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Abstract: The quantitative defect detection of wire rope is crucial to guarantee safety in various
application scenes, and sophisticated inspection conditions usually lead to the accurate testing of
difficulties and challenges. Thus, a magnetic flux leakage (MFL) signal analysis and convolutional
neural networks (CNNs)-based wire rope defect recognition method was proposed to solve this
challenge. Typical wire rope defect inspection data obtained from one-dimensional (1D) MFL testing
were first analyzed both in time and frequency domains. After the signal denoising through a new
combination of Haar wavelet transform and differentiated operation and signal preprocessing by
normalization, ten main features were used in the datasets, and then the principles of the proposed
MFL and 1D-CNNs-based wire rope defect classifications were presented. Finally, the performance
of the novel method was evaluated and compared with six machine learning methods and related
algorithms, which demonstrated that the proposed method featured the highest testing accuracy
(>98%) and was valid and feasible for the quantitative and accurate detection of broken wire defects.
Additionally, the considerable application potential as well as the limitations of the proposed methods,
and future work, were discussed.

Keywords: defect detection; signal analysis; convolutional neural network (CNN); feature extraction;
wire rope

1. Introduction

Wire rope is one of the most frequently used loading and bearing tools in various
engineering applications, such as elevators, cableways, bridges, cranes, and hoisting equip-
ment, and plays a significant role in guaranteeing human life and property [1,2]. However,
plenty of defects regularly occur in the in-service steel wire rope owing to damage and
failure both in strength and structure, which may cause severe accidents and even fatalities.
Such defects include the fatigue fracture of individual wire due to repeated friction and
complex state-of-stress, fretting, and formation of frictional martensite, which is often the
precursor of wire breakage and even the fusion of individual wire nearby due to local
frictional heating [3–5]. Generally, these defects can be classified into two types, namely,
local faults (LF) such as broken and cracked wires, and the loss of metallic sectional areas
(LMA), such as wear and abrasion. According to the wire rope testing and discard criteria,
when the electromagnetic testing apparatus and methods are applied to the wire rope,
a certain number of broken wires or sectional area losses are unacceptable [6]. Dalvir
Kaur et al. [7] presented the characterizations of LF and LMA through a hall sensor signal
analysis and a comparison from the perspective of feature extraction, correlation, energy,
and a homogeneity investigation. S.K. Kashyap et al. [8] reviewed the steel wire rope
discard criteria from different countries and testing methodologies as well as the inspection
instruments, which indicated that quantitative inspection by suitable testing methods [9,10]
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and apparatus [11] is the key to determining the feasibility of a wire rope. To improve the
signal processing and defect inspection performance, except for the common magnetic
sensors including magnetic flux gate transducer [12], hall [13], induction coil, and the
magnetic resistive sensors of GMR [14], AMR and TMR [15,16], various magnetic bridge
circuit-based sensors were proposed, such as the three-dimensional MFL sensor [17], tunnel
magnetoresistive-based circular MFL sensor [18], radial magnetic concentrator [19], paral-
lel [20] as well as the open magnetizer based sensor [21], which behave better than common
magnetic sensors in generating wire rope inspection signals and defect recognition. Aiming
at the challenges of weak wire rope signal processing [22,23], some magnetic sensors based
on new nondestructive testing principles were also reported, for instance, the magnetic
focusing sensor [24]. However, most of these sensors have difficulty in balancing the signal
recognition accuracy and defect detection types.

