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Abstract: Aiming at the recognition of intelligent retail dynamic visual container goods, two problems
that lead to low recognition accuracy must be addressed; one is the lack of goods features caused
by the occlusion of the hand, and the other is the high similarity of goods. Therefore, this study
proposes an approach for occluding goods recognition based on a generative adversarial network
combined with prior inference to address the two abovementioned problems. With DarkNet53 as the
backbone network, semantic segmentation is used to locate the occluded part in the feature extraction
network, and simultaneously, the YOLOX decoupling head is used to obtain the detection frame.
Subsequently, a generative adversarial network under prior inference is used to restore and expand
the features of the occluded parts, and a multi-scale spatial attention and effective channel attention
weighted attention mechanism module is proposed to select fine-grained features of goods. Finally,
a metric learning method based on von Mises–Fisher distribution is proposed to increase the class
spacing of features to achieve the effect of feature distinction, whilst the distinguished features are
utilized to recognize goods at a fine-grained level. The experimental data used in this study were
all obtained from the self-made smart retail container dataset, which contains a total of 12 types
of goods used for recognition and includes four couples of similar goods. Experimental results
reveal that the peak signal-to-noise ratio and structural similarity under improved prior inference are
0.7743 and 0.0183 higher than those of the other models, respectively. Compared with other optimal
models, mAP improves the recognition accuracy by 1.2% and the recognition accuracy by 2.82%. This
study solves two problems: one is the occlusion caused by hands, and the other is the high similarity
of goods, thus meeting the requirements of commodity recognition accuracy in the field of intelligent
retail and exhibiting good application prospects.

Keywords: intelligent retail; recognition of occluded goods; Generative Adversarial Network (GAN);
semantic inference; feature expansion; vMF distribution

1. Introduction

With the expansion of the internet in recent years, purchasing and consumption have
become more convenient. For example, vending machines may be employed in a variety of
complicated applications owing to their low labor costs, compact footprint, low running ex-
penses, and high income per unit. The rapid development of consumer poverty alleviation
vending machines is a concrete practice for consolidating and expanding the achievements
of poverty alleviation and rural revitalization; additionally, it is consistent with the new
tendency of “non-touch commerce” in the face of the epidemic [1–3]. Traditional vending
cabinets are based primarily on the radio frequency identification (RFID) [4] and static
object detection [5] technologies; however, they tend to have significant manufacturing and
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maintenance expenses. Dynamic and smart vision-based cabinets, as opposed to traditional
cabinets, integrate computer vision and cloud computing to complete the purchasing pro-
cess of customers, with precise recognition of commodities being one of its most significant
and key functions. The entire purchasing process is recorded by a camera to recognize the
classes of commodities in the users’ hands [6]; however, because of the varying degrees
of occlusion brought by the actions of manual picking up of commodities, the ability of
convolutional neural network to extract features for commodities is limited, which results
in inaccurate recognition results.

Two main issues need to be resolved to recognize commodities with occlusion caused
by hand and occasion when the features of goods are highly similar: 1. the lack of com-
modity features owing to occlusion caused by human hands, thus necessitating restoration
and expansion; 2. the low recognition accuracy due to the high degree of similarity of some
products, which dictates the need to distinguish between similar features.

To address these issues, this study proposes an algorithm for goods recognition under
occlusion based on prior inference and spherical clustering. First, generative adversarial
network (GAN) is combined with semantic inference whilst appropriate noise priors are
matched with pre-trained generators and noise predictors. Next, a Hausdorff distance-
based contour structure loss function is used during the training process to render the
process of feature expansion more effective and accurate. Then, an attention mechanism
is utilized to select the most discriminative fine-grained features for the expanded fea-
tures. Subsequently, the von Mises–Fisher (vMF) distribution [7] is utilized to map the
expanded and selected fine-grained features onto a unit hypersphere for clustering to
increase the spacing of features. During the process, an angle loss is designed to improve
the effect of clustering, and finally, the softmax function is utilized to obtain the ultimate
recognition results.

