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Abstract: Articulatory synthesis is one of the approaches used for modeling human speech production.
In this study, we propose a model-based algorithm for learning the policy to control the vocal tract
of the articulatory synthesizer in a vowel-to-vowel imitation task. Our method does not require
external training data, since the policy is learned through interactions with the vocal tract model. To
improve the sample efficiency of the learning, we trained the model of speech production dynamics
simultaneously with the policy. The policy was trained in a supervised way using predictions of the
model of speech production dynamics. To stabilize the training, early stopping was incorporated
into the algorithm. Additionally, we extracted acoustic features using an acoustic word embedding
(AWE) model. This model was trained to discriminate between different words and to enable
compact encoding of acoustics while preserving contextual information of the input. Our preliminary
experiments showed that introducing this AWE model was crucial to guide the policy toward a near-
optimal solution. The acoustic embeddings, obtained using the proposed approach, were revealed to
be useful when applied as inputs to the policy and the model of speech production dynamics.

Keywords: speech modeling; reinforcement learning; speech synthesis

1. Introduction

Starting from early studies of simulating the human vocal tract [1–3], the research
aimed to develop a computational model of the vocal tract that could synthesize a natural
human-like sound. Over the last decades, there has been significant progress in designing
fine-detailed complex models [4–7]. Recently published studies [7] achieved a high quality
of naturalness of the synthesized speech. However, this improvement was accompanied
by an increasing number of parameters that needed to be carefully controlled during the
synthesis process. To address this issue, a number of different approaches for controlling a
vocal tract have been reported in [8–10]. Most of them apply a rule-based algorithm where
gestures and transitions between the different vowels and consonant shapes follow the
user-defined rules.

However, according to to [8], phonemes in natural speech are not static and affect
the articulation of its neighboring sounds within or even across word boundaries, with
articulatory movements constantly overlapping each other. Authors of [11] proposed a
dynamic description of speech gesture and a task-dynamic model to coordinate between
different articulators and the coarticulation between subsequent gestures based on those
predefined goals. Even though the concept of gestures helps to reduce the problem of
articulatory control, utterance generation still requires thorough manual work, which
includes defining unknown parameters of gestures and their timings.

One approach to avoiding hand-crafting the rules and gesture timing for vocal tract
control is to apply supervised learning to a problem [12,13]. In [14], authors trained a
long short-term memory (LSTM) regression model to perform an inverse mapping from
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an acoustic to an articulatory space. This approach, however, still relies on obtaining
training data using the rule-based method. Alternatively, the acoustic-to-articulatory
mapping can be obtained using reinforcement learning through episodic interaction with
the environment, i.e., the vocal tract. Recent studies in reinforcement learning have shown
a remarkable advancement in various planning and control tasks [15–18]. Especially
promising is the progress made in the field of model-based reinforcement learning. In [19],
authors train a generative recurrent neural network to model several environments and
then use this model for learning the policy. The most valuable advantage of the model-
based methods is that the learning process is usually more sample-efficient compared to
its model-free counterpart as shown in [18,20]. Given that current articulatory models for
speech synthesis are computationally intensive, sample efficiency becomes one of the most
important factors to consider when developing a learning algorithm. However, according
to [18], model-based approaches impose other difficulties such as model inaccuracies,
accumulating errors of multi-step predictions, and overconfident predictions outside of the
training distribution.

This study aims to evaluate the applicability of model-based reinforcement learning
in the domain of articulatory speech synthesis. It proposes a new learning algorithm for
articulatory imitation synthesis. A vowel-to-vowel imitation task has been chosen as the
first approximation of general speech imitation. However, the proposed learning algorithm
is not constrained to the vowel-to-vowel scenario and its applicability to general speech
imitation will be a subject of our future research.

The following Section 2 provides a definition of the vowel-to-vowel imitation task
along with the description of the articulatory synthesizer which is considered to be a part
of the learning problem to be solved.

Contributions

As a major contribution, this study proposes an algorithm for learning the policy
via utilizing a neural network approximating the vocal tract model. This neural network
and the policy are trained in the same loop with their own objectives to predict the vocal
tract. The acoustic state transitions are provided as the action input. The algorithm does
not require external training data since both the policy and the model approximation are
learned through interactions with the actual vocal tract model. Another advantage of
the algorithm is its sample efficiency, which significantly reduces the number of these
computationally costly interactions. To stabilize the training, early stopping [21] was
incorporated into the algorithm.