Due to the complex wire rope testing environments and monitoring conditions, wire
rope detection signals are usually mixed with various interferences and noises in MFL
testing, such as electromagnetic background noise, and strand and swing signals, which
make the real defect signals difficult to distinguish. Thus, many signal denoising methods,
such as the wavelet transform, empirical mode decomposition, blind source separation,
and multifarious filtering techniques, have been reported. Peter W. Tse et al. [25] proposed
a short-time Fourier transform (STFT) and wavelet combined signal analysis method for
steel wire rope testing by ultrasonic guided wave, which could identify the defect location
and severity successfully. Tian Jie et al. [26] applied the mathematical morphological theory
and non-sampled wavelet filtering methods with online detection for mine wire rope,
which filtered the baseline drift noise and improved the signal-to-noise ratio (SNR) to
10 dB. Owing to the development of image-processing techniques, various image signal-
processing and machine learning methods are also introduced to steel wire rope defect
inspection and recognition. For instance, Donglai Zhang et al. [27] designed a hall sensor
array to capture the magnetic flux leakage (MFL) image and ultilized the gray level co-
occurrence matrix to extract typical features as the input of back propagation (BP) network,
which showed good performance in the quantitative recognition of different wire rope
defects. Qinghua Mao et al. [28] presented an improved decision tree support vector
machine (SVM) algorithm, and the classification accuracy for steel cord conveyor belt
defects was verified by particle swarm optimization and related experiments. Other
machine learning algorithms including the k-nearest neighbor (KNN), artificial neural
network (ANN), and logistic regression as well as variational mode decomposition [29–31]
are also applied in broken wire classification, which exhibit high sensitivity and detection
accuracy in experiments. Xiaoguang Zhang et al. [32] verified a new algorithm called
the variable step incremental extreme learning machine (ELM), which featured a faster
classification speed and higher classification accuracy for different broken wires of steel
wire rope. Esther-Sabrina Wacker et al. [33] achieved a robust localization of wire rope
surface defects by means of an anomaly detection algorithm, which was immune to the
illumination setting and the reflectance properties of the materials, and the defect detection
accuracy could reach 95%.

As the MFL imaging and deep learning techniques further applied to wire rope
defect inspection, many computer vision-based feature extraction and fusion methods
have been proposed [34]. Nevertheless, most of these inspection methods and algorithms
are only limited to surface defect detection, and the inner damage as well as the stress
concentration is usually omitted, which may cause potential safety hazards in engineering
applications. As the requirements of high accuracy defect inspection are desperately needed,
deep learning and deep neural networks are also gradually being applied to wire rope-
testing signal-processing and data analysis, especially with regard to convolutional neural
networks (CNNs) [35] which have a significant impact on all professions. Composed of an
input layer, convolutional layer, pooling layer, and fully connected layer, CNNs have been
widely used in two-dimensional (2D) data processing for medical imaging, face recognition,
text classification and one- dimensional (1D) voice-signal filtering, three-dimensional (3D)



Sensors 2023, 23, 3366 3 of 21

scene reconstruction, as well as the video signal recognition and semantic segmentation.
A lot of research can be found in related application fields, such as in breast, skin, lung
and brain cancer inspection image classification using CNNs in the medical application
proposed by Li Chen [36], Qing Li [37], Titus Josef Brinker, MD et al. [38], which can achieve
automatic and efficient image classification and complete the task of medical diagnosis.
Ueli Meier et al. [39] reported a CNN-based handwritten character classification method
through 78,125 different 7-net committees applied to NIST SD 19, which dropped the
error rate to 0.27%. Typical applications of CNNs may also include 1D electrocardiograph
(ECG) signal classification [40], large-scale video [41], gas [42], cell as well as tstar galaxy
classification and recognition [43,44]. As regards steel wire rope, Gongbo Zhou et al. [45]
applied CNNs to the health monitoring of balancing tail ropes serviced in a hoisting system,
which could achieve fault detection including disproportional spacing, twisted rope, broken
strand and wires automatically in real time. Zhiliang Liu et al. [46] proposed a CNN-based
surface defect detection method for wire rope, which was proved to have powerful learning
ability and could extract discriminant features automatically. Ping Zhou et al. [47] proposed
an automatic CNN-based wire rope surface damage detection method, which was also
demonstrated to have a high degree of diagnostic accuracy through a large number of tests
and contrast analyses.

Although the learning ability and recognition accuracy have rapidly improved, and
the modification results for various CNN-based architectures were also presented [48],
the quantitative and online wire rope MFL-testing effectiveness and efficiency for both
inner and surface defects are still limited, while the computer vision-based 2D image
processing and CNN methods can only detect surface defects, which all make wire rope
defect recognition very challenging. Consequently, a wire rope defect signal-processing and
CNN-classification combined method was proposed for 1D magnetic flux leakage testing
(MFL) in this study. Wire rope defect detecting principles and preliminary data analysis
from the perspective of time-frequency domain and statistical properties are presented
in Section 2. The detailed signal denoising methods by wavelet transform and feature
extraction techniques are described in Section 3. The proposed CNN-based algorithms for
wire rope defect recognition and comparisons results with conventional machine learning
methods are explained in Section 4. Finally, the advantages and shortcomings, as well
as the future work regarding the combined methods applied to wire rope inspection, are
summarized and discussed in Section 5.

