Class 2
is the class of cardiac images with ESV > 70 and EDV > 70, which is conditionally called
Heart70. In this case, the GAN network should be trained twice. The generated images
were controlled/judged at each epoch, and training was stopped if the images’ quality
was deemed satisfactory. Although the Heart20 data are less than the Heart70 data, the
GAN network was able to draw images of the class Heart20 faster and with better quality.
Therefore, during the generating of Heart20, training was stopped earlier in Figure 4. The
real images in the Heart20 and Heart70 datasets and appropriate the GAN-generated
synthetic images Figure 5.
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Figure 5. The A4C real and synthetic echo images of the heart generated by the GAN architecture.

4. Proposed Evaluation Method

We have proposed a two-step evaluation approach and an appropriate new evaluation
metric method for the images generated by the GAN. The first step is to evaluate the
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quality of images during the training. For this, a new measure similar to the FID score, but
faster and easier to calculate, should be used. This method mainly evaluates the quality
of the images and the similarity of the synthetic images with the real images used for
training. This will be discussed in detail in Section 4.1. The second step is to evaluate the
images generated by the trained GAN. We have proposed a new method—using the CNN
network—for this step. This method evaluates the diversity of the generated datasets and
their proximity to other real images. This will be discussed in detail in Section 5.

4.1. Problem Statement

Evaluating the network performance and comparing the results using the GAN ar-
chitecture is a highly complex task. Usually, reference-based and non-reference-based
methods are used to estimate the distance between different distributions and to evaluate
the performance of the network. The most common methods are the assessment of IS and
FID scores.

As mentioned above, IS method uses a pre-trained InceptionV3 model to evaluate
the quality and diversity of the generated synthetic images. The InceptionV3 model
was trained using the ImageNet database, which contains more than one million images.
The InceptionV3 model can classify images into 1000 classes with an accuracy of 78.8%.
However, the IS cannot evaluate the similarity of the generated images to the real ones.
Therefore, a new FID method was proposed to evaluate the quality of images. The FID
method compares the distribution of the generated synthetic images with that of the real
images used to train the generator. For this, the feature map of the last average pooling
layer of the InceptionV3 network is used. This layer consists of 2048 neurons. Based on the
sets of feature maps generated in the last layer when the synthetic and real images are fed
into the network, the FID score is determined using Equation (3) as follows:

d2(F, G) =
∣∣∣µx − µy

∣∣∣2 + tr
[
Σx − Σy − 2

(
ΣxΣy

)1/2
]

(3)

Here, µx and µy are the average values of the activations A(xi) and A(yi) generated
in the last average pooling layer when real and synthetic images—(xi, yi) are fed to the
InceptionV3 network. Then, ΣxΣy are the sample covariance matrices of these activations.
The trace of this matrix is determined using Equation (4):

tr
(√

Σ1Σ2

)
= ∑m−1

i=1

∣∣∣∣√λi

(
CT

1 C2CT
2 C1

)∣∣∣∣ (4)

In this case, the time complexity for calculating the eigenvalue of
(

CT
1 C2CT

2 C1

)
was

determined as O
(
mdn + m2n + m3), and if the number of samples is large, the time com-

plexity is
(

d2m + m3
)

. Here, m and n are the numbers of real and synthetic samples,
respectively, and d is the number of neurons in the last layer. If m << d, the time spent
to produce a small number of synthetic images is proportional to the number of neurons,
and if d << m with a large amount of data, it is a quadratic function. In [33], the authors
presented a new approach to overcome this issue, and the time complexity of their pro-
posed method was

(
d3 + d2m

)
. Therefore, when working with a large amount of data,

the second method is more convenient than the first, where the time required depends
more on d than on the number of samples. However, considering that this relationship
is cubic, by reducing the value of d, theoretically, we can significantly reduce the time
required to calculate the FID value. In particular, in the case when the FID value is used
as an additional loss value, this method plays an important role in network training, as it
drastically increases the training speed. Although the computation time of the fast FID
method is much shorter than the original FID method, as noted in the same paper, it would
be desirable to further reduce this time because, usually, GAN networks are trained for a
long time, and in cases where the FID value is used as an additional loss, the total training
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time can be significantly reduced by fast calculating the FID value at each epoch. The
memory required for training would also be reduced. For this reason, we have proposed a
method with the possibility of fast calculation.

