
Citation: Venčkauskas, A.; Kukta, D.;

Grigaliūnas, Š.; Brūzgienė, R.

Enhancing Microservices Security

with Token-Based Access Control

Method. Sensors 2023, 23, 3363.

https://doi.org/10.3390/s23063363

Academic Editors: Tao Peng, Ke Gu

and Wei Zhou

Received: 26 February 2023

Revised: 16 March 2023

Accepted: 21 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Microservices Security with Token-Based Access
Control Method
Algimantas Venčkauskas *,† , Donatas Kukta †, Šarūnas Grigaliūnas † and Rasa Brūzgienė †

Department of Computer Sciences, Kaunas University of Technology, Studentu str. 50, 51368 Kaunas, Lithuania
* Correspondence: algimantas.venckauskas@ktu.lt
† These authors contributed equally to this work.

Abstract: Microservices are compact, independent services that work together with other microser-
vices to support a single application function. Organizations may quickly deliver high-quality
applications using the effective design pattern of the application function. Microservices allow
for the alteration of one service in an application without affecting the other services. Containers
and serverless functions, two cloud-native technologies, are frequently used to create microservices
applications. A distributed, multi-component program has a number of advantages, but it also
introduces new security risks that are not present in more conventional monolithic applications.
The objective is to propose a method for access control that ensures the enhanced security of mi-
croservices. The proposed method was experimentally tested and validated in comparison to the
centralized and decentralized architectures of the microservices. The obtained results showed that
the proposed method enhanced the security of decentralized microservices by distributing the access
control responsibility across multiple microservices within the external authentication and internal
authorization processes. This allows for easy management of permissions between microservices and
can help prevent unauthorized access to sensitive data and resources, as well as reduce the risk of
attacks on microservices.

Keywords: cybersecurity; microservices architecture; access control; external authentication; internal
authorization

1. Introduction

Microservices are an approach to software architecture that divides an application
into small, independent, and self-reliant services [1,2]. The primary benefit of utilizing
microservices is that it enables quicker development, easier maintenance, and enhanced
scalability and resilience. In addition, microservices can increase the efficiency and flexi-
bility of a development team by permitting the parallel development and deployment of
individual services [3]. With microservices, it is also possible to utilize different technologies
for various services, resulting in a system that is more flexible and adaptable. Microservices
can result in faster and more efficient development, enhanced scalability and resilience,
and greater organizational flexibility.

Nonetheless, one of the aspects that microservices architecture complicates is cyber-
security. Among distributed modules, it is difficult to ensure the confidentiality of data
exchange and the integrity of transactions. The decentralized nature of the microservices
architecture increases the number of potential entry points for attackers, making system
security more difficult. A vulnerability in a single microservice can have cascading effects
on the entire system; therefore, it is crucial to ensure the security of all services. Due to the
distributed nature of microservices, real-time monitoring and detection of security threats
can be challenging. Given the fact that misconfigured microservices can leave the system
vulnerable to attack, it is crucial that all services are properly configured and secured. Mi-
croservices often rely on third-party libraries and services; therefore, it is crucial to ensure
the security of these dependencies. Microservices architecture must prioritize cybersecurity

Sensors 2023, 23, 3363. https://doi.org/10.3390/s23063363 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4567-5023
https://orcid.org/0000-0001-9268-9244
https://orcid.org/0000-0002-0816-8700
https://doi.org/10.3390/s23063363
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063363?type=check_update&version=1


Sensors 2023, 23, 3363 2 of 21

and implement security measures, including encryption, authentication, access control,
and monitoring, to mitigate these risks.

Communication between microservices can be complicated, making it more difficult
to protect transmitted data. A set of smaller microservices must communicate with one
another in a microservices architecture, so each microservice has its own communication
interface. Obviously, the security of the microservices architecture can be implemented
with a variety of perimeter security strategies, but other factors, such as action logging,
performance monitoring, confidentiality of data exchange, and microservices availability,
must also be considered. To enable secure communication in a microservices architec-
ture, there must be distinct system boundaries. In a microservices architecture, there are
two primary ways to define system boundaries. The first strategy is to assume that the
application’s internal environment is secure, while the second strategy is to mistrust the
environment and implement security mechanisms at the microservices communication
level [4]. In general, the concept of secure communication encompasses not only the secrecy
of requests or the execution of requests by an authenticated user, but also the assurance that
the sender of the request is, in fact, authenticated to make this request. To be more specific,
it is necessary to ensure that a microservice has permission to send a specific request to
another microservice.

Access control plays a crucial role in ensuring the identity management and cyberse-
curity of microservices-based systems. Access control is an essential functional component
of microservices architecture, as it regulates access to resources within each microservice
and helps preserve the confidentiality and integrity of data. Access control in microservices
helps to enforce security policies and prevent unauthorized access to APIs, data stores, and
other resources. This ensures that only authorized entities have access to sensitive infor-
mation. In addition, access control facilitates compliance with regulations, such as GDPR,
HIPAA, and others, by controlling who has access to what data and for what purposes. This
enables organizations to comply with regulations and avoid penalties for noncompliance.
It is also an integral component of a comprehensive microservices security strategy and
should be meticulously planned and implemented to protect sensitive data.

Centralized and decentralized access control are two different approaches to managing
user access in the microservices architecture. Each approach has its own advantages and
disadvantages, and the selection of which approach to use depends on the particular re-
quirements of the microservices implementation. In centralized access control, all decisions
regarding access control are made in a centralized location, making it simpler to manage
and enforce security policies. In large-scale implementations of microservices, centralized
access control can become a bottleneck and limit the system’s scalability. The reliance of cen-
tralized access control on a single service to control access creates a potential single point of
failure in the system. Implementing centralized access control can be difficult, necessitating
a high level of coordination between microservices and the access control service.

Decentralized access control allows for more scalable access control, as decisions can
be made at the service level, and reduces the risk of a single point of failure, as access
control decisions can be made by multiple services in the event of a failure. It can increase
the complexity of the system, as each microservice must implement its own access control
logic [5]. The decision between centralized and decentralized access management depends
on the specific requirements of the microservices’ implementation, such as the system’s size
and complexity, the required level of security, and the need for scalability and resilience.
There is no single “best” method for token-driven decentralized or centralized access
control in microservices, as the specific requirements and constraints of implementation for
each microservice dictate the strategy that needs to be adopted.

For the client and the user, authentication and authorization serve slightly different
purposes [6]. The purpose of the application system in the case of a user is to verify his
or her identity and grant him or her access to the relevant resources and functions. In the
case of a client, however, the concept of authorization is typically more expansive due to
request quotas. Requests from external customers from other organizations are frequently



Sensors 2023, 23, 3363 3 of 21

monetized and subject to time-bound limits. In a microservices architecture, it is more
difficult to implement restrictions on the number of requests because a single client request
can generate multiple new requests to other microservices; therefore, it is essential to define
the request quota policy accurately.