Additionally, the study proposes to extract acoustic features using the acoustic word
embedding (AWE) model [22]. This model was trained to discriminate between different
words and allows for compact encoding of acoustics while preserving contextual informa-
tion of the input. Our preliminary experiments showed that the AWE model was crucial to
guide the policy towards a near-optimal solution, where the optimal solution would be the
policy that can produce the exact copy of the reference sound.

2. Vowel-to-Vowel Imitation Task

The goal of the speech imitation task is to produce a speech sound that is perceptually
identical to the reference speech. In the context of articulatory synthesis, this goal can be
reformulated to find the policy that controls the vocal tract in a way so that the sound
produced by the synthesizer can match the reference sound. Following the task formulation,
the reference sound is included as the input to the policy. In addition, information about
the synthesizer’s vocal tract shape and the synthesized speech is also fed as policy inputs.
The output of the policy is an action that changes the vocal tract shape and is then used
by the synthesizer to produce the sound. The following Sections 2.1 and 2.2 discuss the
synthesizer employed in this study and describe the corresponding vocal tract state space
along with the action space.
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2.1. Articulatory Speech Synthesis Model

The speech production model for this study was chosen from a variety of articulatory
synthesizers such as VocalTractLab (VTL) [7], ArtiSynth [23], Maeda’s articulatory model [2],
and CASY [24]. The VTL was selected due to the high naturalness of the synthesized speech.
However, it should be noted that the proposed algorithm for learning the policy is not
bound to the VTL and, in principle, can be combined with any synthesizer.

One of the VTL key components is the 3D vocal tract model, which represents the
time-varying shape of the supra-glottal airways. This 3D shape is the basis for the accurate
calculation of values for the area functions of the vocal tract model used to simulate speech
acoustics. Generally, the vocal tract model is defined by the geometry of articulators’
surfaces and vocal tract walls. Their shapes and positions in the 3D space are specified by a
set of control parameters, each corresponding to one degree of freedom (DOF), as depicted
in Figure 1.

Figure 1. Areas of influence of the vocal tract parameters (adapted from [7]).

For each of the vocal tract model parameters presented in Table 1, the minimum and
maximum values were derived from the MRI images of the real male speaker to prohibit
anatomically improbable shapes while maintaining the flexibility needed to produce a
relatively large set of speech sounds. It was achieved by taking into account anatomical
geometrical constraints which prevent inter-penetrations of the articulators. Having control
over the movement of articulators it was possible to make a quantitative specification of
the time-varying shapes of the vocal tract. The change in time sequences of the vocal tract
shapes was used to calculate values of the articulatory areas that were required to perform
acoustic simulations and generate speech waveforms.
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Table 1. Control parameters of the vocal tract model (adapted from [7]). For each parameter,
the value range and the unit is given. Parameters without a unit specify relative values.

Index Name Description Min Max Unit

0 HX Horiz. hyoid position 0.0 1.0
1 HY Vert. hyoid position −6.0 −3.5 cm

2 JX Horizontal jaw
displacement

−0.5 0.0 cm

3 JA Jaw angle −7.0 0.0 deg
4 LP Lip protrusion −1.0 1.0
5 LD Vert. lip distance −2.0 4.0 cm
6 VS Velum shape 0.0 1.0
7 VO Velic opening −0.1 1.0

8 TCX Tongue body
center X

−3.0 4.0 cm

9 TCY Tongue body
center Y

−3.0 1.0 cm

10 TTX Tongue tip X 1.5 5.5 cm
11 TTY Tongue tip Y −3.0 2.5 cm
12 TBX Tongue blade X −3.0 4.0 cm
13 TBY Tongue blade Y −3.0 5.0 cm
14 TRX Tongue root X −4.0 2.0 cm
15 TRY Tongue root Y −6.0 0.0 cm

16 TS1 Tongue side
elevation 1

−1.4 1.4 cm

17 TS2 Tongue side
elevation 2

−1.4 1.4 cm

18 TS3 Tongue side
elevation 3

−1.4 1.4 cm

19 TS4 Tongue side
elevation 4

−1.4 1.4 cm

20 MA1 Min. area tongue
back region

0.0 0.3 cm2

21 MA2 Min. area tongue
tip region

0.0 0.3 cm2

22 MA3 Min. area lip region 0.0 0.3 cm2

2.2. Vocal Tract State and Action Spaces

A set of available vocal tract states Svt is given as a continuum of all possible shapes
and positions in the 3D space of all articulators within the VTL model. It is important
to note that the 23 control parameters listed in Table 1 are continuous. Altogether, these
parameters define the 23-dimensional bounded continuous-state space Svt → R23.