2. Wire Rope Defect Signal Data Analysis

The wire rope detection signals are mainly obtained through the magnetic flux leakage
(MFL) testing devices shown in Figure 1a, when the detector containing a group of magnetic
sensor arrays and a magnetic excitation apparatus is scanned along the tested steel wire
rope with a diameter of 29 mm and testing speed of 20 cm/s. The magnetic flux will leak
from the position of wire rope discontinuities or defects, including broken wires, abrasion
and wear, which will simultaneously be captured by the magnetic sensitive element of the
inductive coil circumferentially installed inside the detector inner wall. Thus the leaked
magnetic signals can be converted to electrical signals and transferred to data acquisition
modules. A typical wire broken defect is expressed in Figure 1b, where two neighboring
broken wires with a single wire diameter of 1.8 mm are appeared. In addition, six groups
of wire broken defects are presented in Figure 1c. Specifically, defect 1 is a single broken
wire near the groove of the strand, defect 2 is a single broken wire on the surface of the
strand convex, defect 3 is a curled broken wire, defect 4 and defect 5 are composed of
two discontinuous broken wires located in different positions near the strand groove, defect
6 represents a discontinuous broken wire on the convex position of the strand.
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Figure 1. Wire rope testing devices and experimental defects: (a) wire rope detector; (b) wire rope
defect; and (c) typical defect 1 to defect 6.

Consequently, the steel wire rope defect signals are obtained from the signal mon-
itoring software installed on the computer. Four groups of wire rope detection signals
tested under different strong swing, vibration and surrounding electromagnetic interfer-
ence noise conditions are illustrated in Figure 2, and there are six main defects in each of
these datasets, which are labeled as defect 1 to defect 6. Obviously, all the original signals
of wire rope testing data are featured with interferences of strand and swing signals as
well as various background noises. However, the defect types of the wire rope can hardly
be distinguished just by the signal characteristics in the time domain, especially when the
detection conditions are hostile and the defect is tiny with weak characterizations. Typical
signals from different datasets are shown in Figure 2b–d.

From the perspective of frequency domain analysis, a Fast Fourier Transform (FFT) is
conducted for the wire rope testing signals. The discrete wire rope detecting signals can be
defined as a signal series of s(n) with the length of N, namely, n = 0, 1, 2, . . . , N − 1, and
the Fourier transform is described as,

S(k) =
N−1

∑
n=0

s(n)e−j 2knπ
N k = 0, 1, . . . , N − 1 (1)

The typical FFT calculating result for six defect signals mentioned in dataset 1 is
obtained and expressed in Figure 3. Specifically, defect signals FFT computed for defect 1
to defect 6 are presented in Figure 3a–f, respectively. Apparently, the main frequency bands
of defect signal 1 and signal 5 shown in Figure 3a,e are distributed around the frequency of
45 Hz, while the defect signals 2, 3 and 4 presented in Figure 3b–d are all accompanied with
regular noises and extended frequency components around 130 Hz, 200 Hz and 150 Hz. In
addition, defect signals from defect 5 and 6 expressed in Figure 3e,f are both featured with
a main frequency of 45 Hz and an extended interference signal frequency band from 0 to
40 Hz. However, almost all these FFT calculation results from dataset 1 are featured with a
common and prominent frequency around 50 Hz.
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The typical signal analysis in frequency domain manifests that although the defect
signals are mainly characterized with a fixed frequency around 50 Hz, various interferences
of noises, such as the wire rope strand, swing signals and electromagnetic background
signals, are inevitable. As for the frequency components distributed in different locations
in the FFT diagram, it makes the accurate evaluation and recognition of different steel
wire rope defects very challenging. Furthermore, to investigate the interdependence of
these time series signals, an autocorrelation analysis is also conducted. The autocorrelation
coefficient of Rk can be defined as,

Rk =
∑n−k

i=1 (si − s)(si+k − s)

∑n
i−1 (si − s)2 (2)

where the Si is the time series signal of wire rope inspection, s is the mean value of the
signal, and the detailed autocorrelation function are depicted in Figure 4. The typical
autocorrelation coefficients for six different wire rope defect signals from dataset 1 and
mentioned in Figure 2a are separately expressed in Figure 4a–f, which indicates that as the
absolute delay time increases, the correlation between the front and back time series of the
testing signal fades off. When the delay time is zero, all the autocorrelation coefficients are
approximate to 1 except the time series of defect 6 shown in Figure 4f which may be caused
by the regular noises.