In addition, the InceptionV3 network is only designed to work with images of peo-
ple and objects and not with medical images and videos. Medical images, especially
echocardiograms, have special aspects which are different from ordinary images:

- They are noisier and blurrier than ordinary images;
- The edges are not clearly defined;
- Usually generated synthetic echo images are of gray-scale quality, i.e., mostly single-

channel.

In this situation, instead of the InceptionV3 network, the FID estimation accuracy can
be improved by using a network that can better classify medical data. For example, in [38],
a special method was designed for video quality estimation. However, no specific method
has been proposed to assess echocardiogram images.

4.2. Method Description

The main reason for the time-consuming calculation of the FID score is that the
InceptionV3 network has many parameters to calculate because, after feeding one image to
the network, from the input to the last average pooling layer, a total of 21,785,568 parameters
are required for the calculation. In addition, calculating the Fréchet distance, which is used
to calculate the FID score, also takes a lot of time. As a 2048xbatch_size matrix is generated
from the Adaptive average pooling layer. Therefore, in the process of FID calculations,
instead of the InceptionV3 network, we proposed to use a network with fewer parameters
and designed for the classification of echo images, given in Table 4. Furthermore, the size
of the last layer which will be used in the calculation of Fréchet distance also will be smaller
than that of the InceptionV3 network, i.e., than the last Adaptive Average Pooling layer.

Table 4. The parameters of the GAN architecture.

No. Names of the Layers
Number of

Convolutional
Layer Filters

Convolutional Layer
Filter

Size/Stride/Padding
Dropout (%)

1. Input

2. Conv2d + BatchNorm + ReLU + Dropout 256 4/2/1 20

3. Conv2d + BatchNorm + ReLU + Dropout 2 4/2/1 20

4. Conv2d + BatchNorm + ReLU + Dropout 128 4/2/1 20

5. Conv2d + BatchNorm + ReLU + Dropout 16 2/1/0 20

6. Output

For this purpose, we built a CNN architecture that can classify echocardiogram im-
ages with high accuracy. The parameters of the architecture are listed in Table 4. The
output of the last convolution layer is used to calculate the Fréchet distance. More pre-
cisely, the parameters from the Input layer to the last ReLU layer are used. Then, a total
of 25,782 calculations are required to obtain the activation—A(xi) of a single image. This
means 844.99 times fewer parameters compared to the InceptionV3 network. In addition, a
256xbatch_size matrix is generated from the last convolution layer. Its size is also 4 times
less than that of the last used layer (2048xbatch_size) of Inception.

As mentioned earlier, the EchoNet dataset was used to train this network. To avoid
errors in the evaluation of the network, the dataset was divided into a certain ratio. One
part was reserved for training GANs and the rest was used for training and validating
CNN. That is, the CNN network cannot see the set of images intended for generating
synthetic images. In addition, a dropout layer was added after each convolutional block to
prevent network overfitting.
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The CNN was trained for 30 epochs. The Adam optimizer was used as the optimization
algorithm and the decay factor for the first momentum—β1—and the decay factor for the
infinity norm—β2—was set to 0.95 and 0.99, respectively. This is because, in our previous
work, it was found that these values affect high performance [2]. The validation accuracy
of the network reached 90.75%. The advantage of this network over InceptionV3 is that it
is adapted to gray-scale images, rather than to RGB images. This ensures that the quality
of the images was maintained during the assessment process. Another advantage of this
network is that it is trained to extract special features of echo images. This network is called
MedicalNet, and the method that assesses the quality of the synthetic images is called the
FMD method.