To control the vocal tract shape, an action a is defined as a vector of transitions of all
articulators presented in the VTL model and listed in Table 1. Thus, all possible actions
form the 23-dimensional continuous action space A → R23.

3. Method
3.1. Acoustic Representation

One of the major contributions of this study is the employment of the embedding
model for extracting acoustic speech features in the context of articulatory speech synthesis.
To our knowledge, there were no attempts to use acoustic embedding models in related
works. Most of the current methods suggest conventional acoustic speech features. Authors
in [25] encoded auditory targets for their model of speech production using three pairs
of inputs describing the upper and lower bounds for the first, second, and third formant
frequencies of the speech sound. Another commonly used acoustic speech feature is mel-
frequency cepstral coefficients (MFCCs). A recent study [14] employed 13 MFCCs and
1 voiced/unvoiced probability along with their first and second-order derivatives as an
acoustic representation of speech. These features were used as the input to the LSTM
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regression model which was trained to perform the acoustic-to-articulatory mapping. It
has been reported that the difference between the voice of the speaker in the reference and
the voice of the synthesizer drastically affected the performance of the LSTM regression
model in a negative way. Partially, this is due to the MFCCs carrying extralinguistic
information about the speakers’ gender, age, emotional state, etc. Thus, two contextually
identical speech audio samples might have significantly different MFCCs. Even though
it is advantageous in some applications, this, as shown in [14], may impose an additional
challenge for finding an optimal policy or acoustic-to-articulatory mapping.

To address the problem of inter and intra-speaker variability of speech representation,
the acoustic word embedding (AWE) model [22] was employed to obtain embeddings
from MFCCs. These embeddings were then used as an acoustic representation of speech
in the learning algorithm. The core idea of this AWE model is to train a neural network
to distinguish between pairs of semantically equivalent speech audio recordings (positive
pair) from pairs of speech audios corresponding to different words (negative pair). It
is achieved by feeding a positive pair of MFCCs (x, x+) extracted frame by frame from
semantically equivalent speech and a negative pair (x, x−) to the network. Then, the
distances between outputs of the network are calculated within a positive and a negative
pair and finally passed to the triplet loss function. A corresponding schematic diagram is
shown in Figure 2.

Figure 2. Schematic diagram of triplet loss computation in (1).

The triplet loss function is defined as follows:

L(x, x+, x−) = max(δ
[
Net(x), Net

(
x+

)]
− δ

[
Net(x), Net

(
x−

)]
+ α, 0), (1)

where x is a matrix of MFCCs extracted from speech audio frame by frame (window
size = 20 ms, stride = 10 ms), Net corresponds to the embedding neural network, δ denotes
the distance function (i.e., DTW-distance utilized in the present study), and α is a margin
hyper-parameter. As a result of minimizing this loss function, embeddings of similar
words have a small distance and remain close to each other in the embedding space, while
non-similar words occur far apart from each other and at a large distance.

Here, the AWE model was trained on the speech commands dataset in accordance
with the original work [22] followed by fine-tuning on the synthetic speech dataset used
as references in the vowel-to-vowel imitation task. Details of the reference dataset are
presented in Section 3.3.

Precision-recall curves of the fine-tuned AWE model for word discrimination task on
both speech commands and the reference vowel-to-vowel datasets are shown in Figure 3.
The fine-tuned model achieved average precision (AP) of 0.943 and 0.955 for speech com-
mands and reference vowel-to-vowel datasets accordingly.
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Figure 3. Precision vs. recall of the fine-tuned AWE model.

To make the embeddings compact, the size of the final layer of the embedding neural
network was set to 16 units. Aside from additional training on the reference dataset
and changing the size of the output layer, there were no deviations from the training
protocol described in Section 3.3. Overall, the model consisted of two stacked LSTM layers
with 512 units each, followed by three consecutive fully connected layers with 256 units,
256 units, and a layer used for embedding batch-normalization with 16 units, respectively.
The output of the last fully connected dropout was applied to the input of the network with
a dropout rate p = 0.2. An Adam optimizer [26] with a learning rate of lr = 0.0005 was
used during the training procedure. All models were implemented using PyTorch [27].

After training, embeddings produced using the AWE model were used as acoustic
speech features, thus bringing acoustic state Sac → R16.

