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Abstract: Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and
unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing,
posing a significant threat to people’s lives and property. The effectiveness of traditional photoelectric-
or ionization-based detectors is inhibited when detecting fire smoke due to the variable shape,
characteristics, and scale of the detected objects and the small size of the fire source in the early
stages. Additionally, the uneven distribution of fire and smoke and the complexity and variety of the
surroundings in which they occur contribute to inconspicuous pixel-level-based feature information,
making identification difficult. We propose a real-time fire smoke detection algorithm based on
multi-scale feature information and an attention mechanism. Firstly, the feature information layers
extracted from the network are fused into a radial connection to enhance the semantic and location
information of the features. Secondly, to address the challenge of recognizing harsh fire sources, we
designed a permutation self-attention mechanism to concentrate on features in channel and spatial
directions to gather contextual information as accurately as possible. Thirdly, we constructed a new
feature extraction module to increase the detection efficiency of the network while retaining feature
information. Finally, we propose a cross-grid sample matching approach and a weighted decay loss
function to handle the issue of imbalanced samples. Our model achieves the best detection results
compared to standard detection methods using a handcrafted fire smoke detection dataset, with
APval reaching 62.5%, APval

S reaching 58.5%, and FPS reaching 113.6.

Keywords: fire smoke detection; multi-scale feature; attention mechanism; radial connection; cross-
grid matching strategy; weighted decay

1. Introduction

In modern society, fire poses significant threats to human life and health, economic
development, and environmental protection [1,2]. Early detection of fires is of the utmost
importance since the damage caused by fires tends to grow exponentially over time [3].
Smoke often appears before and accompanies a fire, and enhancing the detection of smoke
by detectors can effectively prevent the spread of fire. However, the shape, characteristics,
and scale of flames and smoke are not constant, and the environment of scenes where fires
may occur is exceedingly complex. This greatly inhibits the detection effect of photoelectric
or ionization-based detectors. Moreover, these detectors can only detect the presence of
fire and smoke, but they cannot provide information about the location and size of the fire
source. Furthermore, they are unsuitable for outdoor scenes. As a result, the accurate and
timely detection of the generation and location of flames and smoke in natural scenes is
crucial to safeguard people’s lives, property, and the social and ecological environment.
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The existing methods for fire smoke detection can be broadly categorized into two
main approaches: traditional methods that involve the manual design of image feature in-
formation and deep learning methods that automatically extract image features. Traditional
methods typically rely on underlying image features such as morphology, colour, and tex-
ture. For example, a robust accelerated feature that reflects texture characteristics [4], shape
context that represents contour shape [5–8], sparse coding based on visual feature construc-
tion [9,10], background contrast object detection dependent on optical flow difference and
wavelet variation [11–19], and Gabor filters for extracting object edge features for texture
analysis [20–22]. While manually designed feature-based algorithms can detect fires to a
certain extent, they are often hardware- and environment-intensive. They may fail when
the lighting changes too quickly, be unable to detect overlapping targets between adjacent
frames, lack awareness of dynamic changes in the external background environment, and
require significant computational resources, making real-time detection challenging.

Deep learning-based methods for detecting fire smoke have utilized neural networks
and loss functions for training on large datasets. With the help of convolutional neural
networks (CNNs), features can be automatically extracted, leading to continuous improve-
ments in object detection accuracy. Typically, deep learning algorithms for fire smoke
detection divide the input image into multiple regions and determine if those regions
contain the target to be detected. They then adjust the region boundary to more accurately
predict the true bounding box of the target. Two primary detection methodologies are
anchor-based and anchor-free [23]. The former generates multiple candidate anchors of
different sizes and proportions at the same pixel point, each responsible for detecting
objects whose intersection ratio is greater than a specified threshold. The latter locates the
key point or centre of the object directly without clustering multiple anchor templates with
different aspect ratios on the current training data before training. Deep learning-based
fire smoke detection algorithms, such as those proposed in recent studies [24–32], not
only improve detection accuracy but also speed up the detection process, making them
suitable for real-life applications. Deep learning-based methods improve the accuracy
of fire smoke detection by avoiding the limitations caused by manual feature design in
traditional methods. Furthermore, they can automatically learn feature information from
large datasets, resulting in highly robust detection systems. Although deep learning-based
methods have greatly improved object detection accuracy, they heavily rely on a large
amount of training data to ensure accurate real-time detection. In real-world scenarios,
beyond detecting fire and smoke in typical environments, a significant amount of detection
work needs to be conducted in harsh environments such as fog, rain, and those with bright
illumination, all of which can increase the false detection rate of the detector.

In this paper, we propose a real-time fire smoke detection algorithm based on multi-
scale feature information and an attention mechanism, which can effectively solve its scale
variation and the problem of difficult feature extraction. The main contributions of this
paper are as follows:

1. We constructed a dataset containing hundreds of real-life scenarios featuring fire
smoke. To mitigate the impact of environmental factors, we also included negative
samples, such as sun, clouds, smoke, and lighting, among others.

2. We propose improved structures and strategies specifically designed for detecting fire
smoke characteristics. Our improved structures include CDPB, RC FPN-PAN, and
PSA, which aim to enhance the model’s feature extraction capabilities. In addition, we
have developed a cross-grid matching strategy and a weighted decay loss function to
address the unbalanced matching of positive and negative samples that often causes
problematic convergence of the loss function.

3. We conducted sufficient experiments to verify a number of possibilities that could
affect the results of fire smoke detection.
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2. Related Works
2.1. Multi-Scale Feature

Object detection is a challenging task because of the inherent variability in the shapes,
features, and scales that need to be detected. Some objects may be extremely small or
large or have non-standard shapes. CNNs are often used to construct high-level networks
that capture rich semantic information. However, they may have low-resolution feature
maps and weak geometric details. On the other hand, low-level networks can have high
resolution and abundant geometric information but limited semantic information and small
receptive fields. To address the multi-scale detection problem, a common approach is to
predict small objects on high-resolution feature maps and large objects on low-resolution
feature maps, leveraging high-level semantic information to improve accuracy. Multi-scale
features can be generated using image or feature pyramid structures, as illustrated in
Figure 1. The key idea is to use these multi-scale features to detect objects of different scales.