A modern practice to track and limit client requests is to use special access tokens or
session identifiers. It is important to note that the client may not be a person but another
computer system that uses the functions of another organization’s application system. JWT
tokens can be used as an access control mechanism in the microservices architecture [7].
Tokens are a standardized method of representing authentication and authorization data,
and they can be used to implement a wide variety of access management scenarios in the
microservices architecture. Tokens enable decoupled authentication, where authentication
and authorization data are stored in a separate service and can be easily shared between
microservices. Tokens are stateless, which means they do not store any data on the client or
server. This reduces the risk of security incidents and simplifies the management of session
data. However, when validating a JWT token, it is essential to ensure that the cryptographic
signature component exists, as a JWT token without a cryptographic signature is also valid.
In this way, the attacker has the ability to include any information in the message, thereby
gaining greater unauthorized access to the system.

Unfortunately, JWT-based access control is vulnerable to security issues, including
interception, forgery, replay, expiration, storage, and size. To mitigate these issues, token-
based access control systems should implement token signing and encryption, use short-
lived tokens, and securely store tokens on the backend, etc. In addition, access control
systems should routinely validate tokens and revoke them as needed to maintain security.
Due to this, the objective of this work was to create a method for access control that ensures
the enhanced security of microservices. The authors focused on the process of access
control by evaluating and comparing it over centralized and decentralized architectures of
the microservices. The research issue highlights the ongoing need for a secure functional
architecture of microservices that can effectively prevent unauthorized access. The main
contributions of the work, presented in this paper, are as follows:

• The microservice access control method is based on a token strategy that increases
security in access control by distinguishing between authentication and authorization
services, the issued tokens of which are trusted by the resource microservices. This
ensures that the authorizations of the users between microservices are easily managed.

• External authentication and internal authorization provide enhanced security in
client’s identity management while accessing the microservices.

The field of microservices has been growing rapidly in recent years, and with it comes
the need for enhanced security measures. Although existing research has suggested a
variety of techniques for securing microservices, many of these techniques have draw-
backs, like slow performance or restricted flexibility. Compared to existing research, the
proposed method offers several advantages. First, it provides a high level of security by
generating unique tokens for each microservice request; thereby, preventing unauthorized
access. Second, it is flexible and can be customized to meet the specific security require-
ments of different microservices applications. The efficiency of our approach can also
speed up microservices requests by obviating the need for repeated authorization and
authentication checks.

Future researchers who use this paper can benefit from the latest techniques in mi-
croservices security by implementing our proposed method. By doing so, they can enhance
the security and performance of their own microservices applications, while also build-
ing upon our research to further advance the field. Additionally, the proposed method
can serve as a starting point for exploring new approaches to microservices security and
improving upon existing methods.

The remainder of this paper is organized as follows. Section 2 reviews the methods
and solutions used for access control in microservices. The detailed description of the
proposed token-driven access control method is provided in Section 3. Section 4 outlines



Sensors 2023, 23, 3363 4 of 21

the environmental setup for the experimental testing, while the results and insights based
on the testing are presented in Section 5. A summary of the main findings and how they
relate to the research issue is discussed in Section 6. Finally, Section 7 concludes the work
done by the authors in this paper.

2. Related Works on Access Control in Microservices

Appropriate access control in the architecture of microservices is critical for assuring
system security and integrity, as well as preventing unauthorized access to sensitive data
and resources [8]. Access control helps to prevent data breaches or other security incidents
and minimizes the risk of data corruption or tampering. It ensures that all microservices are
properly configured and secure, as well as authenticated and authorized, which can help
prevent attacks based on compromised credentials or minimize the attack surface of the
system. On the same point, it can enforce consistent security policies and compliance with
industry and government regulations across all microservices, which can make it easier to
manage and maintain the security of the system. Besides all this, it reinforces the isolation
of microservices from each other, preventing a security breach in one microservice from
spreading to others [9].

Microservices are a paradigm that combines ideas from software engineering’s princi-
ples of simplification, usage, and division of concerns, as well as service orientation and
distributed system concepts. This combination results in brand new security issues, in
addition to the same old security challenges, but presented in brand new packaging [10].
The microservices paradigm, which consists of highly distinct and easily redeployable
distributed components, also presents new potential for data security. The authors in [11]
focused on security implications related to the deployment of microservices in a cloud
environment. They concluded that, in order to provide users with secure microservices and
accomplish a variety of other productive goals, it is necessary to pay attention to critical
aspects of developing architectures that are based on microservices and the control of access
to them. Such findings were justified as well by other researchers in [12].

Typically, in a microservices’ architecture, essential functions can be divided into
several different levels of security, depending on the type of the architecture. In a layered
microservices architecture, where each microservice is designed as a modular and self-
contained component, with a specific responsibility, all microservices on the same subnet
have the same level of security. The necessity of cross-layer connectivity and various
bridgeheads, in terms of a security, was highlighted for a multi-layered microservices
architecture in [13]. The authors identified that a need to improve security requirements for
IoT microservices in the supply chain and data sharing systems still remains. Microservices
have different levels of security and may require additional validation or authorization
before certain critical functions can be performed.

Access control in microservices refers to the mechanisms used to regulate and manage
the access and permissions at edge level, service level and context of identity of different
services and users of the system’s resources [14]. In the model of an access control of
distributed architecture of microservices, proposed by the authors in [15], the private
API gateway is only available to the internal microservice, the so-called front-end of
microservices. It takes care of the targeted invocation of critical microservices. This front-
end calls the internal API gateway, which then sends the request to the filter service. The
filter service is an additional tool to ensure the validity and authorization of the request. The
filter object is separate from the authorization server, as the filter should only implement
the additional business logic that needs to be implemented before critical microservices
can be reached. The filter can also perform additional authentication by contacting the
authorization server. If successful, the filter sends a request to the microservices with the
next security level. This model follows the principle of a trusted security perimeter, which,
in principle, requires additional measures to ensure the security of the sub-network. Such a
type of architecture is more flexible and easier to scale than monolithic [16,17] architecture,



Sensors 2023, 23, 3363 5 of 21

as each service has its own separate databases and communicates with other microservices
over the network.

It is important to note that security issues that arise in a monolithic architecture can be
mitigated by deploying and scaling microservices independently, implementing proper
access control, and proper orienting (i.e., centralized, decentralized, distributed or hybrid)
authentication and authorization of systems and services. Segmentation helps as well in
enforcing access control, by isolating microservices, so that unauthorized access to one
microservice does not compromise the security of others [18]. The solutions of microservices
segmentation were published in [19,20]. In terms of security, the objective of microservice
segmentation is to limit the attack surface by isolating services. In this manner, if a single
service is compromised, the damage is isolated to that service and does not propagate to
the rest of the system. Additionally, microservices may be divided according to the degree
of access they need, with more critical services requiring more stringent security measures.
This contributes to the confidentiality, availability, and integrity of the data handled by
the services.

