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Abstract: The primary purpose of this research is to evaluate the uncertainty associated with modal
parameter estimation for an inverse dynamic problem in which the structural parameters are random.
The random nature of the structure’s parameters will be reflected in the modal features of the respected
system. However, this may result in additive/subtractive errors in modal parameter identification,
affecting the identification technique’s efficiency. With this in mind, the present study aims to develop
an automated modal identification algorithm for a random eigenvalue problem. This is achieved
by a recently developed advanced version of the wavelet transform (i.e., synchrosqueezing), which
offers better resolution. Using this technique, the measured responses are transformed into a time-
frequency plane, which is further processed by unsupervised learning using K-means clustering for
quantification of the modal parameters. This automated identification is repeated for an ensemble of
measurements to quantify the random eigenvalues in a statistical sense. The proposed methodology is
first tested using simulated time histories of a two degree-of-freedom (dof) system. It is followed by an
experimental validation using a beam whose mass matrix is random. The numerical results presented
in this work clearly demonstrate the performance (i.e., in terms of efficiency and accuracy) of the
proposed output-only automated data-driven identification scheme for random eigenvalue problems.

Keywords: random eigenvalue; wavelet transform; synchrosqueezed transform; k-means clustering;
asymptotic integral; modal identification

1. Introduction

Uncertainty is a natural occurrence that scientists and engineers face on a regular basis.
It is often simplified to a certain extent for simplicity of analysis and design. Nonetheless,
it is unavoidable in other circumstances because simplifying dilutes the intent. To deal
with the challenges in these settings, designers must use advanced modeling and analysis
techniques. For instance, consider a dynamic system having uncertainty in its material
and/or geometric properties. This leads to uncertain modal features, which pose significant
mathematical hurdles to evaluate [1–3].

This problem can be addressed in the Bayesian framework [4], which, in principle, is a
predictor-corrector algorithm based on observations. In this approach, mathematical mod-
eling is started based on the initial guess, which is recursively updated using observations
or measurements to obtain an optimal model of the physical system [5]. Here, it should
be noted that the above iterative procedure demands observations, which in turn needs
a physical system. Therefore, there is a constant need for forward and inverse modeling
(i.e., quantification and identification) of the uncertainty associated with the eigenvalues.
Reynders et al. [6] have tried to quantify the uncertainty associated with the modal param-
eters using the stochastic subspace identification (SSI) technique. SSI is an output-only
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state-space-based approach, which can extract modal information (i.e., modal frequencies,
modal damping ratios, and mode shapes). In recent work, Reynders et al. [7] investigated
the same topic in further depth, using response covariance to update the state-space model
and extract the necessary information. In this process, different ensembles are used with
different sensor placements; hence, the magnitude of error in observations varies in differ-
ent sets. Thus, this study has reported different modeling errors, which are the outcome of
different sensor placements based on algebraic schemes to estimate the output correlation
sequence. It is followed by an eigen decomposition of the updated state-space model to
extract the modal frequencies, mode shape, and damping ratios. The efficiency of SSI, like
other system identification approaches, grows with the number of observations, although
this methodology is prone to produce a significant number of spurious modes. A great
amount of post-processing is required to remove these spurious modes. Researchers [8,9]
select stringent validation criteria that include many levels of separation approaches such as
blind clustering, hierarchical clustering, DBScan, mathematical mode reduction, and so on.
Many SSI versions have been created to alleviate this burdensome post-processing. Among
them, SSI-cov (i.e., covariance-driven stochastic subspace identification) [10–12] is very
popular. These techniques are often merged with other methods with a small modification
for practical application. For example, NExT (i.e., natural excitation technique) is combined
with ERA (i.e., eigen realization algorithm) for operational modal analysis [12–14]. The
reason behind this adaptation is to convert the forced vibration response into a free vibra-
tion prior to the extraction of modal features and hence, has multiple sources of model
and estimation error leading to different levels of uncertainty. In this context, the eigen
realization algorithm is based on Henkle’s matrix obtained from the free vibration response,
which is performed by varying the order of the Henkle matrix while observing the con-
vergence of the estimated eigenvalues, i.e., frequencies. As these SSI variants work on the
covariance structure of the system responses, they offer standard deviation associated with
the identified parameters, which are often used to quantify the uncertainty associated with
them. Au [15,16] has evaluated the uncertainty associated with the modal parameters (i.e.,
frequencies, damping, and mode shapes) using a Bayesian approach. In another work,
Au et al. [17,18] have modified their earlier proposal for a Bayesian approach to quantify
modal uncertainty considering many factors, such as data recording, experimental configu-
rations, signal-to-noise ratio, data length factors, among many others, and have prescribed
guidelines for practical users. Ghiasi et al. [19] propose a nonprobabilistic method that
combines wavelet packet decomposition and support vector algorithm. Wavelet packet
decomposition extracts the energy features of the acceleration response, and then it is used
in the support vector machine to represent a single damage scenario. After that, these
scenarios are compared with the healthy state and the probability of matching is evaluated.
This is called the probability of the existence of damage. In the true sense, this approach is
unsuitable for modeling detection uncertainty as the final outcome largely depends on the
wavelet transformation, i.e., for the same damage scenario, one can get a different value of
the probability of damage existence by changing the level of decomposition. Considering
recent algorithm developments, the authors/engineers [20–22] are attempting to model
the uncertainty of detection using machine learning techniques. The machine learning or
artificial neural network techniques are combined with the conventional operational modal
analysis methods (i.e., principle component analysis, SSI, frequency response function, clus-
tering, etc.) to extract features and evaluate the uncertainty associated with the identified
parameters. However, this strategy’s effectiveness heavily relies on the correct application
of conventional approaches. Mo et al. [23] present a polynomial-based model for detecting
uncertainty in modal parameters and demonstrate its efficacy through experimental inves-
tigation. In another application, Niu et al. [24] study the effect of measurement uncertainty
on the efficiency of parameter estimation. In contrast to the previous studies, this work [24]
shows that a low signal-to-noise ratio is not always helpful for better parameter extraction.