Additionally, the statistical characteristics for the detecting signals of these typical
wire rope defects from the perspective of probability density distribution analysis were
also conducted and presented in Figure 5.

Similarly, the statistical distribution for defect 1 to defect 6 are separately presented in
Figure 5a–f, especially indicated by the red dotted lines. According to the fitting curves
expressed in red line, it can be deduced that all these defect signals are distributed in
an approximate normal distribution. In other words, most of these time series signals
of defects are distributed around the median of 2000 mV, and the numbers of signal
points distributed around the two sides of the mid value decrease gradually as the signal
amplitude increases or decreases. Notably, the signals of defect 5 and defect 6 shown in
Figure 5e,f are characterized with some higher unique points, which may be caused by their
larger defect signal amplitudes. What is more, the testing signals from defect 5 and defect
6 are distributed more compactly, judged by the horizontal axis of the signal amplitude
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compared with the other defect types shown in Figure 5a–d, which provides a reference to
the feature extraction for signal and defect classification.
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To investigate different wire rope defect signals more comprehensively, a time-frequency
joint analysis method by STFT was also considered. The typical defect signals from dataset 1
by STFT can be described by the following formula,

Ss(m, n) =
∞

∑
k=−∞

s(k)·g(k−m)e−j2πnk (3)
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where s(k) is the original time series of wire rope defect signal, g(k) is the window func-
tion. When the moving function by the Hamming window is applied and an overlap of
50% is set, the STFT for six different defect signals as mentioned above are presented in
Figure 6a–f, respectively.
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As can be seen by the STFT results, it can be observed that almost all these defect
signals are distributed within the frequency band smaller than 400 Hz, and the signal
with the low frequency component of 50 Hz exists throughout all the sampling process
especially in Figure 6a–c. In addition, there are two apparent signal enhancement regions
between the time intervals of 1.5 s to 2.5 s in Figure 6d,e, which is exactly consistent with
the original signal analysis for defect 4 and defect 5 in dataset 1. Similarly, the continuous
signal enhancement area throughout the time intervals of 2 s to 3.5 s in the STFT spectrum
in Figure 6f not only demonstrates the signal distribution characterizations in the time and
frequency domains, but also verifies the FFT analysis mentioned in Figure 3, which further
increases the resolution of signal components analysis. On the other hand, the power
spectral density (PSD) estimation by Welch’s overlapped segment averaging estimator was
also conducted, and the PSD was mainly calculated according to the follow formula,

P(ω) = lim
T→+∞

|F(ω)|2

2πT
(4)

where F(ω) is the Fourier transform for the wire rope detection signal, and the period of T
can be viewed as the limit of infinity for the discrete signal. The detailed PSD analysis for
six typical wire rope defect inspection signals from dataset 1 is illustrated in Figure 7.

According to the PSD results, we can conclude that these signals are mainly distributed
in low frequency band, where the amplitude of PSD is higher than that in the high fre-
quency region. That is to say, as the signal frequency increases, the signal energy decreases
gradually and there still exist many noise components in the high frequency region ob-
served by the oscillation waveforms. Most importantly, a prominent raised waveform in
the frequency around 100 Hz can be found in Figure 7b–d, which is also an indication of
the wire rope defect signal and can be viewed as a reflection of the extended frequency
components explained in Figure 3b–d.
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Figure 7. Power spectral density (PSD) of different defect signals: (a) for signals from defect 1; (b) for
signals from defect 2; (c) for signals from defect 3; (d) for signals from defect 4; (e) for signals from
defect 5; and (f) for signals from defect 6.

3. Signal Denoising and Feature Extraction

To build the training and testing datasets for wire rope defect recognition, the original
wire rope testing signals should be preprocessed through signal denoising and feature
extraction. The detailed signal denoising using Haar wavelet transform, signal prepro-
cessing through normalization and multi-dimensional feature extraction are illustrated in
this section.