4.3. Experimental Results

After that, we generated images of Heart20 using the trained GAN network and
determined their FID and FMD values. To determine the reliability of the estimation
methods, we checked them on two different databases: the dataset used to train the GAN
and the validation dataset used to evaluate the CNN network. In order to estimate the
distribution across the group, we set the batch size equal to the size of these datasets, i.e.,
1392 and 1408, respectively. Since the synthetic images were generated based on the GAN
training dataset, the FID and FMD values were expected to be smaller. Because synthetic
images will be more similar to this set. Even the CNN validation dataset is unfamiliar for
synthetic images; they should have small enough FID and FMD values, as they also belong
to the same class as the GAN training set. That is, synthetic images should be similar to
every real image of the same group, despite their usage in the training process. As can
be seen from Table 5, the real synthetic images are more similar to the GAN training set.
The important point here is that the value of FMD is slightly higher than the value of FID.
However, when evaluating the similarity to the validation set, the value of FMD is much
higher than the value of FID.

Table 5. FID and FMD values for different datasets and time required to calculate them.

Batch Size FID FMD
Real Datasets Name

Time Value Time Value

Heart20 fake dataset

1392 253.372 34.41 1.813 16.62 GAN training set

1408 313.716 42.56 2.456 29.45 CNN validation set

Heart70 fake dataset

1794 308.225 62.81 1.930 138.38 GAN training set

2301 326.37 61.04 2.120 129.23 CNN validation Set

As can be seen from Table 5, the speed of calculating the FMD value is significantly
higher than that of the FID value. To further validate this, we performed the following
experiment. The calculation time of both methods was measured for different batch sizes.
The times required to calculate the FID and FMD values obtained in the experiment are
listed in Table 6.

Table 6. Time required for calculating the FID and FMD values.

Batch FMD Time FID Time FID/FMD Ratio

8 17.43 ms 1.51 s 86,632.24

16 37.559 ms 3.468 s 92,334.73

32 62.775 ms 6.226 s 99,179.61

64 112.565 ms 12.143 s 107,875.4

128 244.611 ms 24.371 s 99,631.66
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As shown in Table 6, our proposed method required up to 107.9 times less computation
time than the conventional FID methods. Several fast algorithms have been proposed to
reduce the time required to compute the FID value [48]. Comparative results of the
proposed method and FID method were given in Table 6.

The speed of our proposed algorithm was higher than that of the other algorithms.
Authors [49] found that the evaluation time of eight images using the fastFID method was
up to 13 times faster than using the normal FID method. Our approach required 86.63 times
less time than the FID method. The fastFID algorithm took 2.8 times less time to evaluate
128 images than the FID method, whereas our algorithm required 99.6 times less time than
the FID method for this process. That means our proposed algorithm is much more (up to
35.5 times) faster than the fastFID method.

Now, it may be assumed that this difference affects training time if the FID, fast FID,
and FMD scores are used in the GAN network as an additional loss. The loss function will
be in the following form (5):

G*, D* = argminGmanGLCGAN(G, D) + λLL1(G) (5)

During the training, the FID loss is calculated at each iteration. If the number of
images in the dataset is n and the batch size is b, the number of iterations in each period
is expressed as n/b, and for m epochs, it will be determined as Ni = m∗n/b. Then, the
additional time required to calculate the FID value will be expressed as follows:

t = Nt∗t0 (6)

Here, t0 is the time spent calculating the FID value in a single batch. Using the above
formula, in Table 5 and Figure 6, we show a comparison of excess calculation time for
different epochs when the batch size is equal to 128. We may take iterations per epoch
equal to 10.

Figure 6 shows that using the FMD value as an additional loss for training the GAN
(with 128 batch size dataset) during 1000 epoch requires 24,127 fewer seconds than using
the FID value; that is, approximately 6.7 h can be saved. Moreover, it can be seen that
the computation time of the FID value in the FastFID method is almost the same as
the computation time of the FMD value. However, in the proposed approach, we used
SCIPY.LINALG.SQRT function for calculating the FMD values. If the matrix trace is
calculated instead of using the SCIPY.LINALG.SQRT function as mentioned in [49,50], the
time required to calculate the FMD value can be reduced further by a factor of 100.
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4.4. New CNN-Based Evaluation Method

This method can only be used after the GAN network is fully or sufficiently trained,
as this method requires a large number of synthetic images. This method works as follows.

After the GAN network is trained, a large dataset of synthetic images will be generated
using the trained GAN. The CNN network is trained using this synthetic dataset. Real
images are used as a validation dataset. These real images can be images used in the
training GAN or other images of the same classes. However, the most important thing is to
pay attention to the fact that the size of the training and validation dataset should be in a
9:1 or 8:1 ratio. So it is recommended to develop a dataset of synthetic images based on the
number of available real images.