A centralized authorization technique for microservices architecture is the role-based
access control (RBAC) concept. It sets roles and gives permissions to those roles in order
to regulate access to microservices’ resources. In this manner, each user is allowed access
depending on their role, and authorization choices are made using this data. Nonetheless,
the authors in [21] indicated that RBAC has several security concerns, including role
expansion and division of duties. These concerns also impact the microservices’ security
practices. In this instance, they suggested attribute-based access control (ABAC) for a
centralized microservices architecture. ABAC provides a more dynamic and adaptable
approach to access control than standard Role-Based Access Control (RBAC) systems. In an
RBAC system, access is allowed based on a user’s assigned responsibilities, while ABAC
considers the user’s characteristics and the request’s context. However, implementing
ABAC in microservices introduces obstacles, such as attribute management complexity,
performance cost, difficulty establishing consistent rules, lack of standardization, and
security threats related to a wrong policy setup. The extended Role-Based Access Control
model (Hierarchical Trust RBAC) for decentralized microservices was proposed in [22]. To
guarantee that none of the cross-domain queries might lead to Cross-Site Request Forgery
(CSRF) or Cross-Site Scripting (XSS) attack, the chain of trust in each service is tied to the
user. In order to guarantee the reliability of microservices, this proposal does not provide
two-factor authentication or advanced encryption technologies.

For access control, it is important to implement secure communication, which includes
not only the confidentiality of requests or the execution of requests by an authenticated
user, but also ensures that the sender of a request is indeed authenticated to make that
request; in other words, it ensures that a microservice has the right to send a particular
request to another microservice. In a microservices architecture, access control between
the user and the microservices can be realized with an internal JSON Web Token (JWT)
model [23]. Such a model ensures that each request is authorized by the internal service
that issues the tokens. In a token-based strategy, the microservices architecture generates
a token after the user has been authenticated and granted permission. The token is then
transmitted with each request to the microservices, enabling them to determine the user’s
identity and authorization level. Contrary to normal practice, such signed tokens are not
returned to the user; in other words, the token’s life cycle is equal to the request life cycle.
This security measure ensures that an unauthorised request coming from the outside is
not executed.

However, the implementation of an internal JWT token strategy can cause several
problems [4]. First of all, because of the communication rate, if a user sends a large number
of requests to an API gateway in a short period of time, the overall response time of the
system would decrease dramatically. The question then arises: Is it really necessary to issue
a new token every time? A potential solution to this problem could be token caching at the
API gateway or at the user authentication service. In the case of caching, the expiration



Sensors 2023, 23, 3363 6 of 21

date of tokens should be taken into account. Tokens that have expired or are about to expire
can be removed from caching. Secondly, if a shared secret [24] (in the case of symmetric
cryptography) or a public key [25] (in the case of asymmetric cryptography) is used to
validate a token, this needs to be distributed between systems. It is inefficient to create a
separate certificate issuer that all microservices can trust. Therefore, it would be possible to
apply the attribution during an automated deployment. However, a change of key in the
token service would require a re-installation of all microservices that validate the token,
due to the change of key value.

In decentralized microservices, this is not an easy task, as it would probably mean that
the system would not be fully accessible to the user at the time of a shared key change while
microservices access management solutions were implemented. To allow an application
system to access the resources of another system, the OAuth2 authorization protocol can be
used [26]. The study, published in [27], suggested that OAuth2 is a widely used protocol
and concluded that it helps applications manage user identities in a standardized way.
The OAuth2 protocol is sufficiently broad and flexible that the authorization scenario
can be implemented in several different ways. However, it is important to note that the
complexity of the system tends to increase the possibility of errors and, thus, the likelihood
of vulnerabilities, so it is always recommended to use the simplest possible model. There
is no exception to this for the implementation of an identity management model using
the OAuth2 protocol. Another proposed OAuth2 authorization model, in [28], presents
interconnection between OAuth2 protocol and RBAC. Each scope describes the context
that is available to the user and the functions and constraints that are applied to the user.
This provides flexibility at the application level, where the same role has different access to
the user depending on the context. The basic authorization scenario checks that the login
credentials match the data in the system. If the data match, a token is generated, which
includes the roles belonging to the user. The generated token is returned to the client. The
client can then make a request to the application to access a specific resource by adding the
previously issued access token. It is important to note the validity period of the token and
the revocation of the token. It is recommended to issue tokens with the shortest possible
expiration time to increase security.

It is important to note that interoperability with other systems is one of the purposes of
OAuth2-based access control and the evaluation of this criterion may imply a sophisticated
approach to identity management between different services. However, in the case of
internal tokens, the complexity of the security mechanism is not straightforward, as the
topological network schema has additional identity management services. It should not
be difficult to solve the compatibility problem either, as internal tokens are not directly
provided to the client, thus “hiding” the complexity of identity management.

In terms of perimeter security, in the OAuth2 model, the first request to a resource
is always authenticated, but, depending on what is done next with the request, whether
further authorization is implemented depends on the use case. In the case of internal tokens,
perimeter security is unavoidable, because service communication is precisely based on
trust in these tokens. Monitoring activities is one of the most significant features of a secure
system. In a layered microservices architecture, [29], this is relatively easy to achieve as
microservices are divided into layers where each layer serves a distinct role and provides a
different level of abstraction. In this way, all requests are authorized in one place.

On the other hand, the OAuth2 model can also be quite simple if you have a single
authorization service. The more authorization services there are, the more complex the
action log becomes. The internal token model complicates tracking because it is not clear
where to, and how, the request goes after authorization. Therefore, each service must ensure
the correct auditing of actions. The layered approach has the fastest speedup because it
validates a request only once during its lifetime. In the case of OAuth2, an authorization
service is commonly used, which must be invoked before accessing the resource, so the
client must take care of the authorization itself. For internal token instances, the speedup is
the worst, because separate authentication and authorization services are used. In addition,



Sensors 2023, 23, 3363 7 of 21

each request receives an additional internal token that is trusted by all internal services.
Issuing this token, and sending it for each subsequent request, incurs additional time costs
and reduces the overall network bandwidth, depending on the token and the amount of
information transmitted.

The main access control strategies considered in the microservices architecture are
different in their own ways. It is not possible to answer the question, “Which is the best
access control strategy?”, as each has its own pros and cons and use cases. The question
should therefore be: Which access control strategy is most appropriate in a particular
case? To answer this question, it is necessary to compare the strategies against each other
(Table 1).

Table 1. Comparison of the access control strategies.

Method Advantages Limitations

Token-based Unique tokens, flexibility Limited evaluation, no comparison with other methods
RBAC Granular control High complexity, difficult to implement
ABAC Contextual control High complexity, difficult to implement
OAuth Widely used, supports delegation Complex, may lead to security vulnerabilities
OpenID Connect Supports identity federation Complex, may lead to security vulnerabilities
JWT Portable, flexible No built-in revocation mechanism

However, the strategy of controlling access with internal tokens is probably the most
secure approach. Unlike the layered or OAuth2 models, internal tokens do not “issue” an
authorization structure to clients. Internal tokens also provide perimeter security, making
the system “borderless”. In other words, such an application system is protected against
unauthorised access attacks from an internal subnet to unprotected resources. However,
the medium token strategy is inferior to OAuth2 when it comes to integration with other
systems, as the medium token strategy does not have an agreed-upon authorization pro-
tocol, in contrast to the OAuth2 model. Internal tokens have to carefully address the
issue of bandwidth, as issuing and transmitting internal tokens with each request requires
additional time and network bandwidth costs.