3.2. Learning Algorithm

The main objective of the proposed learning algorithm is to find the policy πθ which
controls the vocal tract of the articulatory synthesizer to imitate the reference speech. It effectively
means that the resulting distance between the synthesized speech and the reference is subject to
be minimized. Thus, the learning objective can be expressed as follows:

J = argmin
θ

[δ(sac, s∗ac)], (2)

where δ is the distance between the vector of acoustic speech features of the synthesized
speech sac and reference speech s∗ac. A vector of acoustic speech features sac is obtained
using the actions produced by policy according to the scheme shown in Figure 4.

Policy VTL + AWE

Figure 4. Closed-loop control of articulatory synthesizer for the imitation task.

Here, at a timestep t, a policy πθ receives the reference acoustic speech features s∗act
along with the current acoustic and articulatory state of the VTL model svtt and sact . Action
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avtt produced by the policy is then passed in the articulatory synthesizer VTL model which
makes a transition to a new vocal tract shape denoted as svtt+1 , and synthesizes a new bit of
sound corresponding to the duration of one timestep 40 ms. Acoustic embeddings sact+1 are
then extracted from the synthesized audio using the AWE model described in Section 3.1.
To improve the readability of the diagram, the VTL model and AWE model are combined
into a single block. Finally, the new acoustic and articulatory states are passed into the
policy forming a closed-loop control scheme.

There are numerous different approaches for optimization policy in such closed-loop
scenarios. This study focuses on the particular family of methods where a model of the
dynamics is learned along with the policy. One of the pioneering works in this field [28]
has shown how learning a model of unknown dynamics can help to utilize a supervised
learning algorithm for policy optimization. The authors employed a differentiable forward
model which was learned from the mapping from actions to outcomes.The learned forward
model was then used to predict the outcome of the policy’s actions and compute the
corresponding error between predicted outcomes and target outcomes. Finally, the policy
was optimized via a back-propagation algorithm.

The learning algorithm proposed in this study is based on the principal ideas from [28]
and was adapted to the speech imitation problem. Conceptually, the proposed algorithm
includes the following steps:

1. Collect a set of state-action-state transitions using the policy πθ and synthesizer f .
2. Train the forward-model f̂ψ(s, a) to minimize the prediction error on the collected data.
3. Use the learned forward model to compute the policy loss function and backpropagate

the error into the policy through the forward model.
4. Update policy parameters.
5. Go to 1.

The learning algorithm depicted in Algorithm 1 is an iterative process where each
step conceptually consists of data collection, updating the forward model, and updating
the policy.

Data collection was accomplished by executing the closed-loop shown in Figure 4.
Each state–action–state transition then was stored in the experience replay buffer
D = {(s∗t , st, at, st+1)}. Note that transitions from previous steps were kept in the re-
play buffer, thus increasing the buffer’s size and enabling the more generalized training of
the forward-model.

One important addition to the data collection was the introduction of an early stopping
condition for the control loop. Normally, the execution would stop when the duration of the
synthesized speech reached the duration of the reference, indicating the end of the episode.
In this study, an additional stop condition was included which terminated the episode when
the DTW distance between the synthesized speech and the reference exceeded a certain
threshold defined by the hyper-parameter ε. Effectively, this stop condition constrains
the collected acoustic data by keeping it within a certain distance limit from the reference
acoustics and increases its utility for training the forward model which leads to a higher
sample efficiency of the learning algorithm.

The forward-model f̂ψ is a neural network that learns a prediction ˆst+1 of the next
state st+1 given the current state st = [svtt , sact ] and action at:

ˆst+1 = f̂ψ(st, at) (3)

The structure of the neural network used for the forward model is shown in Figure 5.
It has two separate branches for predicting articulatory and acoustic states, respectively.
The articulatory branch takes the current articulatory state svtt and action at as an input
and predicts the next state ŝvtt+1 . Due to the relatively simple dynamics of the articu-
latory movements, this branch consists of just two stacked fully connected layers with
256 and 23 units each.
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Algorithm 1: Proposed learning algorithm

Initialize policy πθ , forward-model f̂ψ(s, a), and empty replay buffer
D = {(s∗t , st, at, st+1)};

Populate the replay buffer D with state-action-state transitions (s∗t , st, at, st+1)
using the policy πθ and synthesizer f ;

for episode = 1,M do
//Run policy with early-stopping;
Sample reference s∗ ∈ S∗;
Initialize timestep t = 0, DTW-distance dDTW = 0;
while (t < T) and (dDTW < ε) do

Execute policy at = πθ(sit , s∗it);
Compute the next state with the synthesizer st+1 = f (st, at);
Push (s∗t , st, at, st+1) to D;
Update DTW-distance dDTW = DTW(st+1, s∗t+1);
Increase timestep t = t + 1

end
// Update forward-model K times;
for t = 1,K do

Sample minibatch of state-action-state transitions from D;
Update forward-model f̂ψ(s, a) with SGD by minimizing the loss
Lψ := 1