The studies mentioned above mostly consider uncertainties associated with the exper-
imental procedure and identification scheme, but not with the physical system. Thus, the
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problem becomes more complex, where the parent system exhibits uncertainty besides the
above-mentioned sources. In this context, Rogers [25] and Rudisill [26] have proposed a
mathematical framework for the forward problem of modeling uncertainty propagation
through eigenvalues. Song et al. [27] have studied changes in random eigenvalues due to
changes in random structural properties of a truss (i.e., with random cross-sections). In this
formulation, Taylor’s series expansion of mass and stiffness matrices about their respective
mean values is used. As the eigenvalues are obtained from Taylor’s series, the estimation
of higher-order derivatives plays a major role in the uncertainty quantification associated
with them. To simplify this process, Nair et al. [28] have proposed an approximation,
which uses up to the first order in Taylor’s series. This perturbation-based approximation
offers an improvement over the previous technique. Pradlwarter et al. [29] have developed
an algorithm to reduce computational difficulty in calculating random eigenvalues and
eigenvectors for large systems. In this work, instead of using general Monte Carlo simula-
tion (MCS) to evaluate the random nature of the frequencies, a subspace iteration-based
technique within MCS is used to save computational costs. Examples presented in their
work show the efficiency of this technique to characterize the uncertainty associated with
mass and stiffness parameters. Yana et al. [30] have developed an output-only methodology
to quantify the uncertainty associated with the identified modal parameters. This proposal
uses the random decrement technique to generate the free response time histories from the
recorded ambient vibration. Once the free responses are obtained, Bootstrap sampling is
used to generate ensembles with the same characteristics as the original response. These
simulated responses are processed by wavelet transformation (WT) to estimate the modal
parameters (i.e., frequencies and damping ratios). The probability distribution functions are
made from the modal parameters, which dictate the amount of uncertainty present in the
system. This work is a good example of an output-based identification technique that uses
simulated samples to quantify uncertainty. The simulation (i.e., Bootstrap filtering) in this
example has a major role in identifying uncertainty associated with the modal parameters
in addition to signal processing (i.e., WT). Adhikari and Friswell [31] have proposed two
different perturbation expansion-based methodologies (i.e., one is maximum entropy-based
while another is an asymptotic approximation of integral) to estimate the probability dis-
tribution function (pdf ) that describes the random eigenvalues. The advantages of these
techniques are that they do not require the assumption of small randomness as in the earlier
works and also do not impose any restriction on the type of uncertainty (i.e., Gaussian or
non-Gaussian). The efficiency of both these methods is tested with different conditions
and is found to be fairly accurate except for closely spaced frequencies. Adhikari [32] have
also derived the joint moments of the random eigenvalues with the help of an asymptotic
approximation of multidimensional integrals, for a linear random system. In addition to
theoretical development, Adhikari et al. [33,34] have conducted laboratory experiments to
demonstrate the effect of system uncertainty on the modal frequencies. For this purpose, a
beam and a plate model are tested, where discrete masses are placed randomly in addition
to the actual mass of the original system. The movable masses used in this study to simu-
late randomness constitute only 10% of the main structure. An ensemble of responses is
generated using this set-up, which is processed through a Fast Fourier Transformation (FFT)
analyzer to identify the modal frequencies, followed by statistical analysis to characterize
its underlying randomness. Rahman [35] have developed a Fourier polynomial-based
formulation to evaluate the uncertainty associated with the eigenfrequencies in a close
form. The numerical studies reported in this paper show a close match with MCS provided
the orthonormal polynomials used in this formulation are continuous. In another work,
Rahman and Yadav [36] have also proposed a different approach using polynomial chaos
expansion to evaluate random eigen frequencies in close-form. These studies are mostly
focused on the forward problem, where an ensemble of eigenvalues or system responses is
characterized by the predefined uncertainties associated with the structural parameters. In
the recent past, researchers have tried to quantify the sensitivity of the modal parameters
in the presence of randomness in the system [37,38]. In these approaches, the frequency
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response functions are extracted from the system responses along with the confidence
levels and bounds.

Based on the preceding research, it is possible to conclude that the forward problem
of modeling random eigenvalues has gotten a great deal of attention. Yet, finding these
uncertainties through inverse analysis of the same problem has remained a challenge. With
this in mind, the current research focuses on the development of a practical methodol-
ogy for tracking and quantifying the random nature of the eigenvalues and associated
modal parameters derived from measurement. To do so, the forward problem is first
discussed, which forms the basis for the inverse identification. It is followed by the motiva-
tions/objectives of this work. Finally, the proposed automated identification strategy is
elaborated along with its experimental verification.

2. Uncertainty Propagation through Eigen Value Problems

In this section, a brief overview of uncertainty propagation through eigenvalue prob-
lems often encountered in dynamical systems is presented with only a relevant equation
to set the prelude of the present study. It mainly focuses on the modeling and associated
problems when the parameters of a linear dynamic system have uncertainty. The dynamic
equilibrium equation of a linear multi-degree of freedom system takes the form

[M]{ü(t)}+ [C]{u̇(t)}+ [K]{u(t)} = {P(t)} (1)

Here [M], [C] and [K] all ∈ RJ×J are the system matrices corresponding to mass, damping,
and stiffness, respectively. The displacement vector is denoted by u and the upper dot
represents the derivative with respect to time. In the above equation, P(t) is the generalized
external force vector. The solution to this problem is straightforward for a system with
constant coefficients (i.e., [M], [C] and [K]). In general, this coupled system is transformed
into a set of independent modal coordinates, where it vibrates with its characteristic natural
frequencies (i.e., ωn) and mode shapes (i.e., Φ). As the system parameters are deterministic,
these natural frequencies and mode shapes are also deterministic in nature. However, for a
system whose parameters (either material and/or geometric) are random, the modal param-
eters also become random, which needs to be characterized first. Let x ∈ Rn×n consist of
Yong’s modulus, material properties, Poison’s ratio, membrane orientation, and geometric
variable, e.g., length, width, and thickness. This randomness is bound to affect the mass
and stiffness of the system and ultimately the natural frequencies. Therefore, x is the vector
of random variables that represent system parameters (i.e., x = x1, x2, ..., xn), then the
eigenvalue problem associated with Equation (1) can be represented in the following form

[K(x)]Φ(x) = Λ(x)[M(x)]Φ(x) (2)

In this equation, Λ(x) is the square of the natural frequencies, i.e., Λ(x) = ω2
n(x). It may

be noted that the mass and stiffness are assumed to be random while damping follows
Raleigh’s proportionality model. Thus, the randomness associated with damping can be
modeled using the properties of mass and stiffness. The uncertainties of the mass and
stiffness of the system are propagated to the eigenvalues (Λi) and the eigen vectors (Φi)
through the relation described in Equation (2), where J 6= n. The main question that arises
here is what could be the distribution of these modal parameters? In other words, the
main objective of the forward problem is to find the probability density function of Λ(x)
and Φ(x). There are many books and literature available on this topic [27,29,39] with
details of different formulations for the solution to this problem. These strategies can be
broadly classified into two major approaches—(i) perturbation-based techniques, which
are applicable for small randomness and (ii) asymptotic integral-based techniques, which
are inherently tuned for more general applications. In the following subsections, these
methods are briefly discussed with key equations to set the background for the present
work on inverse identification.
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2.1. Perturbation Approach

In this approach, mass, stiffness and modal parameters are expressed in Taylor’s series,
where upto first order term is considered, i.e.,

[K] = [K(α)] +
n

∑
k=1

[K(x),k]xk=αk (xk − αk) + ... (3a)

[M] = [M(α)] +
n

∑
k=1

[M(x),k]xk=αk (xk − αk) + ... (3b)

[Φj] = [Φj(α)] +
n

∑
k=1

[Φj(x),k]xk=αk (xk − αk) + ... (3c)

[Λj] = [Λj(α)] +
n

∑
k=1

[Λj(x),k]xk=αk (xk − αk) + ... (3d)

In the above equations, α is the reference point for the expansion. Now, to quantify the
sensitivity of the eigenvalues and eigenvectors, Equation (2) is differentiated with respect
to xk, which leads to

[K(x),k]Φj(x) + [K(x)]Φ(x)j,k =
Λ(x)j,k[M(x)]Φ(x)j + Λ(x)j[M(x),k]Φ(x)j + Λ(x)j[M(x),k]Φ(x)j,k

(4)

where subscript j represents mode number while subscript , k represents first derivative
with respect to xk (i.e., kth random parameter). Taking expectation on both sides after
substituting Equation (3) in Equation (4) and simplifying them lead to the following
expression for stochastic sensitivity of the eigenvalues [27]

E[Λj(x),k] = χ[{Φj(α)}T([Kk]xk=αk −Λj(α)[Mk]xk=αk ){Φj(α)}

−
m

∑
p=1

m

∑
q=1

Λj(α){Φj(α)}T([Mk]xk=αk{Φj(α)}+ [Mk]xk=αk{Φj(α)})Cov(xp, xq)] (5a)

χ = 1 +
m

∑
p=1

m

∑
q=1
{Φj(α)}T [M(x),k]xk=αk{Φj(α)}Cov(xp, xq) (5b)

Similar to the eigenvalues, the stochastic sensitivity of the eigen vectors can be quantified
by the following expression [27]

E[Φj(x),k] =
n

∑
r=1

bjkr{Φr}α (6)

The expression for the coefficients bikr in the above equation is omitted here to avoid
repetition. This formulation for first-order sensitivity of the eigenvalues and vectors
considers the mean of the random variables as the reference point, which is applicable
for problems having small randomness. Moreover, its performance is limited to random
variables following normal distributions only.