2. Related Work
2.1. Conventional Recognizing Method

Several algorithms have been used to recognize smart retail commodities. The YOLO
series [8] and SSD [9] are typical examples of single-stage algorithms that combine detection
with classification tasks into a single stage. Faster-region-based convolutional neural net-
work (Faster-RCNN) [10] and cascade R-CNN [11] are examples of multi-stage algorithms
that divide feature extraction and regression tasks into two stages. Recognition of objects
and faces under occlusion has advanced rapidly in recent years, thus yielding novel ideas
and approaches for recognizing occluded commodities [12–14], which are broadly classified
into two classes, one of which is adding weight to the unoccluded part and another is
restoring the occluded part. Kortylewski et al. [15] proposed a compositional convolutional
neural network (CNN) model to recognize products based on unoccluded parts. Wang
et al. [16] proposed an object shape feature extraction approach called slope difference
distribution (SDD), which extracts features of shape as a sparse representation and utilizes
the detected SDD features of all shape models and the minimum distance between SDD
features for object recognition. Ma et al. [17] proposed a robust face recognition approach
based on a sparse network with limited probability, built a sparse image network with
limited probability, and acquired the overall training images from a global perspective
for recognition. Heo et al. [18] proposed an occlusion-aware spatial attention transformer
(OSAT) architecture based on a visual transformer (ViT), CutMix strengthening, and oc-
clusion mask predictor (OMP) to solve the occlusion problem. Xu et al. [19] proposed
a double-active-layer-based CNN to recognize facial expressions with high accuracy by
learning robust and discriminative features from data. However, because of the occlusion
caused by the hand and the great resemblance of the commodities, the accuracy of goods
recognition using conventional methods is low.



Sensors 2023, 23, 3355 3 of 21

2.2. Recognizing Based on Feature Expansion Method

Although the network topologies and approaches described above can successfully
improve the recognition of items and faces under occlusion, the recognition accuracy
remains low because of the lack of goods features. A GAN [20] is an adversarial game-
based neural network that can be utilized to generate missing features of commodities.
Arjovsky et al. [21] proposed Wasserstein GAN (WGAN), which addresses the difficulties
in gradient disappearance and collapse during the training of GAN networks. Gulrajani
et al. [22] proposed the WGAN-gradient penalty (WGAN-GP) to boost the convergence
speed of networks. Liao et al. [23,24] proposed a semantic guidance and evaluation network
(SGE-Net) to iteratively update the structural prior and restore images in an interactive
framework of semantic extraction and image restoration; additionally, they designed a
semantic wise attention propagation (SWAP) module to restore the integral details of
texture. Li et al. [25] proposed a recursive feature reasoning (RFR) network to restore the
largely missing textures of images. However, feature expansion and restoration can not
address the problem of high similarity of goods.

2.3. Recognizing Based on Fine-Grained Method

Feature restoration and expansion are excellent solutions to the problem of the small
number of product features; however, their similarity to other commodities is a crucial
challenge for the recognition of comparable commodities. Geng et al. [26] proposed an
approach for the recognition of fine-grained commodities based on feature matching and
one-time deep learning to handle the issue of high feature similarity. Lee et al. [27] pro-
posed a network that combines a linear model with a deep learning model, considering
both discrete features and the content of continuous images. Rao et al. [28] proposed a
counterfactual attention learning approach based on causal inference to concentrate on
fine-grained features through counterfactual intervention. Wang et al. [29] proposed an
improved fine-grained classification approach based on self-attention destruction and
constructive learning (SADCL). Liu et al. [30] proposed a scale-consistent attention part
network (SCAPNet) for fine-grained image recognition. Although the fine-grained recog-
nition accuracy for unoccluded goods is high, it cannot achieve its best efficiency for the
recognition of goods under occlusion.

3. Methods

Figure 1 shows the flowchart of the overall algorithm in this study. The algorithm
includes three elements, namely GAN pretraining, feature expansion and selection of com-
modities, and features classification of commodities. (1) The GAN model and parameters
are trained with the addition of a semantic inference module and noise prior to increase
the accuracy and efficiency of the generated features. (2) The pre-trained GAN is utilized
for the restoration and expansion of features of the occluded parts and then combines
them with LBP features [31]. Simultaneously, the attention mechanism is utilized to select
features with a greater degree of discrimination after expansion. (3) Metric learning based
on vMF distribution is utilized to distinguish and classify among selected features.