N ∑N
i ‖ f̂ψ(sit , ait)− sit+1)‖

2;
end
// Update policy K times;
for t = 1,K do

Sample minibatch of reference-state pairs (s∗t , st) from D;
Execute policy at = πθ(sit , s∗it);
Predict the next state using forward-model ˆst+1 = f̂ψ(st, at);
Update the policy by back-propagating the error to the policy using the loss
Lθ := 1

N ∑N
i ‖ f̂ψ(sit , aθ)− s∗it)‖

2;
end

end
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Figure 5. Structure of the forward-model neural network with two separate branches.

The acoustic branch has three stacked fully connected layers with 512, 256, and 16 units
respectively, where the output of the last layer is a 16-dimensional vector that matches the
dimension of the acoustic state. The acoustic branch receives both articulatory svtt and
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acoustic sact states as inputs along with the action at, and predicts the next acoustic state
ŝact+1 . The RELU activation function was applied to the outputs of all hidden layers.

This network was trained via the stochastic gradient descent (SGD) algorithm with a
learning rate lr = 0.0005 and using the following prediction loss function:

Lψ :=
1
N

N

∑
i
‖ f̂ψ(sit , ait)− sit+1)‖

2 (4)

where the state–action–state transitions (sit , ait , sit+1) are drawn from the experience replay
buffer D, N is the number of samples in the mini-batch, and ψ are the parameters of the
neural network. Minimizing the loss function Lψ ensures that the forward model learns to
predict the next state of the system and, thus, serves as an approximation of the actual VTL
model. It allows us to use the forward model for updating the policy.

The policy was represented by a neural network that was trained to predict the best
action (i.e., how to move articulators of the vocal tract) for imitating the reference. Thus,
as shown in Figure 4, the policy takes acoustic reference s∗act and both current articulatory
svtt and acoustic states sact as the inputs. Unlike the branching structure of the forward
model, the policy network was implemented as a plain stack of three fully connected layers
with 256, 128, 23 units, respectively. The RELU activation function was applied to the
outputs of all layers excluding the final layer. The final layer of the network outputs the
action a, a 23-dimensional vector that directs the movement of vocal tract articulators.

Similar to learning the forward model, the policy network was trained via the SGD
algorithm with a learning rate lr = 0.0005. The loss function used for the optimization was
given as:

Lθ :=
1
N

N

∑
i
‖ f̂ψ(sit , aθ)− s∗it)‖

2 (5)

where the current state sit and corresponding acoustic reference s∗it are drawn from the
replay buffer D and action aθ is obtained using the current policy aθ = πθ(sit , s∗it).

The computation of the policy loss function Lθ is shown in Figure 6. First, the pair of state
and reference were sampled from the replay buffer D. It is important to note how the action of
the corresponding experience is ignored. Instead, a new action aθ is obtained using the current
policy πθ. Then, the forward-model predicts the acoustic outcome f̂ψ(sit , aθ) of applying this
action which is finally passed into the loss function. Substituting the actual vocal tract model
with the learned forward model allows us to backpropagate the computed error back to the
policy and update its parameters θ using the gradient descent algorithm.

Policy
Forward-

model
Replay
buffer

Policy loss
function

Figure 6. Computing the policy loss function using the forward-model.

Updating the policy finalizes the learning iteration step. Upon this, the algorithm
starts a new iteration by collecting new data using the updated policy. One specific feature
of this online learning scenario is that the iterative training of both the forward model and
the policy allows to effectively bootstrap each other over the learning course. The data
collected using the policy is used to update the forward model, thus, leading to a better
approximation of the true speech production dynamics. The improved forward model
allows for more accurate computing of the policy loss function and updating the policy
parameters, hence improving its performance.
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3.3. Reference Dataset

For the purpose of this study, a set of reference speech samples was synthesized
using the same VTL articulatory model with predefined vocal tract shapes for five English
cardinal vowels: [a], [e], [i], [o], [u]. Each sample in the dataset is a smooth transition
between a pair of these vowels. In total, the reference set contained 25 different vowel-
to-vowel syllables. The reason for employing this set of sounds is that the production of
cardinal vowels requires extreme positioning of the tongue, implying that the learning
procedure will involve extensive exploration of the articulatory space.