To address these issues, Adhikari and Frieswell [31] have proposed new formulations,
where up to second order term in Taylor’s series is considered. Besides additional terms,
the optimal points are used for pdf estimation, instead of mean values. Thus, the eigen
function Λ(x) is expressed in Taylor’s series, as follows

Λj(x) = ∑
|n|≥0

(x− ff)n

n!
(∂nΛj)(ff) (7)

In above equation, ∂n(.) represents nth order partial differential of the function. So, n = 1
corresponds to the gradient vector while n = 2 provides the Hessian matrix evaluated
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at the reference point α. As mentioned above, this formulation uses optimal points {ff}
in the sample space instead of mean and the pdf of the eigenvalues are obtained from
the associated moment-generating function. To quantify the statistical properties of the
random vector x, the probability density function is expressed using the likelihood function
as follows

qx(x) = exp{−L(x)} (8)

where−L(x) is the log-likelihood function, which takes the following form for n-dimensional
multivariate Gaussian vector with a mean µ ∈ R and covariance Σ ∈ R, i.e.,

L(x) =
n
2

ln(2π) +
1
2

ln ‖Σ‖+ 1
2
(x− α)TΣ−1(x− α) (9)

Using this definition of pdf, the rth moment of the eigenvalues are defined as follows

E[Λr
j (x)] =

∫
Rn

Λr
j (x)qx(x)dx =

∫
Rn

Λr
j (x)exp{−L(x)}dx =

∫
Rn

exp
[
L(x)− r{lnΛj(x)}

]
dx (10)

The above expression for multi-dimensional integral is difficult to obtain (although not
impossible numerically). However, Adhikari and Frieswell [31] have proposed a saddle
point approximation of this integral, which is mostly governed by the global minima of
the function {L(x)− lnΛj(x)} within the sample space of x, which leads to the relation
Λj(x)∂L(x) = ∂Λj(x). This expression can be solved in an iterative framework to obtain
the optimal points for any given distributions of x. A closed-form solution for Gaussian
distribution can be obtained as follows

α = µ +
1

Λj(α)
Σ∂Λj(x)|α (11)

Once the optimal points are evaluated, moment generating function is adopted to evaluate
the moments of the random eigenvalues, which has the form MΛj(s) = E[exp{sΛj(x)}].
Finally, the rth order moment can be obtained from the moment-generating function using
the following expression

E[Λr
j (x)] =

dr

dsr lnMΛj(s)|s=0 (12)

The close form expression for the first four moments are derived by Adhikari and Friswell [31].

2.2. Asymptotic Integral Approach

Equation (12) in the above sub-section provides the moments using the moment-
generating function at the optimal points. However, multi-dimensional integral in
Equation (10) can be evaluated using asymptotic integral [31], where the major contri-
bution originates from the optimal points α obtained by minimizing L in Equation (10).
Using the optimal condition, it can be shown that the asymptotic approximation of the rth

moment of the random eigenvalues takes the following form

E[Λr
j (x)] ≈ (2π)n/2Λr

j (α)exp{−L(α)}‖DL(α) +
1
r

dL(α)dL(α)
T − r

Λj(α)
DΛj(α)‖

1/2 (13)

Once the moments are derived using the above equation or as in Equation (12), pdf of the
eigenvalues, i.e., pΛj(x) can be evaluated using Maximum Entropy Method. This technique

ideally solves an optimization problem such that rth moment obtained from the above
expression match with the same obtained from pΛj(x), i.e.

E[Λr
j (x)] =

∫ ∞

0
xr pΛj(x)dx, r = 1, 2, 3, ... (14)
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This is solved using the Lagrange multiplier approach and the calculus of variations. If
only first two moments are used in Equation (14), the close form solution of the pdf takes
the following form of the truncated Gaussian density function

pΛj(x) =
1√

2πϕ(Λ̂j/σj)
exp

{
−
(x− Λ̂j)

2

2σ2
j

}
... x ≥ 0 (15)

In the above equation, σj is the square root of the difference between the second moments
and square of the mean of the eigenvalues (i.e., Λ̂2

j ).

2.3. Objectives for the Inverse Data-Driven Identification

The above discussion demonstrates the nature of the eigenvalues when the funda-
mental structural parameters are random. It outlines the forward problems solved by the
previous researchers, which are often encountered in engineering applications. In this
context, its identification poses an open problem to the engineers and researchers, which is
addressed in this paper. It involves precise quantification of the pdf that governs the nature
of these eigenvalues. Thus, the objectives of the proposed inverse problem are as follows

• Develop an efficient output-only signal processing tool that can identify the modal
parameters from the measured acceleration responses without any user intervention.
The reason behind this approach is to automate the process, where a large number
of tests are necessary for handling stochastic structural systems. This is achieved by
synchrosqueezed transform in this work, which offers improved resolution in the
time-frequency domain compared to wavelet-based signal processing.

• Since a single measurement is an outcome of a random process, it is proposed to be
repeated for an ensemble and the extraction of the modal features for the complete
set is automated with the help of a clustering algorithm. In this context, k-means
clustering is adopted for unsupervised learning of the spectrogram obtained from
synchrosqueezed transformation, which reflects arrange the modal energy in the
time-frequency plane. This step is as important as the accurate estimation of modal
parameters in the previous step, as it helps to manage large data produced from
repeated trials.

• Once this data-driven process is repeated for the ensemble, the underlying randomness
of the modal parameters is quantified by the pdf of these parameters, which is experi-
mentally verified to study the efficiency and accuracy of the proposed identification
strategy for the random eigenvalues.

The details of the proposed inverse approach are discussed in the following sections.

3. Inverse Analysis of Random Eigen Values

In this section, the proposed automated data-driven strategy for inverse identification
of the random eigenvalues is discussed in detail. As described in the objectives, this problem
is addressed with the help of an advanced version of wavelet-based time-frequency analysis
along with the data clustering to automate the whole process, which is followed by the
quantification of the underlying pdfs.