3. Method for Token-Driven Access Control

The authors’ proposed method is based on an internal JWT token strategy, in which
each microservice validates a request using an additional token issued by the authorization
service specifically for the incoming request (Figure 1). The implementation of an additional
external token to be delivered to the client serves as a supplement to the token strategy used
inside. This token is utilized in the client authentication process. With a valid authentication
token, a client is able to send a request to the application system. However, before the
request can be executed, it must be authorized by appending an additional access token
containing information about the services to which the client has access. When the request
containing the internal token arrives at the service, the service must validate the token. In
addition to validating the token’s validity, the validation includes authorization for the
required services.

It should be noted that only registered users have access to the system of microservices.
When logging in, a user who has chosen to enable two-factor authentication (2FA) during
account management is required to enter a login code provided by the access control
subsystem. This is an additional way of securing against unauthorized access to the user’s
account, which is now considered standard practice. The external access token is given to
the user who is in charge of it. This token must contain the basic information required to
establish the user’s identity and, optionally, basic information that does not fully describe
the user’s privileges in the system.



Sensors 2023, 23, 3363 8 of 21

Figure 1. Concept of the JWT-driven access control in microservices.

The user sends a request to access a microservice, which is first processed by the access
control subsystem. If the microservice is open to the public and does not require autho-
rization, the request is simply routed to it. Otherwise, when authorization is required, the
access control subsystem validates the user’s external access token received at login. After
that, an internal access token is generated and attached to the user’s request, which is then
forwarded on. Other microservices use this internal token to authorize the user’s actions.

In a microservices architecture, communication interfaces play a critical role in en-
abling independent service development and deployment. In this approach, the communi-
cation between microservices is enabled through RESTful APIs. REST APIs use HTTP and
are language-agnostic. This means of the communication is employed for the following
security-focused reasons: (1) REST APIs are stateless, which means that they do not store
any session information on the server, reducing the attack surface area; (2) it allows for
granular access control to specific resources, allowing for authentication and authorization
at the resource level; (3) REST APIs can be secured through the use of encryption protocols,
such as SSL/TLS, which can help protect data in transit; and, finally, (4) it is based on
standard HTTP methods and status codes, making it easier to implement security measures
and ensure interoperability. The external communication channel is determined by the
implementation, but it could be an email system, a text messaging service, or something
else. This external channel sends a validation code to the authentication service, which
the user enters. This is an additional authentication step that aids in the prevention of
unauthorized access. Depending on the request, a response is returned to the user once it is
verified that the authentication code generated and the one provided by the user match.
This means that the response to the user differs depending on the use case. Depending
on the specific implementation, error messages are displayed to the user if an unforeseen
event occurs at any step.

Such a strategy for access control in microservices has the following advantages:

• structure of external and internal strategy of JWT tokens;
• processes of external authentication and internal authorization;
• secure boundaries of the system;
• simplified recording of actions during the access;
• management of access control rate.



Sensors 2023, 23, 3363 9 of 21

The use of internal tokens inevitably creates a distinction between the tokens for the
system’s internal applications, which are used in inter-service requests, and the external
ones, which are used by the client to send a request to the system. This token management
allows the internal token structure to be separated from the external token structure, and,
thus, hiding from the client certain internal authorization details, such as user identification
data, request waiting times, fine access details, or other variables that are only relevant to
the application system at the time of processing the request.

The use of internal tokens ensures the existence of authorization security between
the microservices. In other words, each request must be validated so that the problem of
“public access” does not create additional security risks. This is particularly convenient
when services are to be deployed in different environments on servers between which it is
difficult to ensure the security of the outer perimeter. If a malicious person breaks through
the outer perimeter, his or her access is still limited, due to the strict policy of validation
and authorization of requests.

External authentication and internal authorization ensure that the client is authenti-
cated once and that each request is authorized by one service. This means that microservices
that receive an internal request only have to validate the request itself. This reduces time
costs, as otherwise each service would have to authenticate and authorize the user separately.

Although there may be a large number of microservice applications in the system, user
authentication and authorization are only carried out at the relevant services. This means
that it is not only convenient to record the fact that a client has been identified but also the
access rights granted to him. Additionally, a unique request identifier can be added, which
exists inside the internal token. This identifier could allow linking the action log of the
authorization service with the action logs of the microservices, thus facilitating tracing not
only when users have been authenticated or authorized, but also which specific actions
have been performed by their queries.

Probably the most important shortcoming in microservice access control is speed. The
additional time cost of access control for each client request can lead to relatively high
latency times, especially if the client sends a large number of requests in a short period
of time. However, this problem can be adequately handled in the proposed approach. In
particular, it is possible not to send the whole request to the authentication service, but
only the essential part of the request related to the identity of the customer. The next step
is to split the access control service into authentication and authorization services. This
evenly distributes the load required for access control. As far as the authorization policy
is concerned, it is possible to grant a user the right to make the same request if the same
request has been successfully authorized before the appropriate time period has elapsed. It
is also possible to increase the validity of the request depending on the use case. Both the
average total processing time of a request in the application system and the typical volume
of user requests in a given time period should be considered. Thus, it is possible to increase
the speedup in these ways, but with caution, as both of these solutions have a negative
impact on the overall security of the application system.

The authorization microservice’s purpose is to generate an internal token that is
used by other system microservices later in the request’s lifetime. If the authentication
microservice’s validation of the external token issued to the user fails, the authorization
microservice must respond to the query manager with an error message. Otherwise, if the
external token is successfully validated, a message is sent, along with the generated internal
token, which contains detailed information about all of the user’s rights. It is worth noting
that it is possible to insert not only information about the user privileges obtained from the
database, but also aggregated system information that would be present in the subsequent
authorization of the request, during the creation of the internal token. For example, if a user
requests that the email microservice send emails to all users, the authorization microservice
may add a restriction to the list of privileges limiting the user to only performing a certain
number of actions within a given time period. This restriction may vary, depending on
factors such as system occupancy, time of day, and other external circumstances. Since the



Sensors 2023, 23, 3363 10 of 21

same constraint can be used in multiple resource microservices, a constraint that controls
the speed of actions must belong to the authorization microservice. As a result, such a
feature is extremely beneficial when the system performs functions that are influenced by
external factors. Adding a token to these constraints allows for a more flexible solution to
this problem.

The query manager is an important intermediary between the user and the system in
centralized access control in microservices (Figures 2 and 3).

Figure 2. UML sequence diagram of the generalized process for centralized access control in microservices.

Figure 3. Diagram of the components for centralized access control in microservices.

The query manager attaches the internal token generated during the authorization
process to the query, which is then forwarded to the appropriate microservice of the
resource. The external token issued during authentication is a simplified information
aggregate that is handed over to the user’s control. The user must send this token, with
subsequent requests, in order for the authorization microservice to be able to successfully
identify on whose behalf the request was sent. The authorization microservice creates



Sensors 2023, 23, 3363 11 of 21

an access token that contains the detailed user information necessary for the successful
execution of the request on the resource. Finally, the resource microservice authorizes the
user and, based on the internal token, executes the user request.