To imitate natural speech diversity, a small amount of Gaussian noise was injected into
the articulatory movements. Speaking tempo and timings of transition between individual
phones were also varied across references so that the transition from one vowel to another
lasted from 0.1 to 0.6 s. All these modifications were implemented to reflect the fact that
speech naturally varies in terms of articulation and timing. After synthesis, the quality and
intelligibility of all audio samples were manually assessed and samples with unintelligible
speech were excluded from the dataset.

Each vowel-to-vowel transition was synthesized 50 times, making the total number of
reference samples in the dataset 1000. A few examples of the reference samples can be found
in the video materials included in this study which can be accessed via Supplementary
Materials Video.

3.4. Evaluation Metrics

Since the goal of the policy is to produce a sound similar to the reference sound,
an evaluation of the learned policy was performed in terms of acoustic similarity. One
important aspect of methods evaluating acoustic similarity algorithms is the representation
of the speech sound. Commonly, MFCCs are used for this purpose. In addition to MFCCs,
AWEs were used as speech representations in this study.

Once the representations of two speech samples are obtained, they need to be matched.
The most common algorithm is dynamic time warping (DTW) which uses dynamic pro-
gramming to find the optimal alignment between two temporal sequences. In this study,
the DTW-distance was used to measure the similarity between two speech samples with
a lower distance corresponding to more similar samples. A DTW algorithm was imple-
mented with commonly used Euclidean distance as a local cost function and a symmetric2
step-pattern, shown in Figure 7. The other algorithm used for evaluation in this study is
cross-correlation, which aligns two time series of variable lags. Taking the maximum value
of the alignment gives a similarity value for the two time series, with higher values cor-
responding to higher similarity. Overall, four methods DTWm f cc, DTWawe, CCm f cc, CCawe
for evaluating the policy were applied in this study by combining speech representations
(MFCCs, AWEs) and different metrics (DTW, cross-correlation).

2

1

1

Query index-1 0

0

-1
R

ef
er

en
ce

 in
de

x

Figure 7. Symmetric2 step-pattern used in DTW algorithm.

In order to analyze the performance of the learned policy in terms of the proposed
metrics, the average maximum of cross-correlation and DTW-distance was computed



Sensors 2023, 23, 3437 11 of 18

between pairs of samples of matching class and non-matching classes (samples from
different classes) in the reference dataset. Table 2 demonstrates the mean and standard
deviation of each metric for both pair types. It can be seen that for both metrics DTWm f cc
and DTWawe, the DTW-distance is significantly bigger for pairs with non-matching classes
than for pairs with matching classes which indicates that DTW-based metrics successfully
capture the similarity between samples in the reference dataset. Cross-correlation metrics
CCm f cc and CCawe were also able to differentiate between the pairs with matching and non-
matching classes with higher values corresponding to higher similarity. Overall, the values
presented in Table 2 were used in the evaluation of the learned policy in Section 5 as an
indication of successful learning. Further detailed analysis of the proposed metrics is
included in Appendix A.

Table 2. Average DTW-distance and maximum of cross-correlation between samples in the
reference dataset.

Metric Matching Classes Non-Matching Classes
Mean Std Mean Std

DTWm f cc 0.22 0.02 0.30 0.02
DTWawe 0.14 0.02 0.22 0.03
CCm f cc 0.89 0.01 0.85 0.02
CCawe 0.88 0.02 0.78 0.05

4. Experiments

To evaluate the performance of the proposed algorithm, the policy was trained to
imitate vowel-to-vowel references drawn from the reference dataset presented in Section 3.3.
The algorithm was implemented in python using Pytorch [29]. The number of learning
iterations was fixed to 15,000. All training runs have been executed on a machine with a
single NVIDIA Quadro P6000 and took approximately 5 h per run.

According to Section 3.4, four metrics were used to evaluate the performance of the
policy by comparing the reference speech sample and synthesized speech. Thus, for DTW-
based metrics DTWm f cc and DTWawe, lower values correspond to a better-performing
policy. Accordingly, for cross-correlation metrics CCm f cc and CCawe, higher values indicate
better performance of the policy. Optimal values for all four metrics were obtained by
analyzing the pairs with matching classes in the reference dataset and are shown in the
column Matching classes in Table 2.