3.1. Continuous Wavelet Transform & Synchrosqueezing

Continuous wavelet transform is a powerful signal processing tool that helps to extract
the time-localized frequency details. The theory is well developed and the reader may
refer [40,41] for the details of this integral transform. In this section, a brief overview of
continuous wavelet transform is presented, which forms the backbone of the proposed
data-driven identification scheme.
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As the name suggests, wavelets are a collection of localized and dilated versions of
a function Ψ(t) that convolutes with a time function f (t) ∈ L2(R) to convert it into a
two-dimensional sequence, i.e.,

Wψ f (a, b) =
1√
|a|

∫ +∞

−∞
f (t)Ψ∗

(
t− b

a

)
dt (16)

In this process, Ψ(t) must satisfy two important criteria—(i) it must have finite energy
(i.e.,

∫ +∞
−∞ |Ψ

2(t)|dt < ∞) and (ii) it must comply with the admissibility criteria (i.e.,

CΨ =
∫ ∞

0
|Ψ(ω)|2
|ω| dω < ∞). The parameters a and b in Ψa,b(t) = Ψ

(
t−b

a

)
correspond to

the scale and time localization of the wavelet coefficients WΨ f (a, b), while ()∗ represents a
complex conjugate. On inverse transforming Equation (16), the original time signal can be
traced back from its wavelet coefficients using the following expression

f (t) =
1

CΨ

∫ +∞

−∞

∫ +∞

0

1
a2 WΨ f (a, b)Ψa,b(t)dadb (17)

The convolution integral in time domain (i.e., Equation (16)) is slow and computationally ex-
pensive. It can be made faster by transforming it into a frequency domain using Fast Fourier
Transform. This is done by Fourier transform of f (t) (i.e., F(ω) =

∫ +∞
−∞ f (t)exp(iωt)dω) in

Equation (16), which leads to

Wψ f (a, b) =
√

2πa
∫ +∞

−∞
F(ω)Ψ∗(aω) exp(iωb)dω (18)

The wavelet coefficients in Equation (16) (or Equation (18)) is useful to study the relative
distribution of signal energy in different scales and time, i.e., the energy density in two
dimensions E f (t) = |WΨ f (a, b)|2 a.k.a scalogram. This feature will be utilized in the
proposed automated uncertainty quantification associated with the random eigenvalues.
The scalogram also ensures equality of energy in different domains, i.e.,

E f (t) = || f (t)|| =
∫ +∞

−∞
| f (t)|2dt =

1
CΨ

∫ +∞

−∞

∫ +∞

0
|WΨ f (a, b)|2dadb (19)

Unlike Fourier transform, where the exponential kernel is used, continuous wavelet trans-
form adopts different basis functions, i.e., Ψ(t) for different purposes, e.g., Haar, Mexican
Hat, Morlet, Morse [41–43] etc. Among them, complex Morlet is widely used in different
applications and is adopted in this study. This basis function has the following form

Ψ(t) = π−1/4
{

eiωct − e−ω2
c /2
}

e−t2/2

≈ π−1/4eiωcte−t2/2 ... ωc >> 0
(20)

where ωc is the central frequency of this analytic basis function, which is a complex sinusoid
(i.e., exp(iωct)) modulated by the Gaussian window (i.e., exp(−t2/2)). The value of the
central frequency is 5rad/s unless otherwise specified. The frequency signature of this
basis function has the following form

Ψ(ω) = 21/2π1/4e−(ω−ωc)2/2 (21)

The characteristic frequency ω is related to the scale a through the relation ω = ωc/a. In
this framework of the continuous wavelet transform, both a and b are continuous, where
the second parameter is always positive. For numerical implementation, these parameters
are often discretized (not discrete wavelet transform) such that aj = σj and bi = (i− 1)4b,
where both σ and4b are constants. This discretization scheme of wavelet parameters leads
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to4aj =
σ2−1

2σ aj, which ultimately helps in expressing the inverse wavelet transform (i.e.,
Equation (17)) in the following numerical form

f (t) =
nb

∑
j=1

na

∑
i=1

K4b
aj

WΨ f (aj, bi)Ψ

(
t− bi

aj

)
(22)

where na and nb are the numbers of discrete points of scale and time parameters while
K = (4πCΨσ)−1(σ2 − 1) is a constant.

Although the above-mentioned continuous wavelet transform is, by definition, ca-
pable of extracting time-localized features of any signal, its scalogram often shows poor
energy localization over a range of dilation parameters aj. In this context, the instanta-
neous amplitude and phase of the two-dimensional wavelet coefficient array are defined

as—|WΨ f (aj, bi)| and ϑ(aj, bi) = tan−1 I(WΨ f (aj ,bi))

R(WΨ f (aj ,bi))
, where I(.) and R(.) represent the imag-

inary and real part of the analytic signal. For a real signal f (t) ∈ L2(R), whose wavelet
coefficients are obtained using analytic basis function, the differential of arg(WΨ f (aj, bi))

with respect to its scale vanishes on the ridge, i.e., ∂ϑ(a,b)
∂a = 0. Using this property of the con-

tinuous wavelet transform, the ridge can be identified [44–46], which helps to quantify the
energy localization in the scalogram. However, as the analytic basis function is modulated
by a Gaussian window, its frequency signature does not decay in the vicinity of the ridge.
In reality, it is spread over a region depending upon the effective width of the Gaussian
window, no matter how small that may be. Due to this reason, a resolution associated
with energy localization becomes poor, which ultimately affects the identification and
often demands heuristic user intervention. This will be further elaborated with the help of
numerical examples.

To address this issue, a reallocation or reassignment algorithm has been developed
in the recent past [47–49], which offers an improved resolution, i.e., better localization
characteristics. This reassignment (also known as synchrosqueezing) helps to decom-
pose the signal into components that are well separated in frequency content and a direct
summation of all these components brings back the original time function. This realloca-
tion/reassignment operation has two steps—(i) identify the instantaneous frequency and
(ii) evaluate synchrosqueezed coefficients in the vicinity of that instantaneous frequency.
For the wavelet coefficients WΨ f (a, b), the instantaneous frequency is obtained from the
following expression

ωin(a, b) = −i
[

WΨ f (a, b)
]−1

∂

∂b
WΨ f (a, b) (23)

This operation helps to map the coefficients in the time-scale domain to the time-frequency
domain (i.e., (a, b) → (ωin, b)) over a frequency width of 4ω. In this process of syn-
chrosqueezing, the wavelet coefficients within a bin4ak = ak − ak−1 are grouped together
using the following relation

SΨ f (ωin, b) = (4ω)−1 ∑
ak :|ω(ak ,b)−ωin |≤4ω/2

WΨ f (a, b)a−3/2
k 4ak (24)

With the help of these reassigned coefficients, the original signal can be reconstructed by
the expression given below

f (t = b) = R

[
C−1

ψ ∑
l

SΨ f (ωl = ωin, b)4ω

]
(25)

As an analytic basis function is used in this work, the synchrosqueezed coefficients also
have real and imaginary components, i.e., SΨ f (ω, b) = |SΨ f (ω, b)|exp(iψ(a, b)), where |.|
represents the modulus and ψ(.) is the argument. These two pieces of information with the
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superior resolution are proposed to be utilized for the automated identification of random
eigenvalue problems, which are described below.