3.1. Signal Denoising

According to the signal analysis mentioned above, further signal denoising methods
by wavelet transform were studied. The discrete wavelet transform for the time series
signal can be described as the inner product of the detection signal and the mother wavelet
function, such as,

DWTx(m, n) =< s(t), ψm,n(t) >= 2−
m
2

∫
R

s(t)ψ(2−mt− n)dt (5)

where, m and n are the scale parameter and shift factor, s(t) is the wire rope defect signal
and ψ(t) is the mother wavelet function. According to the principle of wavelet threshold
denoising method by unbiased estimation, when the decomposition level is set as 12 and
the Haar wavelet is chosen, a new time series signal can be obtained through the sorting
method for absolute values of s(i),

f (i) = (sort(|s(i)|))2 (i = 0, 1, 2, . . . , N − 1) (6)

where N is the number of the signal point, and when the denoising threshold of λ was
chosen as the square root of the new signal series, namely,

λ =
√

f (i) (i = 0, 1, . . . , N − 1) (7)

The risk of the estimation for the denoising signal can be described as,

R(k) = [N − 2k +
k

∑
i=1

f (i) + (N − k) f (N − k)]/N (8)
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When the risk of R(k) is the least, the best point of k can be chosen as,

kmin = arg min R(k) (9)

Thus, the threshold of the wavelet denoising function is,

λk =
√

f (kmin) (10)

After the signal denoising by wavelet transform through Haar function, further dif-
ferentiated operations between the denoised signal and the original signal were applied.
Consequently, typical wire rope defect signals processed from dataset 1 were acquired
and are expressed in Figure 8. Compared with the original defect signals expressed in
Figure 2a, the final denoised signals all feature prominent and clearer defect waveforms
with a few noises, and the wire rope defect signal recognition accuracy and identifiability
are greatly improved.
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3.2. Signal Preprocessing

To eliminate the influence of the signal data range from different wire rope detec-
tion sensors, a normalization method was applied for these datasets, and the Z-score
normalization strategy can be described as,

S(i)norm =
s(i)− µ

σ
(11)

where S(i)norm is the normalized time series of the denoised signal s(i), µ and σ are the
mean value and standard deviation, respectively. Thus, all different signal datasets can be
converted to standard signals obeying the normal distribution with the mean value of 0
and standard deviation of 1. Then, the normalized signals can be applied for training and
testing in wire rope defect recognition, and the normalized results for typical wire rope
defect signals from dataset 1 are shown in Figure 9. Obviously, the normalized signals are
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still consistent with denoised signals in amplitude as shown above in Figure 8, meanwhile,
the convergence of these datasets can also be guaranteed when the wire rope defect signals
are trained and tested by a machining learning classifier.
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3.3. Feature Extraction

Wire rope detection signals are usually characterized with various features and multi-
ple dimensions, which makes the accurate recognition of defects full of challenges. There-
fore, the feature extraction methods by multiple parameters calculations are proposed.
Primarily, ten main features for the wire rope signals were extracted, such as the maximum
and minimum value, the mean and root mean square (RMS) value, the skewness, kurtosis,
and the dynamic range (DR), the crest factor (CF), signal duration as well as the autocorre-
lation time of the signal data. Specifically, the skewness of γ(s), kurtosis of K(s), dynamic
range of Γ(s), crest factor of C(s) can be described and calculated as follows,

γ(s) = E[(
s− µ

σ
)

3
] (12)

K(s) = E[(
s− µ

σ
)

4
] (13)

Γ(s) = 20 log 10(
max(|s(i)|)
min(|s(i)|) ) s(i) 6= 0, i = 1, 2, . . . , N (14)

C(s) = 20 log 10(
max(|s(i)|)

σ
) (15)

After calculating for the dataset with different wire rope defect detecting signals,
typical feature parameters of the normalized dataset 1 were extracted and presented in
Table 1 it can be observed that all the RMS values are 1 owing to the signal normalization,
and the signal duration is chosen as 4 s to avoid the redundancy.
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Table 1. Feature parameter of Dataset 1.