2.1.1. Image Pyramid Structure

The image pyramid structure enables an image to be interpreted at multiple resolutions
by scaling the image to different resolutions for multi-scale pixel sampling. During feature
extraction in a CNN, feature maps of various sizes can focus on distinct regions of the
picture because the size of the CNN receptive field is fixed. The receptive field correspond-
ing to the high-resolution feature map is closer to small objects, making high-resolution
images more suitable for detecting small objects. Similarly, low-resolution images are more
suitable for detecting large objects. Image pyramids can effectively address the problem of
scale variation of targets and improve object detection performance. However, the com-
putational overhead associated with image pyramids is substantial. Each input image of
different resolutions must pass through the same CNN, resulting in significant redundant
computation. Using larger batch sizes for training is challenging, which can impact model
accuracy. Furthermore, inference time increases exponentially, raising the threshold for
practical algorithm implementation.

(a) Image pyramid structure (b) Feature pyramid structure

Figure 1. Two types of pyramid structures commonly used in tasks involving the detection of objects
in realistic scenes.

2.1.2. Feature Pyramid Structure

While CNNs are effective for many image recognition tasks, they struggle with object-
scale transformations due to their translation invariance. Moreover, the rich semantic
information captured by high-level networks during multi-layer feature extraction and
compression can result in the loss of small-scale details. To address the computational
redundancy of image pyramid extraction, T. Lin et al. proposed a feature pyramid using
convolution 1 × 1 and summing the results with top-down connections that have been
upsampled [33]. The top-down part generates coarse-grained features, and the bottom-up
adds fine-grained features through lateral concatenation. By inputting a single-resolution
image, feature maps of different resolutions are obtained. Strong semantic information
at low resolution and weak semantic information but rich spatial information at high
resolution are fused with a small additional computation. The standard methods for
obtaining multi-scale feature maps of images are multi-scale feature [34,35], multi-scale
feature fusion with single-scale feature prediction [36–38], and multi-scale feature fusion
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with multi-scale feature prediction [33,39–43]. The main idea is to gradually aggregate
adjacent layers from deep to shallow and use the multi-scale features generated by this
process for predictions.

2.2. Attention Mechanisms

The attention mechanism learns a set of weighting coefficients from the network and
dynamically applies them to highlight regions of interest while suppressing others. In
computer vision, attention mechanisms can be classified into two main categories: hard
attention mechanisms and soft attention mechanisms [44]. The hard attention mechanism is
a stochastic prediction, where every point in the image has the potential to extend attention
and emphasize dynamic changes. However, its application is limited due to its non-
differentiable nature. In contrast, the soft attention mechanism is differentiable everywhere
and can be obtained through gradient backpropagation training of neural networks, making
it more widely used. Soft attention mechanisms can be further categorized into three types
based on their dimensions: channel attention, spatial attention, and self-attention, as
illustrated in Figure 2.

(a) SE (b) ECA (c) CBAM (d) A2-Nets (e) DA

(f) GC

Figure 2. This diagram illustrates the framework of a model for three main forms of soft attention
processes. Sub-figures (a,b) represent channel attention, (c,d) represent spatial attention, while
(e,f) represent self-attention.

2.2.1. Channel Attention

Channel attention is a technique that aims to capture relationships between distinct
feature maps, learn the importance of each feature channel through network training,
and assign different weights to each channel. One popular module for channel attention
is the squeeze-and-excitation (SE) module proposed by J. Hu et al., which adaptively
re-weighs feature responses across channels [45]. Another module, called the efficient
channel attention (ECA), was introduced by Q. Wang et al. [46]. The ECA module uses
one-dimensional sparse convolution operations to optimize the fully connected layers used
in the SE module. This results in a significant reduction in the number of parameters while
maintaining comparable detection performance. In contrast to the SE module, the ECA
module simplifies the interaction between channels by allowing each current channel to
only interact with its k surrounding channels. The SE module, on the other hand, uses two



Sensors 2023, 23, 3358 5 of 22

multi-layer perceptrons to learn the correlation between different channels, forming an
intensive connection between feature maps. Both modules aim to compress the number
of parameters and improve computational efficiency, with the SE module adopting a
dimension reduction strategy first and then a dimension increase.

2.2.2. Spatial Attention

Spatial attention aims to enhance the representation of crucial regions in the feature
maps. It achieves this by transforming the spatial information in the original image into
another space, generating a weight mask for each position, and weighing the output
to enhance specific regions of interest while suppressing other irrelevant background
regions. The convolutional block attention module (CBAM) structure, proposed by S.
Woo et al., combines channel and spatial attention. It connects a spatial attention module
(SAM) to the original channel attention block, allowing for feature aggregation along both
dimensions [47]. SAM is based on the global average pooling (GAP) and global maximum
pooling (GMP) operations, which provide two feature maps reflecting different information
to act back on the original input feature map, thus allowing for the enhancement of the
target region. Another method for spatial attention is A2-Nets, proposed by Y. Chen et al.,
which aggregates essential attributes from the entire space into a compact collection and
then adaptively distributes them to each location [48].

2.2.3. Self-Attention

Self-attention is a unique form of attention that aims to reduce dependence on external
information and maximize the utilization of inherent feature information for attentional
interaction. Typically, self-attention is achieved by mapping the original feature map into
three vectors: the query matrix, the key matrix, and the value matrix. Firstly, the relevance
weight matrices of the query and key matrices are calculated. Secondly, the weight matrices
are normalized. Finally, the weight coefficients are combined with the value matrices
to model global contextual information [49]. X. Wang et al. applied self-attention to
computer vision and proposed the non-local (NL) module, which captures long-range
feature dependencies by modelling global context through a self-attention mechanism [50].
The dual attention (DA) module, proposed by J. Fu et al., integrates both the channel
attention module and the spatial attention module, using channel features and spatial pixel
points as query conditions for context, respectively, to adaptively combine local features
and global dependencies [51]. Y. Cao et al. proposed the global context (GC) module,
which combines SE and a simplified spatial attention module to replace the original spatial
downsample process and reduce the computational effort of compressing feature maps
based on global pixel points using 1 × 1 convolution [52].