Such an access control approach requires three main microservices: a query manager,
authentication, and authorization. The client applies only one of them, the query manager.
If the client wants to authenticate, they contact the query manager, which forwards the
request to the authentication microservice. It issues the necessary external tokens and
returns them to the query manager, and the query manager returns them to the client. The
query manager forwards requests to other requested resources as well, but if the requests
require authorization, an additional request should be sent to the authorization microservice
for an internal access token. The request to be authorized must be authenticated, i.e.,
have a valid external access token in the header. On receipt of the response, the request
manager forwards the request with the additional authorization token further to the
business subsystem. The resource microservices autonomously validates the internal access
tokens and autonomously decides whether to authorize a client action.

In the decentralized access control method there is no query manager and each mi-
croservice authorizes each request independently (Figure 4). This means that if a single
client request generates multiple internal requests in the internal microservice subsystem,
then each microservice individually contacts the authorizing microservice and generates
an additional stream of authorizing requests. In other words, a client request is always
authorized only once in centralized authorization, whereas it is authorized several times in
decentralized authorization, depending on the number of internal requests generated.

Figure 4. Diagram of the components for the proposed decentralized access control in microservices.

The proposed access control approach uses the JWT token in the microservices archi-
tecture, which has the key advantage of statelessness. Therefore, an internal or external
token issued during the access control process remains active until it expires. It is, therefore,
very important to define the validity periods of the different tokens. The next important
aspect is the specification of the external token. Despite the fact that the external token
is essentially a single entity, it can be split into several independent parts. In the case of
JWT, the external token could consist of access and renewal tokens. The external renewal
token would be sent to the authentication microservice with the purpose of obtaining a



Sensors 2023, 23, 3363 12 of 21

new access token when the old one expires. Meanwhile, an external access token would be
sent to the system for authorization purposes.

Three JWT tokens are used in the proposed access control method: external access
(Figure 5a) and external update (Figure 5b) tokens, and an internal access token (Figure 6).
External tokens are given to the user and, therefore, have a higher chance of being damaged.
External tokens should, therefore, use longer keys and signatures. However, the internal
token should be used between microservices with a short expiry time at the system’s
perimeter, so a shorter key and signature can be used, taking into account the high-speed
performance. Therefore, the EdDSA elliptic curve algorithm can be the signature algorithm
for the JWT token, which has high speed performance [30]. The Ed448 (448 bits) and
Ed25519 (255 bits) versions of the elliptic curve signature algorithm can be used for external
tokens and internal tokens, respectively. The validity of the tokens depends on the specific
implementation, but the internal access token has the shortest validity (for the lifetime of a
single request) and the external update token the longest.

(a) External access token (b) External update token

Figure 5. Structure of external JWT tokens.

Figure 6. Structure of internal JWT token.

The JWT tokens used in the proposed access control include kid, sroles, and claims
fields, in addition to the standard iss, sub, aud, exp, iat, and jti fields [31]. The key identifier
is needed to determine which symmetric key to validate the token with. As tokens can be
issued with different keys at different points in time for the same JWT, this field ensures
that the tokens are validated with the key with which the token was issued. However, this
requires additional tracking of the key identifier. Nevertheless, this strategy allows the



Sensors 2023, 23, 3363 13 of 21

system to rotate keys (e.g., to replace a potentially compromised key) without significant
inconvenience to customers: at the same time, customers are issued tokens with the new
symmetric key, while tokens already issued are validated with the old one, until all tokens
expire. It also increases the security of the system by allowing a set of keys to be used
and rotated on a regular basis, which makes it more difficult for malicious parties to use
cryptographic analysis techniques to predict the secret key used by the server by analyzing
the token.

Access control is more flexible if a user can have multiple roles. These roles are
not required for the external update or internal access token, but are required for the
external access token. Based on the roles of the entity, the resource microservice knows
the basic capabilities of the entity and allows or denies the user to perform certain actions
in the system based on these capabilities. The authorization field is mandatory for the
internal access token as it specifies detailed authorization information related to the entity’s
capabilities in each microservice. This information may be partially provided in the external
token if the use case requires it. A field for request conditions is also distinguished, which
details the external system conditions for the request that are not directly dependent on
the user. This could be, for example, speed limits for a particular microservice, due to an
already high system load, or similar.

4. Environmental Setup for Experiments

The technology package selected to implement the access control method in the
microservices architecture is based on Microsoft tools. The Azure Service Fabric platform was
chosen to implement the method’s prototype because it provides the infrastructure required
for managing, deploying, communicating, and extending the system for microservices.
The prototype of the access control method in the microservices architecture has seven
microservices that work in a common set and form an access control mechanism that can
be used by other software developers (see Tables 2 and 3).

The authentication microservice has the dual function of connecting the user to the
system by issuing external access and update tokens. The microservice only provides
these tokens after the user has provided the correct login and password. The prototype
implementation assumes that the user’s login is his or her email address and is unique. The
authentication microservice can also update the external access token upon presentation of
an update token by the user. Thus, when the authentication microservice receives a valid
updated token, it issues new access and update tokens that allow the user to continue to
access the microservices of the resource and successfully use the application system.

Microservices communicate with each other, generating internal traffic that mirrors
the way the real system works. Each resource function is protected by an additional
authorization that verifies the internal access token sent in the HTTP request header
MicroAC-JWT. The actual microservices of the resources, their URLs, their functions, and the
necessary permissions, are defined by the system developers, who integrate the proposed
access control approach into their application system. The developers need to additionally
configure the request manager to accept requests for the various resource microservices.
The microservices themselves also need to be implemented in such a way that they accept
an internal access token and validate it with the same key that was used in the issue
procedure. Once these integration aspects have been realized, software developers are able
to make full use of the proposed microservices-based access management approach.

The query manager, authentication, authorization, and resources’ microservices pro-
vide additional request marking. This marking can be enabled or disabled by specifying the
appropriate parameter in the configuration of the microservice. The marking is performed
at the beginning and at the end of the request processing. This means that each microser-
vice marks each request at least twice, immediately on receipt and just before sending the
response. The tagging process is the addition of metadata to the MicroAC–Timestamp header
of the HTTP request. The data to be added is the date, time, name of the microservice, the



Sensors 2023, 23, 3363 14 of 21

status of the request, and the action performed. This information can be used to analyze
what specific actions were performed during the processing of the request.

Table 2. Specification of query manager, authentication, authorization of the microservices’ API function.

Microservice No. URL HTTP Method Input Function

Query manager 1 /RequestManager Any Client request Receiving, auditing, and forwarding
the internal token of a request

Authentication 2 /Authentication/Login POST Client login
and password Issuing an external access token

3 /Authentication/Refresh POST Update token Updating an external access token

Authorization 4 /Authorization POST External access
token Issuing an internal access token

Table 3. Specification of microservices’ API function.