Another important thing to mention is that, as CNN is being used here for classification
purposes, we need images of at least two classes. This means that we need to train the
GAN network twice, that is, we need to train it separately to generate images belonging to
two different classes.

Because the following conclusions can be drawn in Figure 7, which serves as our
main evaluation tool. In our case, images belonging to two different classes (Heart20
and Heart70) were generated using the GAN network. We had 2301 and 1392 images in
each class, respectively, for training the GAN network. So we generated 18.000 Heart70
synthetic images and 11.000 Heart20 synthetic images. For this task, we used the net-
work used in the FMD metric (see Section 4.2.) Then we trained the CNN network. The
training and validation accuracy of the network for synthetic and real training datasets
is shown in Figure 7.
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The rapid rise of the training line to 100% means that the homogeneity of the synthetic
images is very high. In particular, the fact that the training line reaches 100% in the initial
epochs, and the validation line takes very low (30–40) values means that almost all synthetic
images are the same, that is, mode collapse or overfitting in the GAN network.

Depending on the maximum value of the validation line, synthetic images can be
evaluated as the 5-point Likert scale, as follows:

• Less than 40—Very bad. Low quality or the same images, mode collapse, or overfitting
occurs in GAN.

• 30–50—Bad. The diversity is very low. Most images are unrealistic and of poor quality.
• 50–70—Satisfactory. The diversity is low. Some images are unrealistic and of low quality.
• 70–80—Good-quality images. The diversity is high, but there are still some distur-

bances in some images.
• More than 80—Much like the real images, the diversity is very high.

We can see from Figure 7 that the generated images are satisfactory but of poor quality.
In fact, there were also very noisy images within the dataset. In addition, it could be seen
that many images are very similar to each other. That is why the training line was close to
100% from the earlier epochs.
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To validate the algorithm’s effectiveness, this study conducted numerous tests using
accuracy, recall, F-measure (FM), and AP evaluation metrics are the key indices for gauging
the accuracy of GAN models. Samples in the binary classification issue can be classified
as true positives (TP), false positives (FP), true negatives (TN), or false negatives (FN), de-
pending on the relationship between the actual and expected categories (FN) The confusion
matrix of the categorization is displayed in Table 7.

Table 7. The confusion matrix of the real and predicted categories.

Labeled Name Predicted Confusion Matrix

Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TP

The F-measure (FM), which balances the precision and recall rates and measures
the weighted average, was tested. This rating considers both the true positive and false
negative rates. The FM is the characteristic that detects an object most frequently because it
is challenging to measure the accuracy rate. False negatives and true positives performed
better in a detection model that used the same weight. Precision and recall, however, must
be considered if real positives and false negatives are different. The ratio of genuine positive
observations is known as precision. The average precision and recall rates of our suggested
method can be calculated as illustrated in Equations (7) and (8):

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

When the accuracy ratio is plotted against the recall rate, the resulting graph is called
a precision–recall curve (P-R plot). The effectiveness of the model may also be determined
by its FM score.

The score can be defined as follows:

FM =
2 × precision × recall

precision + recall
(9)

The FM average accuracy of each detection was also employed as a criterion in this
investigation (AP). The following is a definition of the term:

AP = Precision (Recall)d(Recall) 1

Table 8 shows the comparison of the three models’ performance of the generated syn-
thetic medical image efficiencies. Our proposed approach model outperforms competing
models in terms of both accuracy and recall rate, with an accuracy of, at most, 98.71 percent.

Table 8. Comparison of the proposed model with other state-of-the-art GAN methods for generating
synthetic medical images.