Features Data1 Data2 Data3 Data4 Data5 Data6

Max 43.485 35.435 33.356 54.838 23.566 13.759
Min −43.485 −35.435 −37.403 −54.838 −24.232 −18.706

Mean 1.676 × 10−18 −2.031 × 10−19 −1.392 × 10−18 4.533 × 10−19 −4.706 × 10−18 −4.912 × 10−18

RMS 1 1 1 1 1 1
Skewness 5.287 −2.240 × 10−8 −3.212 −0.074 0.361 −1.661
Kurtosis 1365.029 614.899 587.105 2396.053 204.458 89.892

DR 308.961 dB 320.392 dB 324.174 dB 306.019 dB 323.177 dB 348.104 dB
CF 32.767 dB 30.989 dB 31.458 dB 34.782 dB 27.688 dB 25.439 dB

Signal duration 4 s 4 s 4 s 4 s 4 s 4 s
Autocorrelation

time 1.998 s 0.033 s 0.049 s 0.402 s 0.488 s 0.472 s

To verify and compare the validity of the wire rope defect classifier by different
recognition methods, six main defects in four different datasets were chosen in the training
and testing process, which can be seen in Table 2. In addition, the ten features mentioned
above were also chosen in each group of the dataset.

Table 2. Wire rope inspection data from four different datasets.

Defect Class Data Number Feature Number

Defect 1 8000 × 4 10
Defect 2 8000 × 4 10
Defect 3 8000 × 4 10
Defect 4 8000 × 4 10
Defect 5 8000 × 4 10
Defect 6 8000 × 4 10

4. Proposed Algorithms and Comparisons

Combining the experiments and wire rope defect inspection datasets mentioned
above, the proposed new framework of 1D convolution neural network, principles of wire
rope recognition method, as well as the comparisons and results are presented in this
section, which are expected to demonstrate the feasibility and superior performance of the
proposed algorithm.

4.1. CNN Framework

Convolution neural network (CNN) is a multi-layer supervised learning neural net-
work, which has deep hidden layers compared with the common artificial neural network
(ANN), and the hidden layers including the commutative convolution layer and pooling
layer are the core modules in feature extracting. As shown in Figure 10, the framework of
a CNN may be composed of the input layer, convolution layer, excitation layer, pooling
layer and fully collected layer. In addition, the stochastic gradient decent with momentum
(SGDM) methods are often used in minimizing the loss function and back-adjusting for
the weighting parameter. Consequently, the classification accuracy can be improved by
multiple training and iteration processes.
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The hyperparameters used in the 1D-CNNs is listed in Table 3, for instance,

Table 3. The parameters in the 1D-CNNs architecture.

Name Parameter Name Parameter

Neural network LeNet-5 Training: testing:
validation 6:2:2

Input layer size 200 × 5 Learning rate 0.01
Convolution layer

number 4 Mini batch size 128

Padding method Same padding Excitation function ReLu
Pooling method Average pooling Max epoch 200

Pooling layer number 1 Soler SGDM
Fully collected layer 3 Output layer Softmax

A typical mean square error function as the loss function in the network evaluation
part can be described as,

L(θ) =

n
∑

i=1
(y(i) − y(i)

′
)

2

n
(16)

where the y(i) is the true value and y(i)’ is the predicted value which satisfies the following
functional relationship with the input layer of x,

yl(m, n) = xk(m, n) ∗ gkl(m, n) =
K−1

∑
k=0

I−1

∑
i=0

J−1

∑
j=0

xk(m + i, n + j)gkl(i, j) (17)

where g(m, n) represents the convolution kernel, and the size of the convolution kernel is
I × J, K is the number of the input channel, while the size of the input matrix is M × N.
Furthermore, the exciting function is usually chosen as the rectified linear function called
ReLU, namely,

f (x) = max(0, x) (18)

Compared with other functions such as the sigmoid and tanh, ReLU is featured with
faster convergence speed when the SGD method is applied.

4.2. 1D-CNNs Recognition Method

Specifically, the schematic diagram of wire rope defect recognition by 1D-CNNs
classifier is illustrated in Figure 11. Explanatorily, when the 1D original signals acquired
from different wire rope defects are denoised and normalized, preliminary features of the
signals from different datasets are extracted to establish the sample space for training and
testing, where the 1D data are reconstructed as 2D matrix. Then, the defect recognition
classifier by CNNs is developed which includes the input layer, convolution layer, excitation
layer, pooling layer, and full collected layer as well as the output layer. After multiple
iterations of training, testing and validation referring to the classification parameters given
in Table 3, the final wire rope defect recognition results can be obtained.