Microservice No. URL HTTP Method Input Function

4 business microservices

5 / GET None Get the microservice
6 /{id} GET Microservice ID Get the microservice
7 / POST New microservice Create a microservice

8 /{id} PUT Existing info of
microservice

Update the microservice,
apply to microservicen

The hardware, which was used during the experimental testing of the proposed
method, had the following technical parameters:

• Windows 10 64-bit operating system;
• Intel Core i5-6600K processor with 4 cores and 3.50 GHz clock speed (6th generation,

production in 2015);
• 24 GB of RAM, type is DDR-4, and speed 1330 MHz;
• Azure Service Fabric Runtime 8.1.329 and SDK 5.1.329;
• Microsoft SQL Server 2019 (15.0.2080.9).

The experimental research aimed to evaluate the proposed access control method’s
speedup on various criteria—CPU load, RAM usage, amount of external and internal query
processing, query execution time—and to compare its implementation in centralized and
decentralized architectures of the microservices. The experimental research focused on
sending the requests from the client workstation to the workstation where the Service Fabric
cluster was deployed, together with a complete prototype of the access control method
within the microservices architecture. Both workstations were connected to the same local
network. The access control prototype also used a database that was installed on the
same workstation. The workstation also ran a hardware monitoring tool that collected
information on CPU and RAM usage and wrote this information to a file. Integration
tests were also run before each speed test to ensure that the cluster had been installed
successfully and that the application system was ready for the speed tests. The cluster had
5 nodes, and one microservice replica was installed on each node. This meant that the
workstation was running 35 separate prototype microservice processes (7 microservices on
5 nodes) simultaneously.

Speedup testing verified the performance of the prototype using centralized and
decentralized modes of operation, together with optimized and non-optimized commu-
nication. For optimized communication, a mechanism was developed that uses Service
Fabric libraries to compile, cache, and use the addresses of all microservices in the microser-
vices’ cluster during all tests. This avoided the need to contact the Reverse Proxy server of
Service Fabric for each request; thus, reducing the overall request traffic in the cluster and
saving resources of the workstation. However, each microservice used a specially designed
software class integrated into the microservice. This was suitable for parallel execution



Sensors 2023, 23, 3363 15 of 21

of requests and eliminated the need to use an additional element in the cluster, which
overloads the network.

The experimental tests included a total of 12 speedup tests consisting of 4 modes with
3 different loads. One speedup test was programmed to execute a specified number of
threads that continuously sent requests to existing microservice API functions. The tests
used a constant number of threads, which depended on the load:

• the low load carried 1 thread;
• the average load carried 3 threads;
• the high load carried 6 threads.

The number of threads for each load was selected according to the results of the
intermediate experiments, which showed that 6 threads were the maximum load that could
be handled by the method’s prototype implemented on the workstation. A thread can be
interpreted as a client that sends requests sequentially without interruption and waits for
a response. This strategy generates a linear load on the application system, so this test
simulated a steady stream of requests from customers. The duration of the chosen test
was 20 min. In the intermediate experiments, it was observed that this was a sufficient
time period to detect anomalies and ensure consistent results. Thus, the total minimum
duration of the experimental testing to collect data was 312 min, or 5 h and 12 min (12 tests
of 26 min each).

After each query was executed, the header tags generated by each microservice that
contributed to the processing of the query were collected. The essential information in the
tags is the name of the microservice, the node number to which the microservice belongs,
and the start and end times of the processing of the request in the microservice. After
20 min, when all requests had been processed, a tag analysis algorithm was executed, which
was individually programmed to investigate the speedup of the method’s prototype.

5. Results

CPU usage indicates (Figure 7) that the centralized mode used fewer CPU resources
than the decentralized mode. At low load, the centralized mode was almost twice as
efficient as the decentralized mode. For medium and high loads, the average difference
between centralized and decentralized modes was 5% of the processor load. It could also be
observed that, for both medium and high loads, the non-optimized mode used, on average,
6% less CPU resources.

However, given that the non-optimized communication consumed more RAM (Figure 8)
and processed fewer requests at a slower rate, it could be assumed that the lower CPU
usage did not mean a more efficient communication model, but rather that the reverse
proxy waited longer for queries to be answered by the internal microservices, and, thus,
made inefficient use of the CPU resources.

Looking into the processing of the queries (Figure 9), the centralized authorization
mode used the query manager microservice, while the decentralized mode did not. The
centralized mode compensated for this difference with fewer requests to the authorization
microservice. However, the increased number of authorization requests in the decentralized
mode meant not only a higher consumption of workstation resources, but it also enhanced
security in request management. Unlike the query manager, the authorization microservice
additionally accessed the database and searched for data related to user roles and permis-
sions. During high load, the authorization microservice processed almost 100,000 more
requests in decentralized mode than in centralized mode, which represented almost 40% of
all internal requests in the mode.

In the optimized decentralized mode, the authorization microservice received, on
average, 60% more requests than the centrally managed one.

The first two criteria, CPU and memory usage, describe hardware usage. It is also
important to consider the use of physical resources to assess the effectiveness of a method.
Figure 10 shows the weighting factors for each of the criteria.



Sensors 2023, 23, 3363 16 of 21

Figure 7. Usage of CPU.

Figure 8. Usage of RAM.



Sensors 2023, 23, 3363 17 of 21

Figure 9. Processing of requests.

Figure 10. Weighting factors.

The criteria and their qualitative indicators were normalized into values and multiplied
by a weighting factor. The first normalization formula for each criterion can, therefore, be
expressed as xnorm:

xnorm = (1 − xi − min(x)
max(x)− min(x)

) · k (1)

The normalized values with weighting factors were then summed to give an overall
estimate of the test variation with the formula:

s =
5

∑
xnorm

(2)

The final normalization formula for each criterion can, therefore, be expressed as vnorm:

vnorm = 10
si − min(s)

max(s)− min(s)
, (3)



Sensors 2023, 23, 3363 18 of 21

After applying the formulae (Equations (1)–(3)) to the experimental results obtained,
it was found that the proposed access control method was, on average, the most efficient
with low (score of 8.27 in the scale from 0 to 10) and medium (score of 6.94) loads, but its
higher security was realized in a decentralized microservices architecture (score of 7.77).
Decentralized access control can enhance security in access control of microservices by
distributing the access control responsibility across multiple microservices. This reduces
the risk of a single point of failure or attack, as well as minimizes the impact of a breach
or compromise of one microservice on the rest of the system. External authentication in
decentralized microservices refers to the use of external JWT tokens in order to authen-
ticate users before they can access the microservices. This approach ensures that only
authorized users can access the system and helps to prevent unauthorized access. Internal
authorization in decentralized microservices refers to the use of separate microservices
or components to manage access control for different parts of the system. This approach
allows for fine-grained access control, where permissions are granted based on user roles
and responsibilities [32]. By separating authorization from the main microservices, the risk
of unauthorized access to sensitive information or functionality is reduced. In comparison
to centralized access control, where all access control responsibilities are handled by a
single component, decentralized access control provides a more distributed and secure
approach to access control. A centralized approach is more vulnerable to attacks and may
create a single point of failure for the entire system. With decentralized access control,
each microservice handles its own access control responsibilities, reducing the impact of a
breach or failure in one component on the entire system. Generally, decentralized access
control with external authentication and internal authorization provides a more secure and
scalable approach to access control in microservices.