3. The Proposed Method
3.1. Overview

We propose an efficient detection method based on deep learning to address the scale
variation of fire and smoke. Considering the real-time nature and high transparency of
fire smoke, our method is primarily based on the latest YOLOv7 model structure [53]. It
combines an attention mechanism, a re-parameterization convolutional structure, and a
simplified ConvNeXt module [54], as shown in Figure 3. The model consists of several key
modules: CBS, ELAN, SPPCSCP, PSA, and REP. The CBS module includes a convolutional
layer, BN layer, and SiLU activation function. The ELAN module is composed of nine CBS
and consists of two branches, one of which passes through six more CBS with a two CBS
overlap between each. Finally, the two branches are spliced, and the output size is adjusted
through CBS. The SPPCSCP module comprises a CBS and a pooling layer, which extends
the perceptual field and allows the model to adapt to images of different resolution. The
permutation self-attention mechanism (PSA) aims to obtain contextual information about
all the pixels in its cross path. Through further recursive operations, each pixel can finally
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capture the dependency of the entire image. By incorporating these improvements, we
significantly enhance the model’s fire and smoke detection efficiency.

Figure 3. The structure of the improved fire smoke detection model based on YOLOv7-X.

3.2. FPN-PAN Structure with Radial Connection

During the initial fire, the visual source was so small that it occupied only a few pixels
in the image. The feature fusion network was enhanced by incorporating lower-level
feature information through weight adjustments and cross-layer connections to capture
more information about this tiny object. Additionally, the network structure parameters
were fine-tuned to improve the feature fusion. In the YOLOv7 model, the neck component
utilizes an FPN-PAN structure, which adds a bottom-up route to the FPN, while the FPN
layer provides top-down semantic features, the PAN conveys bottom-up positional features,
enabling the deeper features to leverage location information at the bottom [55]. However,
in this structure, all feature information is given equal weight, even though each information
contributes differently to the final output. As a result, the model treats the background
information of the image with the same attention as the foreground information, which
lowers its generalization performance.

To address the challenges mentioned above, we have modified the feature extraction
phase of the backbone network. Specifically, we have added the weights of the FPN-PAN to
the feature values of the early layers. This modification, illustrated in Figure 4, facilitates the
integration of features from three distinct scales into the same scale. By directly leveraging
multi-scale information, this approach helps prevent unnecessary information loss. The
revised network topology involves two key steps. First, layers P3 to P5 are added to C4
to C6 through an upsample, or top-down summation, after the preceding convolution
process. Second, layers P5 to P3 are added to the former through the PAN structure, or
bottom-up summation operation, to create the FPN-PAN structure. The outputs of the
initial layers C3 to C6 and the FPN are then added layer by layer through shortcut branches
to the input of the PAN structure, as shown by the dashed line in Figure 4. Finally, the
output feature channels are transformed into corresponding dimensional values using a
1 × 1 convolutional layer.

The P3, P4, P5, and P6 feature layers are generated through deep convolutional
procedures, and they decrease in size as the number of channels increases. The low-
resolution feature layer typically represents the semantic features of an object, whereas
the high-resolution feature layer represents its contour features. As a result, information
pertaining to small targets is usually found in the high-resolution feature layer. In this
paper, we augment the network neck with the high-resolution P3 feature layer, which
increases the number of detection heads in the original model from three to four.
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Figure 4. Radially connected FPN-PAN structure (RC FPN-PAN) operating by stitching the feature
information from the initial layer to the final prediction layer through the residual structure of the
dashed line.

3.3. CDPB Structure

Feature extraction networks play a crucial role in improving models’ detection ef-
ficiency and accuracy. CNNs have gained widespread attention and carried out many
pioneering works in the field of computer vision under their ability to accurately cap-
ture high-level semantic information. However, with the continuous development of the
Transformer model, which has the advantages of scalable behaviour and multi-headed
attention mechanisms, it has gradually replaced CNNs in terms of function and is widely
used in computer vision downstream tasks, such as image classification, object detection,
and semantic segmentation. However, the use of attention mechanisms leads to an abrupt
increase in model complexity. The visual transformer (ViT) model generates a single low-
resolution feature map with a computational complexity that is quadratic to the input
image size [56]. The shifted windows transformer (SwinT) model, on the other hand, solves
this problem using a hierarchical structure similar to that used in CNN and local attention
to achieve a computational complexity linearly related to the size of the input image, in-
directly demonstrating the importance of CNN in feature extraction [57]. Therefore, the
ConvNeXt module is built on a normalized convolutional structure, as shown in Figure 5,
borrowing the structure and training model of the Transformer model in order to obtain
high accuracy and scalability.

Figure 5. Diagram illustrating the CDPB module’s structure, utilizing DWConv and PWConv
structures in place of the original convolutional layers (We have chosen kernel_size equal to three,
and the CDPB is about one-ninth the computational effort of full convolution).

Detection efficiency is crucial, as fire smoke detection is typically utilized in particularly
complicated environmental contexts. Therefore, we propose a new feature extraction
structure based on the ConvNeXt block using DWConv and PWConv instead of the
traditional full convolution module, called the CDPB, as illustrated in Figure 5. The
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two 1 × 1 convolutional layers of the ConvNeXt module are replaced with a PWConv
structure to lower the computational complexity while guaranteeing the model’s accuracy.
The structure primarily comprises three 1 × 1 convolutional layers, two PWConv layers,
and one DWConv layer. For the input feature, firstly, it passes through two separate
convolutional layers, one of which does not change the original channel structure, and the
other performs a scaling operation in the depth direction; Secondly, the DWConv structure
is applied to the depth-scaled features, which are then passed through the LN layer, as
well as rearranging the channel order of the features to obtain the information interactions
in different dimensions. Subsequently, the two PWConv structures are applied so that
they satisfy the linear bottleneck structure. Finally, the feature matrices are summed by
utilizing residual concatenation, which effectively prevents the gradient disappearance and
explosion while retaining the original feature information as much as possible.