As mentioned in Section 3.3, reference sound samples were synthesized using the VTL
model by manually adjusting the vocal tract shape to produce the desired vowel-to-vowel
speech sound. This approach allows us to access the actual vocal shape corresponding
to the reference speech sound and extend the reference representation while learning the
policy. Thus, alongside the original scenario, three additional experiments were performed
using different reference representations:

• Acoustic reference (ac) (original scenario). In this case, the policy had access only to
the acoustic features of the reference samples s∗ac

• Acoustic + articulatory reference (ac + vt). The policy had access to the full reference
state meaning both acoustic and articulatory states s∗ = [s∗ac, s∗vt]

• Acoustic + partially observable articulatory reference (ac + partial vt). The policy
had access to the acoustic features of the reference as well as six articulatory parameters
defining the positioning of lips, jaw, and hyoid bone. Namely, the parameters were:
HX, HY, JX, JA, LP, LP. The idea behind selecting these parameters is that they are
visually accessible and can be derived by analysis of the facial movements of the
speaker uttering the reference sound.

• Articulatory reference (vt). The policy observed only the articulatory state of the reference s∗vt

By comparing the results of these four experiments it was possible to determine if
the learning can benefit from additional information about the vocal tract shape. To some
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extent, the acoustic + partially observable articulatory reference scenario relates to how
children develop speaking skills through imitation. While listening to someone speaking, a
child usually gets some visual clues about the speaker’s vocal tract shape by focusing their
visual attention on the lips movement and jaw articulation, and elevation of the hyoid bone.
Whereas, the articulatory reference scenario corresponds to the primary goal of the study
which is the policy learning based exclusively on the acoustic reference without relying on
any visual clues of the articulatory movements.

5. Results and Discussion

The results of the experiments described in Section 4 are shown in Table 3. The perfor-
mance of the learned policies trained in four different training scenarios vt, vt + ac, ac +
partial vt, vt was evaluated using the following metrics: DTWm f cc, DTWawe, CCm f cc, CCawe.
The last row in Table 3 depicts the acoustic similarity between speech samples of the same
class from the reference dataset and indicates the values at each vowel-to-vowel imitation
task that can be considered solved. For DTW-based metrics DTWm f cc and DTWawe, the task
is solved when the model achieves DTW-distances equal or below 0.22 and 0.14 respectively.
For CCm f cc and CCawe, the model needs to achieve maximum cross-correlation 0.89 and
0.88 to solve the task.

Table 3. Evaluation results for each training scenario.

Training
Scenario

Metrics
DTWm f cc DTWawe CCm f cc CCawe

vt 0.21 0.14 0.89 0.88
ac + vt 0.22 0.10 0.89 0.91

ac + partial vt 0.24 0.15 0.88 0.88
ac 0.23 0.18 0.88 0.84

optimal 0.22± 0.02 0.14± 0.02 0.89± 0.01 0.88± 0.02

The training scenario vt included only articulatory features as the reference representa-
tion. As can be seen from Table 3, the learned policy successfully solved the task according
to all four metrics used for evaluation. We also observed that training in this scenario had
the fastest convergence and policy was able to imitate reference sounds after a few hundred
training iterations. The high performance and fast convergence can be explained by the fact
that this scenario imposes a fairly simple problem to solve where the policy needs to learn
how to control a vocal tract while being able to observe the reference vocal tract shape.

In scenario vt + ac, policy had full access to the reference including both the articulatory
vt and acoustic ac states. As a result, the learned policy was able to not only solve the
task but also demonstrated the best performance according to DTWawe and CCawe metrics.
The policy has achieved DTWawe = 0.10 which is substantially smaller than the distance
measured between similar samples from the reference dataset. It indicates that the policy
managed to reproduce the reference sounds acoustically more similar than other samples
from the dataset of the same class.

Despite the remarkably high performance, these two training scenarios should be
taken with a grain of salt since they effectively transformed the original unsupervised
imitation task into the supervised domain. The practical outcome of these two experiments
was that they confirmed the hypothesis that by letting the policy observe the vocal tract
shape of the reference sound, a significant increase of the learning convergence rate and an
improvement of the final performance of the learned policy can be achieved.

The third training scenario ac + partial vt corresponded to the case when, along
with the acoustic features of the reference, the policy had access to the visually accessible
articulators. As discussed in Section 4, this scenario showcases the learner attempting
to imitate the external speaker while looking at the speaker’s face and observing the
movements of lips, jaw, and hyoid bone. In this scenario, the policy had access only to
six articulatory parameters of the reference, which accounts for a fairly small fraction of
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the total number of vocal tract parameters equal to 23. As shown in Table 3, the policy
performed worse than in the first two training scenarios ac + partial vt and vt. It solved
the task only according to the CCawe achieving the value of 0.88. However, according to the
remaining metrics, the policy’s performance was close to solving the task. For example,
in the case of the DTWawe, the policy achieved a distance score of 0.15 which is just 0.01
bigger than the average distance between similar sounds from the reference dataset.