6. Discussion

The microservices architecture access method typically uses stateless tokens to provide
centralized access control to authentication and authorization services. These tokens
are issued by the authentication and authorization services and are trusted by resource
microservices. This allows for easy management of permissions between microservices and
ensures that users have the necessary permissions to perform specific actions. The access
control strategy is based on user right templates that define sets of rights with permissions
to perform specific actions. By using a model of minimum privileges, the system is more
secure, and access management can be more flexible for users.

One advantage of microservices architecture is its ability to scale horizontally by
adding more microservices to the system. This means that the microservices can be de-
veloped and deployed independently, allowing for greater flexibility and scalability in
the system. The microservices architecture solves several problems, but one of the main
problems it addresses is the monolithic architecture’s limitations in terms of scalability,
flexibility, and agility. In a decentralized microservices architecture, the processing of
internal authorization is typically more secure than in a central authorization system. This
is because each microservice is responsible for its own security and authentication, rather
than relying on a central authority. This can help to prevent unauthorized access to sensitive
data, as each service is able to verify the validity of incoming requests before processing
them. The use of JWT tokens for access control in microservices architectures can be related
to both technical and organizational aspects of security.

From a technical perspective, the use of JWT tokens can help to provide a secure and
efficient way of managing authentication and authorization across different microservices.
By using JWT tokens, it is possible to ensure that only authorized clients are able to access
the microservices, and that each microservice is able to verify the validity of incoming
requests. This approach to security can help to prevent unauthorized access to sensitive data
and resources, and can also help to reduce the risk of attacks, such as cross-site scripting
(XSS) and SQL injection. From an organizational perspective, the use of JWT tokens can
help to promote a culture of security within an organization. By implementing robust



Sensors 2023, 23, 3363 19 of 21

security measures, such as JWT tokens, an organization can demonstrate its commitment
to protecting its assets and sensitive data. This can help to build trust with customers and
stakeholders, and can also help to attract and retain top talent in the industry.

Every research study has limitations as well. The paper focused on a limited set of
microservices applications, and the proposed token-based access control method does
not generalize well to other types of applications or contexts. Therefore, the findings of
this study necessitate further research to evaluate the method’s effectiveness in different
application domains. While the researchers conducted 12 speed-up tests to evaluate
the proposed method’s performance, these tests did not consider the impact of different
network topologies, or the effects of latency, on the method’s performance. Therefore,
additional testing and evaluation may be necessary to fully assess the effectiveness of
the proposed method. Token-based access control is only one aspect of microservices
security, and there are additional security risks that the suggested method might not
be able to address, like SQL injection attacks or cross-site scripting attacks. Therefore,
while the proposed method may enhance security in some respects, it may not provide a
comprehensive solution to all security threats.

In conclusion, the proposed token-based access control method could improve the
security of microservices, but there are a few things to keep in mind when judging how well
it works and how well it fits needs. Future research could address some of these limitations
and further refine the proposed method.

7. Conclusions

With a monolithic architecture, all the application’s functionality is built into a single
database, making it challenging to scale and maintain as the application grows. Microser-
vices architecture, on the other hand, breaks down the application into small, independent
services, each responsible for a specific task or function. This makes it easier to scale and
maintain the system, as individual microservices can be updated and deployed indepen-
dently of each other. This article suggests a way to control access that gives the client
a simple authentication token and gives internal microservices an authorization token.
By making changes to external and internal access tokens, you can hide details about
authorization that may be different for each client. The use of JWT tokens can also promote
collaboration and communication between different teams within an organization. By
using a common approach to access control across different microservices, teams can work
together more effectively and efficiently. This can help to reduce the risk of errors and
vulnerabilities in the system, and can also help to improve the overall quality and security
of the system. By implementing robust security measures, such as JWT tokens, organiza-
tions can improve their security posture, build trust with customers and stakeholders, and
promote collaboration and communication between different teams. Moreover, the use of
stateless tokens for centralized access control to authentication and authorization services
makes it easier to manage permissions between microservices and ensures that users have
the necessary permissions to perform specific actions, making the system more secure. In
conclusion, the use of JWT tokens for access control in microservices architectures can be
related to both technical and organizational aspects of security.

After looking at, and adding up, all of the criteria, such as the use of hardware
resources, the number of requests processed, and the lengths of those requests, the proposed
centralized access control mode is twice as efficient as the decentralized one. When only
the optimized modes are taken into account, however, the difference in how well the
centralized mode works grows seven times. The average difference in processor load
between centralized and decentralized modes for medium and high loads was 5%. It was
also observed that the non-optimized mode utilized, on average, 6% fewer CPU resources
under medium and high loads.

Going further, the 12 tests that were performed showed how well the proposed token-
based access control method worked. Regarding the latest applications influencing security
issues, more recent and diverse applications were considered in the research in order



Sensors 2023, 23, 3363 20 of 21

to provide a more comprehensive evaluation of the proposed approach. Additionally,
including challenges specific to these latest applications added more context to the research
and provided insights into the current state of microservices security. However, expanding
the number of tests, or including more recent and diverse applications, could be a direction
for future research.

Author Contributions: Conceptualization, A.V. and D.K.; methodology, D.K.; software, D.K. and Š.G.;
validation, D.K., Š.G. and R.B.; formal analysis, R.B. and Š.G.; investigation, D.K. and A.V.; resources,
D.K. and Š.G.; data curation, Š.G., R.B., D.K.; writing—original draft preparation, R.B. and Š.G.;
writing—review and editing, A.V.; visualization, Š.G.; supervision, A.V.; project administration, A.V.;
funding acquisition, A.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available on request from the
corresponding author. The data are not publicly available due to the project not being completed.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Salah, T.; Zemerly, M.J.; Yeun, C.Y.; Al-Qutayri, M.; Al-Hammadi, Y. The evolution of distributed systems towards microservices

architecture. In Proceedings of the 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST),
Barcelona, Spain, 5–7 December 2016; pp. 318–325.

2. Li, S.; Zhang, H.; Jia, Z.; Zhong, C.; Zhang, C.; Shan, Z.; Shen, J.; Babar, M.A. Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review. Inf. Softw. Technol. 2021, 131, 106449. [CrossRef]

3. Waseem, M.; Liang, P.; Shahin, M. A systematic mapping study on microservices architecture in devops. J. Syst. Softw. 2020,
170, 110798. [CrossRef]

4. Yarygina, T.; Bagge, A.H. Overcoming security challenges in microservice architectures. In Proceedings of the 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE), Bamberg, Germany, 26–29 March 2018; pp. 11–20.