3.2. Proposed Energy and Phase Portrait Analysis for Inverse Random Eigen Value Problem

Beginning with this problem, let us consider the governing equation of motion, i.e.,
Equation (1). On wavelet transforming both sides of this equation, the following version of
the dynamic equilibrium is obtained in the time-frequency plane

[M]
∂2

∂b2 WΨu(aj, b) + [C]
∂

∂b
WΨu(aj, b) + [K]WΨu(aj, b) = WΨP(aj, b) (26)

Similarly, the initial conditions can be transformed into the new domain for the complete
description of the system. The remarkable feature of this equation is that the basic structure
of the dynamic equilibrium is retained in the wavelet domain. Thus, the coupling in
the original domain manifested through the constant coefficient matrices is also carried
forward in this new domain. Due to this reason, the modal transformation used in the
original domain also holds in the time-frequency plane, which can be expressed in the
following form

{u} = [Φ]{Z}
⇒
{

WΨu(aj, b)
}
= [Φ]

{
WΨZ(aj, b)

} (27)

Equation (27) clearly shows that the modal matrix, i.e., Φ is unchanged for the linear
time-invariant system after transformation. Using this relation in the transformed domain,
the coupled system can be expressed in the modal coordinates for every scale parameter aj.
Substituting modal transformation for any aj and b (i.e., Equation (27) in Equation (26)),
the modal governing equation in wavelet domain takes the following form

[M][Φ]
∂2

∂b2 {WΨZ(aj, b)}+ [C][Φ]
∂

∂b
{WΨZ(aj, b)}+ [K][Φ]{WΨZ(aj, b)} = {WΨP(aj, b)}

⇒ ∂2

∂b2 WΨzn(aj, b) + 2ηnωn
∂

∂b
WΨzn(aj, b) + ω2

nWΨzn(aj, b) = WΨ p̄n(aj, b)
(28)

In the above equation, zn is the nth modal displacement with associated frequency and
damping ratio of ωn and ηn, respectively. The right-hand side of the above equation
has the nth modal load (i.e., WΨ p̄n(aj, b)) in the time-frequency plane. Since the dynamic
characteristics remain unaltered in the modal domain, the convolution integral can be
invoked to solve for a response. Thus, the modal response corresponding to a scale aj can
be obtained as follows

WΨzn(aj, b) =
∫ b

0
hn(b− τ)WΨ p̄n(aj, τ)dτ

=
√

2πaj

∫ +∞

−∞
p̄n(ω)Ψ∗(ajω)exp(iωb)Hn(ω)dω

(29)

Here, hn(t) is the modal frequency response function. Together with Hn(ω), it forms the
Fourier transform pair that dictates the modal characteristics of the parent system. In this
context, it is worth mentioning that both ωn and ηn are random in nature in this study,
which is aimed to be identified from the measured noisy responses of the system.

Without loss of generality, the wavelet basis function can be invoked at this stage,
which is a complex Morlet in this study. Using its definition in Equation (21) and the
expression for H(ω), the modal acceleration response in the wavelet domain due to an
impulse can be expressed as follows

WΨ z̈n(aj, b) = 2π3/4√aj

∫ +∞

−∞

−ω2e−(ajω−ωc)2/2[cos(ωb) + i.sin(ωb)]
ω2 −ω2

n + i2ηnωnω
dω (30)
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Now, the acceleration response (i.e., ü(t)) in the wavelet domain can be obtained using
WΨ z̈n(aj, b), which is used further for the identification of random eigenvalues in this study.
The rationale behind the use of acceleration response is due to the ease of measuring this
quantity accurately during any experiment as compared to displacement. Equation (30) for
different aj and b forms the scalogram of the modal acceleration response of the system.
Using these coefficients, the scalogram of the acceleration response üκ(t) (i.e., along the κth

dof) can be obtained, which has the following mathematical form

WΨüκ(aj, b) = ∑
n

Φκ,nWΨ z̈n(aj, b) (31)

Equation (31) establishes the fact that the energy of the response is localized in scales that
correspond to the modal frequencies. Thus, the energy spectrum can reveal the location of
modal frequencies in the spectrum. However, as mentioned earlier, the resolution of the
above scalogram is not very sharp due to the decaying character of both complex Morlet
wavelet Ψ(ω) and frequency response function Hn(ω) in the vicinity of its ridge. In other
words, the scalogram offered by Equation (31) provides a weak portrait of the measured
response as the mother wavelet is not completely localized in the frequency domain. This
involves user intermittency to detect the ridge for modal identification [50,51].

To address this issue, synchrosqueeze transform is proposed in this study, which
operates over the wavelet coefficients obtained from Equation (31). This transformation
improves the resolution of its scalogram and hence, it helps to identify the energy lo-
calization precisely, which will be demonstrated further in the numerical analysis. The
synchrosqueezed version of the modal acceleration can be obtained from Equation (30)
following its definition in Equation (24), i.e.,

SΨ z̈n(ωin, b) = (4ω)−1 ∑
ak :|ω(ak ,b)−ωin |≤4ω/2

WΨ z̈n(a, b)a−3/2
k 4ak (32)

Thus, the synchrosqueezed version of the κth acceleration response has the following form

SΨüκ(aj, b) = ∑
n

Φκ,nSΨ z̈n(aj, b) = |SΨüκ(ωin, b)|exp(iφκ(ωin, b)) (33)

where ϑκ(.) in the above equation is the phase angle. The scalogram obtained from this
equation has better resolution compared to that obtained from wavelet coefficients. This
is due to the reallocation of the coefficients within the bin, i.e., 4ω. These improved
coefficients are further utilized for mode localization and subsequent identification.

To demonstrate it further, let us consider two measurements (now onward will be
referred to as channels) for the same structure, say üκ(t) and üι(t). From these two channels,
respective synchrosqueezed signals are obtained as described in Equation (33), which are
abbreviated by Sκ and Sι. These signals are used to define the synchrosqueezed correlation,
having a time delay of τ, which is expressed by

Rκι(a, τ) =
|
∫

S∗κ(a, b).Sι(a, b− τ)db|
[
∫
|Sκ(a, b)|2db

∫
|Sι(a, b)|2db]1/2 (34)

Here, it may be noted that sign of τ (i.e., + or −) depends upon the shift in Equation (34)
relative to one another, which can be used to obtain scale dependent correlation for τ = 0,
ranging between 0 and 1. This, in other words, ensures that two channels will converge
to the same mode when the correlation is 1. The above equation also reveals that the time
localized version for τ = 0 offers the normalized cross-energy spectrum with improved
resolution as follows

ESκι
(a, b) =

|S∗κ(a, b)·Sι(a, b)|2
|Sκ(a, b)|2|Sι(a, b)|2 (35)
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These the reassigned normalized energy spectrum is proposed to be utilized for mode
localization.

In this context, it is worth mentioning that the time-frequency spectrum often has spu-
rious modes resulting from numerical analysis or input force. Although the impulse is used
in this analysis, which negates the presence of frequencies corresponding to input force, the
presence of spurious mode due convolution of wavelets with frequency response function
can not be ruled out. Thus, its identification and segregation from modal frequencies play a
key role in the automated inverse problem. This is addressed using two reallocated signals,
whose local phase difference can be obtained as follows

4ϑκι(a, b) = ϑκ(a, b)− ϑι(a, b) (36)

The above mentioned phase difference is in reality the phase angle of the cross syn-
chrosqueezed transform, which has the following definition

Sκι(a, b) = S∗κ(a, b)·Sι(a, b)

= |Sκ(a, b)||Sι(a, b)|exp{i(ϑκ(a, b)− ϑι(a, b))}
(37)

As a (i.e., scale) changes, channels κ and ι offer different instantaneous phase angles whose
difference vanishes for scale corresponding to a particular mode. The reason behind
this vanishing nature is due to the fundamental property of modal vibrations when all
dofs attain unison, i.e., maxima or minima or zero crossing. If the phase angle ϑκ and ϑι

correspond to the same mode, their difference becomes 0 or π as the dof s are in unison.
Thus, to verify the scale corresponding to modal frequency, the phase synchronization
index (PSI) is proposed in this study, which takes the following form

PSI(a) = 〈sin(4ϑκι(a, b))〉2 + 〈cos(4ϑκι(a, b))〉2 (38)

In the above equation, 〈.〉 represents the temporal averaging of the signal, whose PSI
lies between 0 and 1. For two signals whose phase angles are invariant (i.e., mode), PSI
becomes 1. This, in turn, reveals that the synchrosqueezed signals obtained from two
different channels in the same mode must have both correlation and PSI values unity. Here,
it is worth mentioning that two different channels are used only for demonstration and is
not the prerequisite for this strategy. For κ = ι, i.e., same channel, auto-correlation value
can be used for identification.