Furthermore, due to the variation in image sizes in the fire smoke dataset, it is neces-
sary to ensure that the images input into the model are fixed for practical training. However,
the original YOLOv7 model utilized multiple pooling operations to achieve this, resulting
in a significant loss of semantic information about the objects. This poses a challenge for
small target detection problems where the fire source may be visually limited, leading to
poor model performance. Early detection of fire sources is crucial in practical scenarios,
as fire damage tends to escalate rapidly over time, making it difficult for the model to
meet practical application requirements. To address this challenge, the CDPB module
replaces the pooling operation before the ELAN module in the original YOLOv7 structure,
which comprises one GMP and three CBS. The CDPB module leverages DWConv and PW-
Conv structures, which require fewer parameters and better capture information between
different channels, resulting in more accurate and efficient fire source detection.

3.4. Permutation Self-Attention

For channel attention, it is easy to ignore information interactions within space as it
is a global processing of information within a channel, while spatial attention treats the
features in each channel equally, which easily ignores the information interactions between
channels. Therefore, in this paper, we consider using self-attention, as shown in Figure 6,
to capture the remote contextual information in both horizontal and vertical directions as
accurately as possible. Specifically, the input image is passed through a deep convolutional
neural network to generate a feature matrix M. The reduced feature matrix is first passed
through a convolutional layer to obtain a reduced-dimensional feature matrix, and then the
reduced feature matrix is replaced by a permutation operation to generate a new feature
matrix M

′
. Finally, the long-distance contextual information is aggregated M

′
, and each

pixel is synchronised in a cross displacement.
For the local features of the model M ∈ RC×H×W , PSA first acts on M with three 1 × 1

convolutional layers to generate, respectively, the three feature matrices Q, K, and V, where
Q, K ∈ RC/r×H×W , V ∈ RC×H×W , and r represent the corresponding scaling factors. After
obtaining the feature matrices Q and K, the attention matrix M

′ ∈ RH×W×(H+W) is further
generated by the simulation calculation, which is calculated as

di,u = QuK>i,u (1)

where Qu represents the feature vector corresponding to position u in the feature matrix Q,
Ku refers to the set of horizontal and vertical pixels at position u in K, Ki,u refers to the pixel
points in the set Ku corresponding to position i, and di,u ∈ M

′
represents the correlation

between the feature vector Qu and Ki,u. The softmax function is then applied along the
channel dimension on M

′
to calculate the resulting attention map.
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Figure 6. A permutation self-attentive mechanism is utilized to process both channel and spatial
feature information.

The information-gathering operation of remote context is performed on the spatial
dimension of the obtained attention graph in the feature matrix V. Finally, using the idea of
residuals together with the input features M, a rich feature representation M

′′
is obtained,

which is calculated as follows:

M
′′
u = ∑

i∈|Zu |
M
′
i,uZi,u + Mu (2)

where Zu is the feature vector corresponding to position u in the feature matrix V, Zi,u refers
to the pixel points in the set Zu corresponding to position i, and M

′′
u ∈ RC×H×W denotes

the feature vector of the feature matrix at u. After the displacement, an operation obtains
the contextual information of all the pixel points on the cross path of the local feature M,
and then through further recursive operations, each pixel point can eventually capture the
full image dependency.

3.5. Matching Strategies and Loss Functions
3.5.1. Dynamic Matching Strategies across Grids

To overcome the problem of unbalanced matching of positive and negative sample
sizes at the time of the model, this paper uses a dynamic cross-grid matching strategy
combining YOLOv5 and YOLOX. The cross-grid matching strategy of YOLOv5 is to find
the two nearest target centroids from the top, bottom, left, and right grids of the current
grid, together with the current grid for a total of three grids to match, increasing the number
of positive samples and speeding up the convergence of the model. On the other hand,
SimOTA dynamic matching strategy in YOLOX [58] calculates a cost matrix that represents
the cost relationship between each true bounding box and each feature point. The aim is to
adaptively find the true bounding box to which the current feature points should be fitted
most. The higher the overlap, the more accurate the classification, and the more within a
certain radius.
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The SimOTA dynamic matching strategy’s first step, which used the centre prior, has
been replaced by the YOLOv5 cross-grid matching strategy. The new approach first boxes
all template points in the three grids obtained by the YOLOv5 cross-grid matching strategy.
A fixed centre region of size 5× 5 is set within the true bounding box position. The template
points within the true bounding box and the fixed centre region are pre-screened targets.
Next, the k candidate frames with the highest IoU are selected based on the obtained IoU
matrix, where k is the minimum value of 10 and the current corresponding region template
points. Afterwards, the k template points with the lowest cost loss values are assigned
to each true bounding box. Only the template points within the fixed central region of
the current true bounding box correspond to a lower cost loss. The remaining template
points must have a large loss because the assigned weights are too large. The lowest
template points are selected according to their loss values. An allocation matrix is then
constructed, which records the positive sample corresponding to each true bounding box.
The position of the corresponding positive sample is marked one, and everything else is
marked zero. Finally, the prediction box is compared using the loss value, and the smaller
value is selected for further screening to ensure that a true bounding box is allocated to
only one template point.

Based on the process mentioned above, positive samples and their corresponding true
bounding boxes can be identified, while the rest are classified as negative samples. This
dynamic matching strategy across the grid provides more precise prior knowledge of the
current model’s performance to screen the predicted bounding boxes, as opposed to the
original positive and negative sample classification strategy.

3.5.2. Weighted Decay Loss Function for Object Detection

Object confidence loss and classification loss in YOLOv7 adopt logarithmic binary
cross-entropy loss, while coordinate loss uses CIoU loss, which is calculated as follows:

LossCIoU = 1− CIoU +
ρ2(b, bgt)

c2 + av (3)

where

IoU =
A ∩ B
A ∪ B

(4)

a =
v

1− IoU + v
(5)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (6)

A and B indicate the coordinate information of the bounding box, ρ2(b, bgt) denotes the
Euclidean distance between the centre point of the prediction frame and the real frame, and
c denotes the diagonal distance of the smallest closed area that can contain the prediction
frame and the real frame.