5. Nguyen, Q.; Baker, O.F. Applying Spring Security Framework and OAuth2 To Protect Microservice Architecture API. J. Softw.
2019, 14, 257–264. [CrossRef]

6. de Almeida, M.G.; Canedo, E.D. Authentication and authorization in microservices architecture: A systematic literature review.
Appl. Sci. 2022, 12, 3023. [CrossRef]

7. Stocker, M.; Zimmermann, O.; Zdun, U.; Lübke, D.; Pautasso, C. Interface Quality Patterns: Communicating and Improving the
Quality of Microservices APIs. In Proceedings of the 23rd European Conference on Pattern Languages of Programs, EuroPLoP
’18, Irsee, Germany, 4–8 July 2018 ; ACM: New York, NY, USA, 2018; pp. 1–16. [CrossRef]

8. He, X.; Yang, X. Authentication and authorization of end user in microservice architecture. J. Physics: Conf. Ser. 2017, 910, 012060.
[CrossRef]

9. Yang, Y.; Zu, Q.; Liu, P.; Ouyang, D.; Li, X. MicroShare: Privacy-preserved medical resource sharing through microservice
architecture. Int. J. Biol. Sci. 2018, 14, 907. [CrossRef] [PubMed]

10. Cerny, T.; Donahoo, M.J.; Trnka, M. Contextual understanding of microservice architecture: current and future directions. ACM
SIGAPP Appl. Comput. Rev. 2018, 17, 29–45. [CrossRef]

11. Gopal, H.; Song, G.; Zhu, T. Security, Privacy and Challenges in Microservices Architecture and Cloud Computing-Survey. arXiv
2022, arXiv:2212.14422.

12. Mateus-Coelho, N.; Cruz-Cunha, M.; Ferreira, L.G. Security in Microservices Architectures. Procedia Comput. Sci. 2021, 181,
1225–1236. [CrossRef]

13. Alsinglawi, B.; Zheng, L.; Kabir, M.A.; Islam, M.Z.; Swain, D.; Swain, W. Internet of Things and Microservices in Supply Chain:
Cybersecurity Challenges, and Research Opportunities. In Advanced Information Networking and Applications, Proceedings of the
36th International Conference on Advanced Information Networking and Applications (AINA-2022), Volume 3, Sydney, NSW, Australia,
13–15 April 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 556–566.

14. Barabanov, A.; Makrushin, D. Authentication and authorization in microservice-based systems: survey of architecture patterns.
arXiv 2020, arXiv:2009.02114.

15. Rudrabhatla, C.K. Security Design Patterns in Distributed Microservice Architecture. arXiv 2020, arXiv:2008.03395.

http://doi.org/10.1016/j.infsof.2020.106449
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.17706/jsw.14.6.257-264
http://dx.doi.org/10.3390/app12063023
http://dx.doi.org/10.1145/3282308.3282319
http://dx.doi.org/10.1088/1742-6596/910/1/012060
http://dx.doi.org/10.7150/ijbs.24617
http://www.ncbi.nlm.nih.gov/pubmed/29989095
http://dx.doi.org/10.1145/3183628.3183631
http://dx.doi.org/10.1016/j.procs.2021.01.320


Sensors 2023, 23, 3363 21 of 21

16. Ponce, F.; Márquez, G.; Astudillo, H. Migrating from monolithic architecture to microservices: A Rapid Review. In Proceedings
of the 2019 38th International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile, 4–9 November
2019; pp. 1–7.

17. De Lauretis, L. From monolithic architecture to microservices architecture. In Proceedings of the 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27–30 October 2019; pp. 93–96.

18. Chandramouli, R. Microservices-based application systems. NIST Spec. Publ. 2019, 800, 800–204.
19. da Silva, D.; Costa, J.; Assunção, B.; Kuprych, V.; Teixeira, C. Microservice-based middleware for collaborative supply chain

tracing. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain,
24–27 June 2020; pp. 1–6.

20. Fernando, C. Building Enterprise Software Systems with Microservice Architecture. In Solution Architecture Patterns for Enterprise:
A Guide to Building Enterprise Software Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 63–108.

21. Singh, A.; Raj, V.; Ravichandra, S. Integration of Attribute-Based Access Control in Microservices Architecture. In ICT Systems
and Sustainability: Proceedings of ICT4SD 2021, Volume 1, Goa, India, 5–6 August 2021; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 681–690.

22. Pasomsup, C.; Limpiyakorn, Y. HT-RBAC: A Design of Role-based Access Control Model for Microservice Security Manager. In
Proceedings of the 2021 International Conference on Big Data Engineering and Education (BDEE), Guiyang, China, 12–14 August
2021; pp. 177–181. [CrossRef]

23. ShuLin, Y.; JiePing, H. Research on unified authentication and authorization in microservice architecture. In Proceedings
of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020;
pp. 1169–1173.

24. Jander, K.; Braubach, L.; Pokahr, A. Defense-in-depth and role authentication for microservice systems. Procedia Comput. Sci.
2018, 130, 456–463. [CrossRef]

25. Xu, R.; Jin, W.; Kim, D. Microservice security agent based on API gateway in edge computing. Sensors 2019, 19, 4905. [CrossRef]
[PubMed]

26. Chatterjee, A.; Prinz, A. Applying Spring Security Framework with KeyCloak-Based OAuth2 to Protect Microservice Architecture
APIs: A Case Study. Sensors 2022, 22, 1703. [CrossRef] [PubMed]

27. Pereira-Vale, A.; Marquez, G.; Astudillo, H.; Fernandez, E.B. Security Mechanisms Used in Microservices-Based Systems:
A Systematic Mapping. In Proceedings of the 2019 XLV Latin American Computing Conference (CLEI), Panama, Panama,
30 September–4 October 2019; pp. 1–10. [CrossRef]

28. Triartono, Z.; Negara, R.M.; Sussi. Implementation of Role-Based Access Control on OAuth 2.0 as Authentication and Autho-
rization System. In Proceedings of the 2019 6th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), Bandung, Indonesia, 18–20 September 2019; pp. 259–263. [CrossRef]

29. Gu, L.; Zeng, D.; Hu, J.; Jin, H.; Guo, S.; Zomaya, A.Y. Exploring layered container structure for cost efficient microservice
deployment. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC,
Canada, 10–13 May 2021; pp. 1–9.

30. Liusvaara, I. CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and Encryption (JOSE); Technical
Report; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2017.

31. Jones, M.; Bradley, J.; Sakimura, N. Rfc 7519: Json Web Token (JWT); Technical Report; Internet Engineering Task Force (IETF), NRI:
Wilmington, DE, USA, 2015.

32. Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A. Fine-grained access control for microservices. In Foundations and Practice of
Security, Proceedings of the 11th International Symposium, FPS 2018, Montreal, QC, Canada, 13–15 November 2018; Revised Selected
Papers 11; Springer: Berlin/Heidelberg, Germany, 2019; pp. 285–300.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/BDEE52938.2021.00038
http://dx.doi.org/10.1016/j.procs.2018.04.047
http://dx.doi.org/10.3390/s19224905
http://www.ncbi.nlm.nih.gov/pubmed/31717617
http://dx.doi.org/10.3390/s22051703
http://www.ncbi.nlm.nih.gov/pubmed/35270850
http://dx.doi.org/10.1109/CLEI47609.2019.235060
http://dx.doi.org/10.23919/EECSI48112.2019.8977061

	Introduction
	Related Works on Access Control in Microservices
	Method for Token-Driven Access Control
	Environmental Setup for Experiments
	Results
	Discussion
	Conclusions
	References