Deep Pix2Pix
GAN [51]

MRI via
GAN [52] Proposed Approach

Precisions 96.35% 93.92% 98.71%
Recalls 64.98% 75.28% 82.13%
mAP 41.12% 38.03% 29.49%
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5. Discussion

Medical images are used to diagnose diseases, which means that their quality can
affect human life and health. So the correct evaluation of the quality of synthetic medical
images is more important than the evaluation of ordinary images. For this reason, in recent
years, many methods and metrics for assessing the quality of synthetic medical images have
been proposed. However, most of them are mainly methods adapted for the evaluation
of MRI, CT, and PET images. According to the information we have, no special method
for evaluating echo images has been developed. Generally, MRI, PET, and CT images are
very different from echo images. MRI images are 3D images and have less noise than echo
images. Therefore, the MAE, MSE, and SSIM methods that are used effectively for MRI and
PET images will be ineffective for echo images. For this reason, the most recent published
studies on echo imaging have mainly used the FID value. However, the FID value only
compares the distribution of the synthetic images with the distribution of the training set
of images. However, if the twins of the real images are generated due to the mode collapse
or overfitting of the GAN, the FID value will be still very small; i.e., these images are
estimated as good-quality images. It can be seen that the FID value cannot assess whether
the network is overfitting. Moreover, although generated images are in high resolution and
are not identical to real images, they may reflect another disease. This is also a big problem,
as generated images are usually used in classification problems. However, the FID metric
cannot estimate this phenomenon.

The proposed CNN evaluation method, unlike it, can evaluate the variety of images,
not only how close they are to real images but also how different they are from another
class. It can also assess whether the GAN network is working incorrectly, reproducing the
same images over and over again, low image quality, and how close the distribution of
synthetic images is to other real images that were not used to train the GAN.

The intervention of medical personnel was not used to evaluate the accuracy of this
work. However, non-overlapping datasets were used to evaluate the proposed method.
Specifically, the real images used to train the GAN were not used to evaluate the CNN
trained on synthetic images. That is, the similarity of synthetic images not only with the
trained set but also with the set outside of it was evaluated.

Of course, the proposed CNN method is time-consuming, but, once it is trained, it
can evaluate as many images as desired in a very short time. In addition, it can estimate
synthetic images from two or more classes at once. However, in this process, it can estimate
how different the distributions of synthetic images of different classes are. Yet the FID
metric does not have such capabilities. In addition, last but not least, synthetic images
are usually used for classification purposes. Therefore, evaluating them using the CNN
method also evaluates how satisfactory these images are for classification problems.

Since the CNN method is a method that can only be used after the GAN training is
completed, by using the FMD method during the GAN training, the quality of the images
can be evaluated during the training as well. Since the FMD method is much faster than
the FID method, monitoring the quality of the images by evaluating the FMD at each epoch
does not bother much the training process.

Using the CNN method together with the FMD method allows us to quickly and
reliably evaluate the images generated by the GAN network from the initial training stage
to the stage after training.

6. Future Direction

Loss is a value that represents the summation of errors in existing models. Errors oc-
curred mainly because of two major problems, namely, mode collapse and non-convergence.
One feasible method to make GAN solve these two challenges is to redesign the network
architecture to obtain a more powerful model. Accuracy measures how well our model
predicts by comparing the model predictions with the true values in terms of percentage.
Having a low accuracy but a high loss would mean that the model makes great errors in
most of the data. However, if both loss and accuracy are low, it means the model makes
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small errors in most of the data. However, if they are both high, it makes big errors in some
of the data. Finally, if the accuracy is high and the loss is low, then the model makes small
errors for just some of the data, which would be the ideal case [53–55]. The evaluation of
images using the CNN network is qualitative rather than quantitative, so further research
should be conducted to evaluate images quantitatively based on the accuracy graph of the
training and validation of the CNN network [56,57].

7. Conclusions

In this study, we developed a specific FMD metric and CNN method for the evaluation
of synthetic echo images. It is recommended to use a combination of these methods to
evaluate the generated images during and after the training process of the generative
network. This FMD metric is easier to calculate than the FID method. Especially when
using it as an additional Loss function in GAN networks, the difference will be great.

The evaluation of synthetic images using the CNN network has the following advan-
tages that are not available in other evaluation methods:

• It can evaluate the quality of synthetic images belonging to two or more classes at the
same time.

• It is possible to evaluate the diversity of the generated Images and the presence of the
same images.

• It can estimate how close the distribution distance of synthetic images is to that of real
images of the same class and how far it is from that of other classes.
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