To address the issue that the loss function is difficult to converge due to the unbalanced
division of positive and negative samples, this paper offers a dynamic weighted scaling
cross-entropy loss function in the literature [59,60]. Based on the binary cross-entropy
loss corresponding to the object confidence loss and classification loss, a dynamic scaling
factor can dynamically reduce the weights of the easily distinguishable samples during the
training process through a dynamic scaling factor to quickly focus the weight of the loss on
those difficult to differentiate samples, calculated as follows:

WL =

{
(1− y

′
)η [−y log y

′ − (1− y) log(1− y
′
)], y = 1

y
′η [−y log y

′ − (1− y) log(1− y
′
)], y = 0

(7)
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where η is the attenuation coefficient, which is used to adjust the attenuation rate of simple
samples. The default value is two, which can make the model pay more attention to those
sample points that are harder to detect during the training process. The total loss after
improvement is as follows:

Loss = λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [−txi log t̂xi − (1− txi ) log(1− t̂xi )]

+ λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [−tyi log t̂yi − (1− tyi ) log(1− t̂yi )]

+ λcoord

S2

∑
i=0

B

∑
j=0

lobj
ij [(twi − t̂wi )

2 + (thi
− t̂hi

)2]

+ λobj

S2

∑
i=0

B

∑
j=0

lobj
ij [−ci log ĉi − (1− ci) log(1− ĉi)]

+ λnoobj

S2

∑
i=0

B

∑
j=0

lnoobj
ij [−ci(1− ĉi)

η log ĉi − (1− ci)ĉ
η
i log(1− ĉi)]

+ λclass

S2

∑
i=0

lobj
i ∑

c∈class
[−pi(c) log p̂i(c)− (1− pi(c)) log(1− p̂i(c))]

(8)

where S2 is the total number of grid cells in the output feature map, B is the total number of
predicted bounding boxes in each grid; lobj

ij and lnoobj
ij are used to determine whether the j

bounding box in the i grid contains the predicted object; txi , tyi , twi , thi
is the relative position

parameter of the true bounding box, and t̂xi , t̂yi , t̂wi , t̂hi
is the relative position parameter of

the predicted bounding box; ci is the confidence level of the real bounding box, ĉi is the
confidence level of the predicted bounding box; pi(c) is the category probability of the real
bounding box, p̂i(c) is the category probability of the predicted bounding box; λcoord is
the weight of coordinate loss in the total loss, the default value is 5; λobj is the weight of
positive samples in the confidence loss, and the default value is 1; λnoobj is the weight of
negative samples in the confidence loss, and the default value is 0.5; λclass is the weight of
category loss in the total loss, and the default value is 1.

4. Experiments
4.1. Experimental Environment

All experiments in this paper were conducted by Pycharm connected to a remote
server with Ubuntu 18.04.3, a 12-core Intel (R) Xeon (R) Platinum 8255C 2.50GHz CPU,
an NVIDIA Tesla V100 GPU, and 32GB of memory. Python 3.8, CUDA 11.0, PyTorch
1.8.1, PaddlePaddle 2.2.2, OpenMMLab’s MMDetection v2.25.2 [61], and PaddlePaddle’s
PaddleDetection v2.5.0 [62].

4.2. Experimental Data and Preprocessing

Since there is no publicly available detection dataset for the fire and smoke object
detection task, the experimental data in this paper are mainly derived from natural fire
scenes and web video screenshots, including hundreds of real-life scenarios in total. Similar
negative samples are considered to be added to the dataset to prevent the adverse effects
caused by environmental factors, such as sun, clouds, smoke, lighting illumination, and
others. The final experimental dataset of 14,904 photos was collected, with 13,843 images in
the training set and 1061 images in the validation set, including a total of 116,709 fires and
smoke target objects, some of which are displayed in Figure 7. To extract the coordinate
information of the target items, we utilized the LabelImg program to label the dataset
with the position coordinates, height and breadth, and target area. LabelImg merely labels
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the dataset in VOC format and transforms it to YOLO and COCO formats to fulfil the
training needs of different models. To prevent model overfitting during training, the
data enhancement methods include random rotation, random scaling, random cropping,
random fusing, and change of saturation and chromaticity.

(a) Fire and smoke objects (b) Negative sample objects

Figure 7. Schematic diagram of a partial dataset, with (a) real target objects to be detected and
(b) negative samples that are susceptible to interference.

4.3. Parameter Settings

The model training process optimizer is the stochastic gradient descent (SGD) algo-
rithm. The number of model training iterations is 300, the learning rate attenuation method
is cosine annealing, and the batch size of the input model is 32. The model is not stable,
thus warm-up is selected to preheat the learning rate. The specific parameters selected
during the model training are provided in Table 1.

Table 1. The main parameters of the model training process and their corresponding values.

Parameter Name Parameter Value

epoch 300
batch size 32

learning rate 0.001
weight decay 0.0005

optimizer SGD
momentum 0.937

warmup 3
random seed 42

image size 640
num workers 12

4.4. Experimental Results and Analysis

To ensure the interpretability of results across multiple models, we utilized APval as
the evaluation metric for the MS COCO dataset during our experiments. The models we
compared include one-stage object detection algorithms, such as SSD, RetinaNet, FCOS,
ATSS, YOLO, and PPYOLO, as well as two-stage object detection algorithms, such as Faster
RCNN, Mask RCNN, Cascade RCNN, CenterNet, and DetectoRS. We also considered end-
to-end object detection methods based on transformer structures, such as Detr, Deformable
Detr, the ViTDetection family, and the SwinDetection family, as well as lightweight object
detection algorithms such as PicoDet. For comparative testing, we followed the naming
convention “Model backbone and neck”. All models were trained under the same exper-
imental environment, image pre-processing methods, and hyperparameter settings. We
initialized each model with pre-trained weights from the MS COCO dataset and taught it
until convergence to accelerate the process and achieve the desired accuracy. The results
are presented in Table 2.
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Table 2. Comparison results of our constructed model with standard one-stage object detection
methods, two-stage object detection methods, and transformer-based object detection methods on
the constructed dataset.

Method Year APval APval
0.5 APval

0.75 APval
S APval

M APval
L ARval # Param.