The final training scenario ac corresponds to the primary imitation task when the
policy needed to learn how to control a vocal tract while observing only the acoustic
features of the reference speech sound. We observed that training in this scenario was the
least stable and the policy’s error fluctuated throughout the training significantly. This
observation is in accordance with the general observation of the model-based approaches
proven to be highly unstable and sensitive to hyper-parameters. Moreover, our preliminary
experiments have shown that training the policy in this scenario without early stopping
never converged to even a sub-optimal solution. In addition, we failed to successfully train
the policy in the case when MFCCs were used as acoustic representations instead of the
proposed AWE embeddings. When early-stopping and AWE embeddings were employed,
the final DTWawe-distance of the learned policy achieved a value of 0.18. Interestingly,
in case of MFCC-based metrics DTWm f cc and CCm f cc, the performance of the policy was
comparable to the others and even achieved DTWm f cc = 0.23 which is lower than the
policy trained in ac + partial vt scenario. However, AWE-based metrics showed that the ac
policy performed significantly worse compared to others including ac + partial vt. This
discrepancy between MFCC and AWE-based results may indicate that AWE-based metrics
are more sensitive than their MFCC-based analogues which can be advantageous in some
applications. Overall this observation leads to an interesting direction for future research
aiming to analyze the difference between these metrics and their suitability as an acoustic
similarity measure.

A video showing the progress of the learning in the ac training scenario can be accessed
via Supplementary Materials Video. In addition, snapshots of the vocal tract controlled by
the learned policy while attempting to imitate the /ai/ sound are shown in Figures 8 and 9.

Visual analysis of the vocal tract shapes, presented in Figures 8 and 9, demonstrates
that the policy successfully learned that /ai/ sound is produced by raising the tongue and
pushing it to the front while the tip of the tongue can be lowered just behind the bottom
front teeth. A Supplementary Materials Video allows comparing the reference audios with
the synthesized speech. By analyzing these results, it can be concluded that even though,
the policy did not learn how to perfectly imitate the reference, it achieved a fairly close
match both visually and acoustically.

Figure 8. Manually controlled vocal tract while synthesizing/ai/sound.

Figure 9. Vocal tract controlled by the learned policy while synthesizing/ai/sound.
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6. Conclusions

This study investigated the applicability of a model-based reinforcement learning
method in the domain of articulatory synthesis for a vowel-to-vowel imitation task.
The proposed algorithm was based on iterative learning of the forward model, followed
by updating the policy. As a result, the policy was trained to imitate the reference sound
closely. Early stopping was employed during the data collection stage to stabilize the
training. Along with using acoustic word embeddings as acoustic features, these additions
to the proposed algorithm have shown to be crucial for successful training.

There are several directions for future research. The suggestion is to move towards
general articulatory speech synthesis and learn how to imitate full words. Another impor-
tant aspect not covered in this study is to investigate how robust the proposed algorithm is
for different voices in the reference samples. The algorithm has no explicit constraint for the
synthetic voice to match the reference’s voice. Further, the evaluation metric and acoustic
features were designed to allow this mismatch. This assumption, however, needs to be
verified through additional experiments. Finally, there is clearly room for improvement
regarding the stability of convergence. Thus, one of the potential directions for future
research is to further investigate the possibility of improving this aspect of the algorithm.

Supplementary Materials: The following supporting information can be downloaded at:
https://youtu.be/elhHpZgIyIU, Self-learning algorithm for speech production by a simulated vocal
tract. (accessed on 1 January 2023).
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Appendix A

This appendix contains supplementary material for Section 3.4 and expands Table 2.
Column Matching classes in Table 2 shows the average metric value calculated between
pairs of samples from the same class (e.g., /ai/ and /ai/). Column Non-matching classes
in Table 2 shows the average metric value calculated between all other pairs of samples.
Figures A1–A4 provide a detailed overview of the metrics values calculated between each
possible pair of samples from the reference dataset. Values on the main diagonal correspond
to the sample pairs of the class (Matching classes). Values in the upper triangle except for
the ones on the main diagonal correspond to the Non-matching classes.

https://youtu.be/elhHpZgIyIU
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Figure A1. DTWm f cc calculated between samples from reference dataset. Lower values correspond
to acoustically more similar samples.
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Figure A2. DTWawe calculated between samples from reference dataset. Lower values correspond to
acoustically more similar samples.
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Figure A3. CCm f cc calculated between samples from reference dataset. Higher values correspond to
acoustically more similar samples.
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