Once the modal frequencies are identified, mode-shapes and modal damping ratio
can be estimated from the signals obtained from the inverse synchrosqueezed transform of
coefficients in Equation (33), i.e., modal responses. Considering two channels, the ratio of
the mode-shapes can be obtained as follows

Πs
r =

Φs
r

Φ1
r
=

üs
r

ü1
r

(39)

However, identifying mode-shapes in this fashion has two major drawbacks—(i) at least
two channels are necessary to take the ratio and (ii) the limited number of sensors for all
practical cases can only provide a partial image of the global mode shape. This problem can
be addressed by model updating [52,53], where the error between the natural frequencies
obtained from the model and system identification scheme is minimized as follows

J = ‖W(ΛFE −ΛSI)‖

=
l

∑
i=1

n
∑

k=1

[
l

∑
r=1

Wir(ΛFErk −ΛSIrk)

]2 (40)
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subject to the following constrained conditions

ΦTMΦ = I (41a)

KT = K (41b)

KΦ = MΦΛ (41c)

Here, Wir is the weight factor and Λ is the square of the natural frequencies while subscripts
FE and SI correspond to the finite element model and system identification, respectively.
Finally, the modal damping ratio is estimated from the slope of the logarithm of amplitude
(ln(|SΨüκ(ωin, b)|)) as it represents the free modal response [54,55].

3.3. Proposed Automated Data-Driven Identification

Above subsection describes the proposed synchrosqueezed wavelet transform-based
modal parameter estimation. This description is self-sufficient for modal identification
of a deterministic linear time-invariant problem as it is capable of estimating natural
frequencies, mode shapes and modal damping ratio. This is carried out with the help
of a scale-dependent energy spectrum and phase portrait. The process is repeated for
a stochastic case, where the identification procedure needs to be adopted for a large
number of tests without any user intervention to quantify the underlying model that
describes the uncertainty associated with the modal parameters. For this purpose, k-
means clustering is adopted in this study, which has the capability to automate the process
and avoid user intermittency and associated error. The rationale behind the selection
of this unsupervised scheme lies with synchrosqueezing, which helps to segregate the
energy content of the signal in the time-frequency plane and hence, negates any additional
supervision during clustering.

The k-means clustering primarily classifies a n-dimensional data set X̄ = x̄i;
i = 1, 2, ..., Nx into K cluster C = Ck; k = 1, 2, ..., K, where each data point belongs to a
specific cluster. It is a vector quantization process in signal processing that results in differ-
ent Voronoi cells obtained by minimizing the intra-cluster variance σ2

Ck
. In this process, the

squared Euclidean norm between the cluster mean and the points within that cluster is min-
imized. Thus, the objective function for this minimization is given by the following form

J (x̄, v) = arg min
C

K

∑
k=1

∑
xi∈ck

‖ x̄i − µk ‖2= arg min
C

K

∑
k=1
|Ck|σ2

Ck
(42)

The partitioning of the data initiates with K clusters having initial mean µk; k = 1, 2, ..., K
and iteratively updates the boundary of the Voronoi cells in two major steps as follows

• Assignment: Each data point is assigned to the appropriate Vononoi cell based on the
nearest cluster mean µk

Ci
k =

{
x̄ :‖ x̄p − µi

k ‖
2≤‖ x̄p − µi

j ‖2 ∀j, 1 ≤ j ≤ k
}

(43)

• Update: Once the assignment is completed, the cluster means are updated as follows

µi+1
k =

1
C1

k
∑

x̄j∈Ci
k

x̄j (44)

The above iteration stops once the convergence is achieved. Readers may refer to [56,57]
for the details of this algorithm and the convergence studies for efficient partitioning that
uses the squared Euclidean norm instead of the regular norm. As for the present study, the
synchrosqueezed scale-dependent energy spectrum is used as a data set for clustering, i.e.,
x̄i = Snij(a, b).
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Once the data set is clustered, the contribution of each identified cluster can be esti-
mated using the weight index as follows

λ =

n
∑

i=1
|Sij(a, bi)|2

c
∑

k=1

n
∑

i = 1
x̄i ∈ ck

|Sij(a, bi)|2
(45)

These dimensionless weights can easily locate any energy concentration or maximum
values of correlation in the spectrogram, which, in turn, helps to extract the underline
modal frequencies present in the measured response. This is due to the fact that the clusters,
in this case, are, in principle, the energy localization or maximum correlations around
the modes. Thus, the median of each cluster is identified as the frequency corresponding
to that mode. Here, it is to be noted that apart from modal frequencies, there may be
clusters corresponding to spurious frequencies, which need to be screened out from the
pool. This is done by analyzing the phase portrait as discussed in the previous subsection.
The optimum number of clusters is estimated from the gap statistics, where the gap value
has the following form

GVn(k) = En{log Wk} − log(Wk) (46)

In the above equation, Wk represents the pool within the cluster, which is evaluated as

Wk =
K

∑
k=1

1
2nk

dk (47)

Here, the number of data point in the kth cluster is represented by nk whereas, dk is the
sum of the pairwise distances for all points in that cluster. The optimal cluster number
corresponds to the maximum or converged gap value.

3.4. Error Analysis

Figure 1 shows the schematic diagram of the algorithm used in this study to identify
the random eigenvalues obtained from an ensemble of experiments. As the present work
deals with the automated identification of random eigenvalues, it is worth studying the
pdf that describes these random quantities and the error associated with the proposed
identification process. The pdf describing the modal parameters can be obtained from their
histogram. In this study, numerical pdf s are developed, which can be given an appropriate
mathematical form by fitting suitable distributions using standard statistical tools, e.g., χ2

test or KS test [58]. Thus, the numerical evaluation of each outcome (i.e., eigenfrequencies
and other parameters) in every test finally provides the probability distribution of the
underlying random structural system.

Here, it may be noted that error estimation is difficult for field problems, where the
actual values of the structural parameters are not known beforehand. However, as the
present study uses a controlled laboratory experiment (where input parameters are known
in every test), error estimation can be done to verify the accuracy of the proposed algorithm.
It is described below to evaluate the reliability of the proposed identification strategy. The
error function for each modal frequency is estimated using the experimental and identified
values of the modal parameters. Thus, errors associated with the identification of modal
frequencies can be expressed as

εs
n =

ω
exp
n −ωind

n

ω
exp
n

× 100% (48)
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In the above expression, superscripts exp and ind correspond to the experimental and
identified values of the modal frequencies, respectively. For a single sensor, the pdf of the
error function can be evaluated considering all the test results, which is given by

p(ε∗) = lim
∆ε→0

Prob[ε < ε(x̄) ≤ ε + ∆ε]

∆ε
(49)

From the above pdf, the cumulative distribution function (cdf ) can be estimated as follows

P(ε∗) =
ε∗∫
−∞

p(ξ)dξ (50)

The significance of P(ε∗) lies in its ability to offer the probability of detection of a particular
mode from a specific sensor corresponding to an acceptable level of error ε∗, which is
discussed in details using numerical results in the following section.