(M)
FLOPs

(G)
FPS

(V100)

One-Stage Detectors

SSD 2016 30.8 65.9 24.6 10.6 25.6 40.8 43.5 24.5 87.9 24.5
PPYOLO-R50 2020 33.8 68.6 29.2 28.2 35.0 37.3 54.3 46.6 106.6 155.6

RetinaNet-R101-FPN 2017 35.1 71.2 31.6 6.9 36.5 41.6 44.9 55.1 112.3 175.9
YOLOv3-SPP 2018 35.1 76.8 28.1 33.1 36.2 38.0 44.8 62.0 78.2 200.6

FCOS-R101-FPN 2019 37.7 70.1 37,3 19.3 40.5 42.1 48.4 50.8 109.1 171.1
RetinaNet-

FreeAnchor 2017 40.4 75.7 39.7 36.7 40.1 44.9 49.4 56.7 126.1 177.3

ATSS-R101-FPN 2020 41.8 71.7 45.0 32.4 43.0 45.9 51.5 50.9 111.0 172.1
VarifocalNet-R101-

FPN 2021 42.1 73.1 44.3 35.5 43.0 47.1 51.5 51.5 106.0 164.7

PPYOLOE-X 2022 42.9 76.1 44.4 38.7 45.0 47.4 58.6 95.3 204.9 95.2
PPYOLOv2-R101 2021 44.5 78.8 46.2 53.4 47.8 46.4 61.8 73.2 187.4 87.0

PicoDet-L 2021 47.9 82.1 50.2 39.9 49.2 51.3 58.0 5.8 16.8 223.0
RTMDet-X 2022 48.1 84.2 50.7 27.3 45.1 54.3 57.3 94.9 141.7 136.1

PPYOLOE+-X 2022 49.6 82.3 54.3 37.1 49.8 54.7 62.6 98.4 206.6 95.2
TOOD-R101-FPN 2021 52.1 82.3 57.8 36.3 53.9 56.2 60.3 53.4 73.3 175.5

ATSS-FPN-DyHead 2019 52.4 84.3 58.1 28.7 52.5 58.5 61.4 210.4 322.2 50.1
YOLOv5-L6 2020 56.5 89.0 61.4 38.4 52.6 61.9 64.3 76.2 110.5 79.4
YOLOv4-P5 2020 57.0 90.0 65.5 46.0 55.9 64.7 67.2 70.3 166.0 105.3
YOLOX-X 2021 57.4 86.8 65.8 55.6 56.1 60.5 63.3 99.0 282.0 38.6
YOLOv7-X 2022 59.4 89.3 67.8 56.1 56.8 64.7 66.8 70.8 188.9 108.7
YOLOv6-L 2022 59.6 88.8 68.1 49.4 57.8 64.8 67.5 58.5 143.8 94.3

YOLOR-CSP-X 2021 61.3 91.0 70.2 49.9 58.1 66.6 68.4 99.8 223.0 83.3

Two-Stage Detectors

Faster-R50-PAFPN 2018 29.1 63.0 22.1 19.0 28.9 34.3 37.5 44.7 100.9 175.7
Sparse-R101-FPN 2020 34.8 69.7 26.3 20.5 33.4 41.1 60.8 124.9 95.1 174.0

CenterNet-R18-DCN 2019 34.8 71.3 30.1 15.9 34.8 39.7 46.7 14.4 19.3 71.3
Mask-R101-FPN 2017 35.7 69.0 33.4 35.7 37.7 40.4 43.3 63.2 174.9 13.5
Faster-R101-FPN 2017 37.2 73.8 32.5 27.0 38.3 42.5 44.7 60.1 121.4 177.2
DDOD-R50-FPN 2021 37.8 69.8 37.6 27.5 37.4 43.2 47.0 32.2 72.7 172.3

Cascade-R101-FPN 2018 38.5 72.2 36.7 20.8 38.3 45.0 45.6 87.9 149.2 176.0
Cascade-X101-DCN-

FPN 2019 42.0 73.2 43.8 19.5 43.1 48.7 49.0 95.4 305.2 177.6

RepPoints-R101-FPN 2019 45.3 77.6 47.6 22.5 45.0 52.6 53.6 56.9 81.2 170.7
Libra

Faster-X101-FPN 2019 47.2 75.7 53.4 30.6 47.8 52.1 54.1 99.1 184.8 178.5

DetectoRS-HTC-
R101 2020 47.8 78.9 52.1 25.5 46.1 54.5 56.1 196.5 279.1 49.6

HTC-Res2Net-R101-
FPN 2019 48.9 78.5 54.6 33.8 48.4 54.6 55.3 89.2 156.7 4.4

RetinaNet-R50-FPG 2020 48.9 81.7 53.4 16.3 51.4 55.1 57.4 70.9 122.2 205.9
Cascade-Mask-

ConvNeXt-S 2021 49.7 82.3 50.2 30.1 53.2 55.7 57.7 120.4 133.3 78.5

Mask-ConvNeXt-T 2021 51.1 83.8 56.4 36.6 54.1 56.2 57.9 99.2 150.8 89.5
Faster-R50-FPG 2020 53.7 85.0 60.4 45.2 54.4 57.2 59.5 79.4 253.7 214.5
Mask-R50-FPG 2020 55.2 85.4 62.9 48.7 55.4 59.3 60.6 82.0 305.2 44.7

Cascacde-Mask-S101-
FPN 2020 56.1 86.4 64.6 48.5 57.6 62.1 62.4 103.2 211.5 56.8

Cascade-Mask-
ConvNeXt-T 2021 57.6 86.8 66.1 49.8 57.9 63.5 64.3 124.7 234.8 48.9
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Table 2. Cont.

Method Year APval APval
0.5 APval

0.75 APval
S APval

M APval
L ARval #Param.