According to the CNN principles and wire rope recognition process, after the 1D
original signal reshaping by matrix reconstruction, a 2D dataset can be obtained and
applied in the input layer. Concretely, the input layer size is set as 200 × 5 × 1, the pooling
method is set as the max pooling, the stride is set as 1, the exciting layer is ReLu, and
three fully connected layers with the size of 512,128 and 6 are applied. When the learning
rate is 0.01, the iteration number is 200 and the suspensive condition is that the training
and testing error is less than 1 × 10−8, six output results for different types of wire rope
defects can be obtained through the output function of softmax.
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4.3. Results

As intelligent techniques and related research further develop, various machine learn-
ing methods and classifiers have been proposed, such as the naive Bayes (NB), discriminant
analysis (DA), decision tree (DT) and k-nearest neighbor (KNN) as well as SVM and boost
methods. Specifically, 10-fold cross validation was applied for these six machine learning
classifiers, where the training and testing proportion were split as 80% and 20%, while the
prior probability for each class in NB and DA is empirical. In addition, a linear discriminant
method is compared, and the maximal number of decision splits or branch nodes per tree
in the DT is 599, the minimum leaf size and parent size is 1 and 10. The number of bins
used for every numeric (non-categorical) predictor is set as 50 to speed up the DT training
process, where the output tree includes the optimal sequence of pruned subtrees, and the
criterion for choosing a split is Gini’s diversity index (GDI). As for the KNN classifier, the
nearest neighbors search method is using the exhaustive search algorithm, where each
neighbor gets equal weight in the Euclidean distance weight, and the maximum number
of data points in the leaf node of the kd-tree is 50. Furthermore, the tolerance for the
gradient difference between upper and lower violators obtained by the solver of sequential
minimal optimization (SMO), as well as the maximal number of iterations for SMO is
1 × 10−3, while the kernel function of radial basis function (RBF) is mainly considered for
SVM. The bagging method is mainly applied in the ensemble classifier, and the ensemble
learning cycle is 100. When six types of different defects of the wire rope detection datasets
mentioned in Table 2 are trained and tested in these classifiers, the decision surface of each
classifier is obtained and presented in Figure 12, respectively.
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Figure 12. Decision surface by different classifiers.

It can be observed that almost all different defects can be distinguished by these
classifiers, especially for classification results via SVM and ensemble learning methods,
which are featured with less cross item and erroneous judgement. Similarly, after the
training and testing through these machine learning classifiers, defect 1, defect 2 and defect
3 are characterized with higher resolution compared with other types of defects judged
by the color of these decision surfaces. On the other hand, comparisons between these
common machine learning techniques and the proposed 1D-CNN-based wire rope defect
reconstruction and classification methods were also conducted, when the defect recognition
performance evaluated through the testing accuracy and error as well as the run time are
separately calculated and presented, the comparison results are shown in these histograms
in Figure 13.

Explanatorily, after the machine learning training and testing by NB, SVM, KNN, DT,
DT, ensemble learning and CNNs classifiers, all the wire rope defects can be well recognized.
According to the testing accuracy results shown in Figure 13a, the defect recognition
accuracy can reach above 70% through different datasets, while the classification accuracy
for defect 6 by NB and DA are relatively lower. In addition, wire rope defect classification
accuracies through the classifiers of NB, SVM, and ensemble learning as well as the CNNs
are higher than that from KNN, DT and DA. It can also be obviously observed that the
testing accuracy is the highest when these defects are classified and recognized by CNNs,
which can reach 98.0048%. When the dataset of defects 6 are trained and tested, NB and DA
behave the worst in the defect recognition, which featured the highest recognition errors
and can be found in Figure 13b. Similarly, the testing and recognition errors for six different
types of defects by SVM, ensemble learning and CNNs (1.9952%) are relatively lower than
that of the classifiers of KNN, DT and DA. Combining the testing and recognition results
from Figure 13a,b, it can be concluded that the wire rope defects classification by the CNNs
is the best, and not only can predict and distinguish the six kinds of wire rope defects
exactly, but also features the highest recognition accuracy compared with these common
machine learning classifiers. However, owing to the deep neural network and complicated
convolutional layers, the algorithm run time on the computer through DA and CNNs
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are also the longest, which were both longer than 2 s when six types of defects from the
four datasets were tested, while the run time from the classifiers of NB, SVM, KNN, DT
were all lower than 0.5 s, as can be seen in Figure 13c. Namely, although the detection
accuracy is guaranteed by the CNNs, the detection efficiency is limited. Further parameters
of the mean value, such as the detection accuracy, classification error and run time in
evaluating the performance of different classifiers are separately presented in Table 4.
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Table 4. Comparison of recognition results by different algorithms (mean value).