Figure 1. Proposed automated data-driven methodology.

4. Validation with Synthetic Experiment: 2DOF System

In this section, numerical examples are presented to show the performance of the
proposed automated data-driven identification of random eigenvalues. First, the algorithm
is validated using a 2-dof system [31], whose stiffness varies randomly. This simulated
experiment helps to demonstrate the efficiency and accuracy of the proposed identification
strategy. The subjected system has two masses of 1 kG and 1.5 kg, which are connected
by 3 springs as shown in Figure 2a. The spring stiffness values, i.e., k1, k2 and k3 are
1000 N/m, 1100 N/m and 100 N/m, respectively. Among these three springs, two have
random stiffness parameters, which are modeled by the following expressions

k1 = k̄1(1 + εx1)

k2 = k̄2(1 + εx2) (51)
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In the above expressions, x1 and x2 follow standard normal distribution. To ensure the
positive definiteness of the stiffness matrix, a scaling parameter ε is considered, whose
value is 0.25. The damping of this system is assumed to be 2% in all modes. The system
is solved in state-space using a 4th order Runge–Kutta algorithm in MATLAB for free
vibration with a unit initial velocity. Figure 2b shows a sample response of this system. The
process is repeated to generate 15,000 samples of responses. Using this ensemble, proposed
synchrosqueezed spectrum-based clustering is invoked to characterize its eigenvalues, i.e.,
modal frequencies and other associated parameters.

(a)
t (s)

0 5 10 15

ü
(t
)

-30

-20

-10

0

10

20

30

1st dof

2nd dof

(b)

Figure 2. 2 dof system; (a) structural details & (b) sample acceleration response.

As the main objective of this study is to identify the pdf that dictates the nature of
modal parameter from the measured acceleration response, wavelet-based time-frequency
analysis is invoked as described in Section 3.1. In the preceding study [59], a comparison
examination of the basic function of wavelet is conducted. Based on that result, complex
Morlet wavelet is used with 732 scales covering the frequency range of 0.1 Hz to 10 Hz.
The scalogram obtained for two pdf s from this step are shown in Figure 3a,c. These two
figures clearly show two regions in each of them, where the signal energies are localized.
However, it is difficult to pinpoint the scales corresponding to modal frequencies from
these figures. This issue is resolved by the synchrosqueezed transform, which operates over
the wavelet coefficients. It is invoked with4ω = 0.01 rad/s and the scalogram for the two
dof s are shown in Figure 3b and Figure 3d, respectively. These two figures clearly show the
advantage of the reallocation/reassignment scheme adopted in synchrosqueezing, which
distinctly identifies the scales corresponding to modal frequencies and helps to automate
the process for ensemble-based data-driven identification for random systems. These
figures also reveal that two modal frequencies are dominant in the response of 1st dof while
only one mode is dominant in the 2nd dof. This is due to the fact that 2nd dof is connected
to a stiffer spring that tries to prevent vibration compared to others and hence the 2nd
mode is weaker in this signal. However, even this weaker mode is also identified by the
clustering algorithm in the next step of the automation. For this purpose, the normalized
energy spectrum is constructed following the expression in Equation (35). Using this
scale-dependent energy, k-means clustering is adopted as discussed in Section 3.3. To do
so, the optimal cluster number is estimated first with the help of gap statics as explained in
Equations (46) and (47), which is shown in Figure 4a. From this figure, it can be observed
that the optimal number of clusters in this example is 2 corresponding to the max gap value.
Using this information, the normalized energies are clustered and the respective weights
are estimated by Equation (45), which are shown in Figure 4b. In this figure, the values in
x-axis are the median of two clusters, which are identified as the modal frequencies of the
two dof systems. To verify it further, phase portraits corresponding to these two scales are
studied further and their PSI values are checked. Figure 5 shows the phases obtained from
inverse synchrosqueezed transform corresponding to the identified modal frequencies,
which are in unison, i.e., reaching maxima or minima or zero-crossing together, indicating
modal vibration. Corresponding PSI values obtained from Equation (38) for these two
signals are 1.0, which confirms the identified frequencies as the modal frequencies.
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(a) (b)

(c) (d)

Figure 3. Scalogram; (a,c) are wavelet transform of u1 & u2, respectively, and (b,d) are syn-
chrosqueezed transform of u1 & u2, respectively.
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Figure 4. Clustering; (a) Gap statistics for optimal cluster & (b) Weights of each cluster.
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Figure 5. Comparison of modal responses and respective phases: (a) mode 1 and (b) mode 2.

Next, this process is repeated for the complete ensemble (i.e., 15,000 simulated re-
sponses) to estimate the underlying pdf s of the two modal frequencies. Figure 6a,c shows
the numerical pdf s obtained from two dof s using simulated ensemble responses and are
compared with their theoretical pdf s obtained using asymptotic integrals as described in
Sections 2.1 and 2.2. Figure 6a shows a close match between the exact and estimated values
of the pdf s associated with these modal frequencies obtained from the measurement in 1st
channel. Corresponding cdf of error is shown in Figure 6b, where the vertical line repre-
sents 5% error. This error estimate reveals that the reliability of the proposed automated
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data-driven uncertainty quantification of the random modal frequencies is more than 97.5%.
Figure 6c shows the same pdf s obtained from the 2nd channel, whose error estimation
is shown in Figure 6d. These two figures reveal that the 1st frequency is satisfactorily
identified with a probability greater than 99%, while the 2nd mode shows higher error. The
error in the 2nd mode is attributed to the weak energy content of the response in this mode
in channel 2, as observed earlier in the wavelet spectrogram.
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Figure 6. Comparison between theoretical and identified: (a) identified pdf s & (b) cdf s of error from
1st dof response; (c) identified pdf s & (d) cdf s of error from 2nd dof response.

Once the frequencies are identified, attention is focused on the mode-shape esti-
mation and subsequent quantification of the underlying uncertainties. As described in
Equation (39), the mode-shape can be evaluated as the ratio of the two synchrosqueezed
signals. However, the present study recommends the evaluation of mode shapes using
model updating, which has certain advantages as described in the previous section. In this
process, the objective function for model updating is formed based on the identified modal
frequencies as described in Equation (40). Figure 7a,b shows the identified mode-shapes in
light grey color, where the estimated mean modes-shapes are compared with theoretical val-
ues as described in Section 2. The pdf s in two modes are then estimated, which are shown
in Figure 7c. It shows a close match indicating the efficiency of the proposed identification
strategy, which is further demonstrated in terms of estimation error CDF in Figure 7d.
This plot clearly shows that the probability of detection of these two mode-shapes is more
than 99%.

Finally, an effort is made to estimate the damping ratio in the two modes. For this
purpose, synchrosqueezed coefficients are used as described in Section 3.1. Here, it may be
noted that the damping ratio in these two modes is assumed to be 2%, i.e., deterministic.
However, the damping in the system is random as it is influenced by the modal masses
and frequencies. Figure 8 shows the pdf s of the identified modal damping ratio obtained
from two different channels. Though the damping ratio is constant in these modes, a
variation is observed in the identification of these parameters due to the random nature
of the stiffness properties and the error in estimation. However, the median values of the
identified damping in these modes are 2.57% and 2.38%, respectively, which are very close
to the theoretical value.
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Overall, the performance of the automated identification of the modal parameters in light
of system uncertainties is satisfactory, which is tested further using the experimental results.