(M)
FLOPs

(G)
FPS

(V100)

Transformer-Based
Detectors

Detr-R50 2020 35.6 72.3 30.7 20.9 32.8 43.0 50.7 41.3 37.1 55.6
Deformable-Detr-

R50 2020 37.8 75.1 36.7 23.7 33.5 45.6 55.4 55.8 45.9 57.4

ViTDet-Base 2020 47.8 76.5 47.3 34.5 41.2 50.1 57.8 106.3 210.5 66.2
Mask-R50-Swin-S 2021 48.9 77.7 49.6 37.9 43.1 51.7 58.8 67.5 230.6 68.9
ViTDet-Faster-R50 2020 50.2 80.3 52.7 37.4 45.8 53.8 59.2 77.4 284.7 74.8
RepPoints-Swin-T 2021 52.1 82.6 54.0 41.3 46.8 56.1 62.3 88.5 189.5 77.4

ViTDet-Large 2020 53.3 83.2 55.7 42.0 48.8 58.9 62.4 156.7 238.5 44.0
Mask-RepPoints-

Swin-T 2021 53.8 84.7 57.4 45.1 52.1 57.5 64.3 101.6 200.3 68.4

Ours 62.5 87.9 71.4 58.5 60.7 68.1 68.1 45.4 143.6 113.6

After analysing the results in Table 2, it is evident that the one-stage object detection
algorithm is considerably faster and has fewer parameters and computational complexity
than the two-stage object detection algorithm. This makes it well-suited for meeting the
requirements of real-time fire and smoke detection. However, the transformer-based object
detection algorithm is complex and requires a large amount of training data to produce
desirable results, which is limited by the data available in this study. In terms of detection
accuracy and speed, YOLOR has the highest detection accuracy with an APval of 61.3% and
an FPS of 83.3; PicoDet has the fastest detection speed with an APval of 47.9% and an FPS of
223.0. Compared to YOLOR, our model improves APval by 1.2% and speeds up detection
by 30. Compared to PicoDet, APval improves by 14.6% based on the decrease in detection
speed. Furthermore, compared with the original YOLOv7 structure, both detection accuracy
and speed are improved. In addition, the APval

0.5 in Table 2 provided that for small objects in
the fire smoke dataset that take up less than 32 × 32 pixels, the highest accuracy of 58.5% of
all models was achieved, demonstrating the accuracy of the model for fire source detection.
Although it is slightly inferior in detection speed compared to some fast detection models,
it still meets the real-time fire smoke detection criteria. Compared with the other models
in the table, the PSA module focuses on extracting features from fire and smoke textures
and can accurately capture remote contextual information in both horizontal and vertical
directions, improving the effect of feature extraction. For the variable shape, characteristics,
and scale of fire and smoke objects, the RC FPN-PAN allows the predicted bounding box to
better fit the true bounding box during detection, thus improving the APval .

Considering the specificity of fire smoke detection, which requires both accuracy
and speed, a comparison of the speed and accuracy of different variants of the one-stage
detection algorithm was thus performed, as shown in Figure 8, where our model has a 62.5%
map and 113.6 FPS on V100, placing it ahead of other one-stage detection methods. To
further validate the model’s accuracy, the results of standard one-stage detection methods
were evaluated using test time augmentation (TTA), a technique used to improve the
performance of neural network models and reduce generalization errors [63]. The training
set was extended by using modified copies of the samples from the training dataset, the
original data was augmented in different forms, and then the average of each result was
taken as the final result, as provided in Table 3. On the fire smoke dataset, the highest
accuracy our model could achieve after using TTA was 65.1%, 1.2% higher than the accuracy
of YOLOR-CSP-X after using TTA.
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(a) Inference time for a batch size of 1 (b) Average inference time for a batch size of 32

Figure 8. Comparison of results with one-stage object detection methods in terms of inference speed.

Table 3. Results of the one-stage object detection methods when TTA is used or not (X denotes use,
− denotes not).

Method TTA Size APval

YOLOv5-L6 − 640 56.5
X 640 58.7

YOLOv4-P5 − 640 57.0
X 640 58.6

YOLOv7-X − 640 59.4
X 640 59.7

YOLOv6-L − 640 59.6
X 640 60.3

YOLOR-CSP-X − 640 61.3
X 640 63.9

Ours − 640 62.5
X 640 65.1

To investigate the effect of different parameter setting thresholds on the detection
accuracy of the model, we try to change the model’s accuracy training method and IoU
threshold. The default training accuracy is FP16 with a half-accuracy training method, and
the default IoU threshold is 0.65. The results are provided in Table 4. When the accuracy
training method and IoU threshold are changed, the model detection accuracy is slightly
improved, and the APval reached 62.7%, 0.2% higher than the default setting parameters.

Table 4. Results of different precision and IoU threshold.

Method Precision IoU Threshould APval

Ours

FP16 (default) 0.65 (default) 62.5
FP32 0.65 62.5
FP16 0.70 62.5
FP32 0.70 62.7

Improvement +0.2
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In real-world applications, it is essential to consider the detection accuracy of a detector
for a single category of objects. The fire and smoke detection results are presented in Table 5.
YOLOv7-X demonstrates the highest fire detection accuracy among the one-stage detectors,
achieving 62.0%. For smoke detection, YOLOR-CSP-X achieves the highest accuracy rate at
60.6%. Among the two-stage detectors, Cascade-Mask-ConvNeXt has the highest accuracy
rates of 58.8% and 55.4% for fire and smoke detection, respectively. In the transformer-
based detectors, Mask-RepPoints-Swin achieves the highest detection accuracy rates of
55.8% and 51.8% for fire and smoke detection, respectively. Our improved model surpasses
the best results, achieving detection accuracy rates of 63.9% and 61.1% for fire and smoke,
respectively, which are 1.9% and 0.5% higher than the previous best results.

Table 5. Fire and smoke object detection results.

Method APval Fire Smoke

One-Stage Detectors

YOLOv5-L5 56.5 56.1 56.9
YOLOv4-P5 57.0 57.3 56.7
YOLOX-X 57.4 61.9 53.0
YOLOv7-X 59.4 62.0 56.7
YOLOv6-L 59.6 60.6 58.7

YOLOR-CSP-X 61.3 61.9 60.6

Two-Stage Detectors

Faster-R50-FPG 53.7 56.1 51.2
Mask-R50-FPG 55.2 57.5 53.0

Cascade-Mask-S101-
FPN 56.1 58.1 54.1

Cascade-Mask-
ConvNeXt-T 57.6 58.8 55.4

Transformer-Based
Detectors

RepPoints-Swin-T 52.1 55.7 48.5
ViTDet-Large 53.3 55.4 51.2

Mask-RepPoints-
Swin-T 53.8 55.8 51.8

Ours 62.5 63.9 61.1

To assess the generalization performance of the proposed structure, all variants of
YOLOv7 were trained using an enhanced method. The results obtained are presented
in Table 6, with a “+” signifying an improved model. Our enhanced approach achieves
a higher detection accuracy while reducing the model’s complexity and the number of
parameters. The top accuracy attained by APval was 62.5% and 64.3% for input image sizes
of 640 × 640 and 1280 × 1280, respectively.