Method NB SVM KNN DT DA Boost Our CNNs

Accuracy (%) 79.7083 86.0417 73.4583 72.4375 70.2201 84.9792 98.0048
Error (%) 20.2917 13.9583 26.5417 27.5625 29.4483 15.0208 1.9952
Time (s) 0.1076 0.2107 0.1001 0.1443 2.7526 1.0054 2.3333

Additionally, other related deep learning methods in wire rope defect detection are
also presented and compared in Table 5, such as,

Table 5. Comparison of wire rope defect recognition results by other related algorithms.

Method WR-IPDCNN [49] DL [50] SVDD [51] WR-LBPML [52] RCNN [53] CDAE-iForest [54] Our CNNs

Defect type Surface Surface Surface Surface Surface Surface LF defect
Defect class 2 2 3 2 4 100 6

Accuracy (%) 95.55 99 94 93.3 90.61 93 98.0048
Error (%) 4.45 1 6 6.7 9.39 7 1.9952
Time (s) 22.4 5.74 - 0.014 - - 2.3333

According to the testing results shown in Table 4 and the comparison results expressed
in Table 5, all the wire rope defect classification mean accuracies are higher than 70% under
the testing conditions with a small sample space and common machine learning classifiers,
while the recognition accuracy by CNNs can exactly reach 98.0048% for six different defects,
and features the best comprehensive defect recognition performance among these methods.
Furthermore, the mean run time by the CNNs is relatively shorter than the other combined
algorithms, which reached 2.3333 s when the testing and recognition procedures were
completed. The details of the testing and training by CNNs are depicted in Figure 14.
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Specifically, the accuracy is the highest when the iteration number is bigger than 16,
despite the training and validation curves being nearly the same and overlapped. As for
the losses results, when the iterations are greater than 40 or 45, the loss is nearly zero in
the training and validation procedures. Both results shown in Figure 14 demonstrate that
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although the training and testing iteration is 200 and the run time is 2.3333 s, most of the
time is redundant in the wire rope defect recognition, and only 20 percent of the run time
(0.4666 s) is enough for the exact defect classification. Considering the high accuracy of
CNNs classifier, it is full of promise in the wire rope defect detection in various application
scenes compared with the common machine learning techniques.

5. Conclusions and Discussion

Wire rope is one of the most important loading materials in engineering applications,
and the defect detection of wire rope is crucial in guaranteeing the safety of human as well
as the healthy development of the social economy. However, the sophisticated detection en-
vironment and monitoring conditions usually make defect recognition full of difficulty and
challenges. Consequently, the proposed MFL signal analysis and 1D-CNN combined defect
recognition method not only eliminates the interference of different environment noises, but
also improves the defect distinguishing and recognition accuracy, which can reach a mean
value of 98.0048%. Compared with common signal processing and defect classification
techniques, the proposed combined methods behave better in improving the recognition
accuracies for six typical wire rope defects inspection signals from different datasets.

On the other hand, the limitation of the proposed method lies in that the wire rope
defect recognition results are influenced by the run time of the algorithms, which may affect
the classification efficiency in online or real-time inspection of steel wire ropes. The pooling
layer in the CNNs may cause information loss and neglection for the correlation between
local and overall network architectures. Therefore, larger numbers of datasets with more
defect types and training procedures, and improved pooling structures may decrease the
testing and recognition time as well as increase the inspection efficiency. Consequently,
future work will include the further optimization, quantitative testing and evaluation for
more types of wire rope defects, which can not only provide a reference referring to the
discard criteria of wire rope detection, but also guarantee the safety of human life and
property. More training and validation of the CNN classification-related algorithms as well
as steel wire rope detection and signal processing experiments will also be conducted.
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