5. Experimental Verification: Beam with Random Parameter

In this section, the methodology is implemented for a laboratory experiment on a
beam model, whose mass changes randomly [60]. In this exercise, a flexible beam is set
up with frequencies over a wider range, which helps establish the proposed strategy’s
potential for similar problems encountered in physics and engineering.

In this example, a steel beam is considered whose length, width and depth are 1.2 m,
40.06 mm and 2.05 mm, respectively. The experimental setup is shown in Figure 9. On this
beam, 12 movable masses, each having 2 gm weight, are attached with the help of a magnet.
During each test, these movable masses are randomly placed to simulate an uncertain mass
matrix. The test is repeated 100 times with different orientations of the movable masses.
This beam is excited by a shaker with an impulse force at 50 cm from the left end. In
each test, the shaker with the model number LDS V201 and serial number 92358.3 exerts
a unitary force on the beam, and the reactions are recorded by three accelerometers, as
shown in Figure 9. All three accelerometers are PCB type and the serial numbers are PCB
333M07 SN 25948, PCB 333M07 SN 26018 and PCB 333M07 SN 25942. A force transducer
(series number: PCB 208C03 21487) is placed between the beam and the shaker to monitor
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the exerted force. Figure 10 shows a sample time history recorded with a 16, 384 Hz
sampling rate.

Figure 9. Schematic diagram of experimental setup [60].
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Figure 10. Recorded beam response in test 1 and Scalogram; (a) accelerations in three channels;
(b) wavelet scalogram of sensor 2 & (c) synchrosqueezed scalogram of sensor 2.

These recorded time histories are analyzed using a synchrosqueezed transformation
with a complex Morlet basis function as in the previous example. The scalogram obtained
from the wavelet transformation is shown in Figure 10b while its synchrosqueezed version
is shown in Figure 10c. As obvious, the second scalogram has improved resolution showing
the presence of different modal frequencies, which are identified by k-means clustering. A
stability diagram is evaluated from test 1 data for comparative purposes, as illustrated in
Figure 11. From this result, it is evident that it is unable to localize the lower frequencies
and there are plenty of closely spaced frequencies on the higher side. As discussed by a
previous researcher [8], it requires a number of screening methods to separate the spurious
modes, and mathematical poles from this result to obtain an efficient conclusion. Figure 12
shows the clusters obtained from a sample response recorded using three different channels,
which show 14 different clusters of energy localization after their gap statistics analysis.
The median values of these clusters are identified as the modal frequencies of the beam.
The process is repeated for the complete ensemble of tests and the identified frequencies are
used for pdf estimation, which is shown in Figures 13 and 14. These figures reveal that the
proposed automated identification strategy could identify all the frequencies successfully.
An interesting pattern of identified frequencies has emerged from these pdf s.
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Figure 11. Stabilization diagram of test 1 of all three channels.
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Figure 12. Clustering of beam test data from different sensors; (a) sensor 1, (b) sensor 2 & (c) sensor 3.

Except for the first mode, all other modes have been identified accurately. The first
mode is very weak in this example, which was also reported by Adhikari and Phani [34].
Hence, the modeling in this reference and identification in the present work have encoun-
tered difficulties. Besides the first mode, the proposed automated data-driven strategy
can efficiently identify all other modes with a high level of accuracy, as shown in the error
pdf s in Figure 15. However, as observed in the previous example, estimated errors in a
few frequencies are more in a particular channel, which is satisfactorily identified from
other channels. For example, Figure 15 reveals that mode 7 has more than 99% chance of
detection from channels 1 and 2, while the same frequency faces 90% rate of detection in
channel 3. However, these are only a few cases (e.g., mode 10, 12) that show this pattern and
are envisaged due to the relative location of the accelerometer in the light of the deformed
shape of the beam in that mode. The phase portraits of the inverse synchrosqueezed
signals are then analyzed to ensure that these clusters correspond to modal frequencies.
Figure 16 demonstrates two randomly selected phase portraits corresponding to 2nd and
5th modes. The three-phase angles are clearly in unison as their portraits show linear
patterns with a PSI value of 1. All these results suggest that the proposed data-driven
automated identification procedure can successfully identify all the modes along with their
underlying pdf s for uncertainty quantification. In this context, results corresponding to
mode-shape and damping are not presented in this example as their actual values are not
readily available for comparison. However, the proposed methodology does not face any
difficulty in identifying them as was demonstrated in the previous example.
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Figure 13. Comparison of pdf of identified and experimental cases for the first 7 frequencies for
beam experiment.
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Figure 14. Comparison of pdf of identified and experimental cases for last 7 frequencies for beam
experiment.
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Figure 15. Detection probability (DP) of beam frequencies for different sensors (a) 1st, (b) 2nd and
(c) 3rd sensor [NB: DP represents ’detection probability’ of a particular mode].
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Figure 16. Phase and PSI from different channels: (a) mode 2 and (b) mode 5.

Based on the pdf s of 14 modal frequencies of this experimental validation problem,
it can be inferred that the proposed automated data-driven scheme offers satisfactory
performance for uncertainty quantification associated with random eigenvalue problems.

6. Conclusions

An inverse value problem is described above with uncertainty in the system itself.
For this purpose, synchrosqueezed transformation is coupled with k-means clustering
for output-only quantification of modal parameters in the statistical sense, which is the
major contribution of this study. This automated process is repeated for the ensemble of
experiments to quantify the underlying randomness associated with the modal parameters.
The following conclusions are drawn based on the numerical results presented in the
previous section

• Overall, the proposed data-driven identification scheme can successfully track the
eigenvalues of an uncertain linear system from the measured responses with sufficient
accuracy. The automated methodology is primarily based on the synchrosqueezed
transform, which offers an improved resolution of the energy and phase spectra,



Sensors 2023, 23, 3421 25 of 27

which are analyzed with the help of k-means clustering for mode localization and
subsequent parameter estimation. This entire process does not require either any
prior knowledge of the system and/or input nor any user intervention for reverse
analysis, which is clearly an advantage compared to other similar methods available
in the literature.

• The error analysis establishes the precision offered by the proposed identification
scheme, as the pdf s of different modal parameters closely match their theoretical
models. The error CDF also shows the probability of successful detection of a particular
mode corresponding to the acceptable error limit. For example, the probability of
detection is greater than 99% in most cases, corresponds to an error of 5%, acceptable
for all practical purposes. The error value mentioned here is composed of two errors:
detection and system uncertainty. It is extremely rare to distinguish between these
two types of errors in practical application. It is also observed that the success rate
of detecting a few frequencies from a particular sensor is poor; however, the same
frequency is successfully identified with a high level of accuracy from another sensor.
Thus, the study demonstrates that sensor locations affect the quality of the end results,
which, in turn, advocates deciding the optimal sensor location in a probabilistic sense.

• Unlike many other learning-based algorithms, the proposed methodology requires no
training data or pre-tuning for the model. For this reason, the proposed automated
data-driven identification scheme has a broader scope for the inverse parameter
estimation of a large class of systems in different sciences and engineering disciplines.
It has a wider scope for alternative parameter estimation. Due to being able to detect
small changes in modal parameters, it is inherently capable of detecting subtle changes,
allowing it to be used to identify damages and control vibrations based on feedback
within structures.
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