To highlight the regions of focus in the image, the weights corresponding to the class
feature maps are determined by intercepting the gradient information during the backprop-
agation of the model. These weights are then superimposed onto the original map along
with the feature maps. This technique, called gradient-weighted class activation mapping
(Grad-CAM), is utilized to visualize the model [64]. The effectiveness of our model in accu-
rately locating the object of interest in the image can be observed in Figure 9, demonstrating
superior performance compared to other one-stage object detection algorithms.
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Table 6. Improved results for different detection scales for YOLOv7 variants.

Method Size APval #Param.(M) FLOPs(G)

YOLOv7 640 57.7 36.9 104.7
YOLOv7+ 640 60.7 21.6 35.7
YOLOv7-X 640 59.4 71.3 189.9

YOLOv7-X+ 640 62.5 37.1 70.2

YOLOv7-W6 1280 59.9 81.0 360.0
YOLOv7-W6+ 1280 63.0 39.9 100.3
YOLOv7-E6 1280 60.7 97.2 515.2

YOLOv7-E6+ 1280 63.5 45.4 144.5
YOLOv7-D6 1280 61.5 154.7 806.8

YOLOv7-D6+ 1280 63.9 78.8 187.9
YOLOv7-E6E 1280 61.8 151.7 843.2

YOLOv7-E6E+ 1280 64.3 77.7 206.8

Figure 9. Comparison of heatmaps results with one-stage object detectors. The deeper the colour of
the area the stronger the attention.

4.5. Ablation Study

The three-part interactions, CDPB, PSA, and RC FPN-PAN, were considered to im-
prove the model’s accuracy. The experiments were conducted under the same experimental
environment, image pre-processing, and network hyperparameter settings and the results
are provided in Table 7. The APval changes to 0.3%, 1.1%, and 1.7% when acting on CDPB,
PSA, and RC FPN-PAN, respectively. The highest accuracy is reached when acting to-
gether with an APval of 62.3%, which is a 2.9% improvement compared to the improved
original model.
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Table 7. Results of ablation experiments with improved structures.

Rank CDPB PSA RC FPN-PAN APval

1 − − − 59.4
2 X − − 59.7
3 − X − 60.5
4 − − X 61.1
5 X X − 61.7
6 − X X 62.0
7 X − X 62.1
8 X X X 62.3

Improvement +2.9

This paper uses two model improvement strategies: the sample matching strategy
across the grid and the loss function with weighted decay. The ablation experiment results
are provided in Table 8 to verify their effectiveness. When the two strategies were used,
the APval was improved by 1.2% and 1.8%, respectively, compared to the original model
improvement of the APval by 2.6%.

Table 8. Results of ablation experiments with improved strategies.

Rank Match Strategy Weight Decay APval

1 − − 59.4
2 − X 60.6
3 X − 61.2
4 X X 62.0

Improvement +2.6

Table 9 presents the results of our evaluation on the impact of the improved structure
and strategy of the model on its detection accuracy. Compared to the original model’s
improved APval , the improved structure and strategy resulted in a 2.9% and 2.6% increase,
respectively. They produced a 3.1% improvement in APval when used together.

Table 9. Results of ablation experiments with improved structures and strategies.

Rank Structure Strategy APval

1 − − 59.4
2 − X 62.0
3 X − 62.3
4 X X 62.5

Improvement +3.1

The results of our ablation experiments provide further evidence that our improved
method enhances the accuracy of fire smoke detection and effectively addresses the issue
of scale change in flames and smoke. To illustrate the performance of our one-stage object
detector, we present a visualization of the results on the validation set in Figure 10. The
“Pictures” in the figure represent the ground-truth bounding boxes corresponding to the
original image. Upon comparison of each detector’s output with the original image, we
observe that YOLOv5, YOLOv6, and YOLOR all missed the detection of the flame object in
the lower left corner of the first image. YOLOR incorrectly detects the light solid area in the
second image as a flame object. Moreover, YOLOv5 and YOLOv7 exhibit poor detection
performance on the overlapping regions of the second and fourth images. In the original
image of the fourth example, there are five target objects, yet both YOLOv5 and YOLOv7
detect only four objects.
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Figure 10. Comparison of results with standard one-stage object detectors.

5. Conclusions and Outlook

Deep learning-based fire smoke detection algorithms have become increasingly crucial
for practical applications in recent years. This paper proposes an improved algorithm
based on the YOLOv7 model, which combines several features to enhance accuracy and
speed, such as an attention mechanism, multi-scale feature fusion and prediction, a sample
matching strategy, and a loss function with weight attenuation. A new fire smoke dataset
was created using natural fire scenes and web video screenshots with various positive and
negative samples to develop this algorithm. The structure of the model was improved
to increase detection efficiency using the CDPB structure to reduce the number of model
parameters and speed up reasoning, the PSA structure to enhance information fusion
between channels and improve generalization performance, and the RC FPN-PAN structure
to address scale changes in flame and smoke objects. In addition, the cross-grid sample
matching strategy and the weighted attenuation loss function were redesigned to improve
the prediction bounding box’s accuracy and accelerate model convergence. The experiment
used a training set with 13,843 images and 112,576 fire smoke detection objects and a
validation set with 1061 images and 4133 fire smoke detection objects. The detection result
of the improved model has an APval of 62.5% and an FPS of 113.6, outperforming other
methods. Notably, most high-accuracy models achieved on public datasets for object
detection, such as MS COCO, are based on Transformers that require a large amount of
data for training to achieve desired results. However, this may not be feasible for our fire
smoke dataset.

Our future work will focus on collecting more fire and smoke images in complex
environments to uncover additional correlations between the environment’s morphological
and detailed features and the characteristics of the smoke. We plan to combine semantic
information from the environment with its characteristic information to improve the detec-
tion accuracy. Furthermore, we will consider the colour features of smoke, such as white,
black, or yellow, to make rough judgments about the potential harmfulness of the fire. For
instance, if the smoke is white, it may indicate a high dust content; black smoke suggests
incomplete combustion and a large amount of sulphide in the flue gas; yellow smoke can
also signify high sulphide content, and the colour is generally indicative of highly toxic
and corrosive substances.
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