3.1. GAN Pretraining

Regarding the similarity of object recognition, every time a new object is under recog-
nition when the network is trained, the recognition efficiency of the processing is low.
To increase the accuracy and efficiency of the entire recognition process, all the images
of commodities in the library are sent to the GAN for pre-training, during which each
input image is matched with an appropriate latent space noise distribution [32], which
in turn is utilized in the actual recognition process of commodities under occlusion. The
predicted noise prior is used for the following process of feature restoration and expansion
to guarantee the accuracy of the generated features.
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Figure 1. Algorithm flow of the proposed architecture for goods recognition. The numbers 1 and 2 in
the upper left and upper right corners represent the first and second parts of GAN pretraining.

3.1.1. Generator Pretraining

In the network training process, the generator input is set as random latent spatial
noise [33] and a commodity feature map is generated during the overall process. After
completing the iterative training, the generator parameters are saved and await feature
expansion of the commodity in the next process. The generator is a neural network with
an encoder–decoder architecture, where the encoder is associated with five dense blocks
in sequence, whereas the decoder is associated with four dense blocks and three semantic
inference modules (SIM) connected crosswise in sequence. The encoder and the decoder
are linked using a context inference module (CIM). Each dense block of the encoder
comprises three layers of batch normalization, an activating function layer (LeakyReLU),
and convolution layer (Conv2D), wherein the corresponding size of the convolution kernel
in the convolution layer is 3 × 3. Padding is not utilized in the convolution layer, and
the alpha value of LeakyReLU is 0.01. Each dense block is followed by a downsample
layer made up of a 1 × 1 convolution layer and a 2 × 2 pooling layer to halve the size of
the feature map. The encoded contextual features are sent to the CIM for the inference of
contextual features, after which the encoded feature map is sent for decoding. The structure
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of the four dense blocks in the decoder is identical to those of the encoder. Each dense
block is followed by an oversampling layer composed of a 1 × 1 convolution layer and
transposed convolution layer, which doubles the size of the feature map. The SIM process
is illustrated in Figure 2.
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are sent to SIM to be fused with a skipping connection.

The current encoding feature φl and decoding features ϕl−1 are simultaneously sent
to SIM wherein they are first fused with a skipping connection, as follows:

f l−1 = ∑C
i=1

(
ϕl−1 + φl ⊗ KT

i

)
⊗ Ki, (1)

where Ki and KT
i are the convolution kernels on the i-th channel and its transpose, respec-

tively; and ⊗ represents convolution, l ∈ 1,2,3,4.
Next, semantic segmentation is implemented on the image to acquire a semantic

segmentation map Sl . This allows for the implement spatial adaptive normalization on its
parameters to acquire the updated inferred features:

Fl−1 = γ�
f l−1 −max

(
f l−1

)
max

(
f l−1

)
−min

(
f l−1

) + β, (2)

where γ and β are parameters in the semantic segmentation map Sl , with γ represent-
ing the normalized scaling coefficient and β is the term of bias; and � representing the
corresponding multiplication of matrix elements.

The generator and discriminator constantly learn from each other, and the generator
parameters are fixed when reaching the Nash equilibrium. The network structure of the
generator is illustrated in Figure 3.



Sensors 2023, 23, 3355 6 of 21Sensors 2023, 23, x FOR PEER REVIEW 6 of 21 
 

 

Latent Space Noise

Generated feature map

SIM

Downsampling

SIM SIM

BN-LeakyReLU-Conv

 
Figure 3. Structure of generator. 

3.1.3. Noise Prior Pretraining 
In this study, the precision of the feature expansion was improved by training the 

predictor to match the precise prior noise during the feature-generating process. First, the 
images of the occluded commodities were input, and the predictor was utilized to match 
the appropriate noise prior to guiding the generator for the generation of correct features. 
These are highly similar to the known features of commodities and thus ensure the accu-
racy of the generated features. The parameters were fixed and utilized for the expansion 
of commodity features after numerous rounds of iterative training. 

3.1.4. Loss Function 
Through an adversarial game involving generator G and discriminator D, the GAN 

optimizes the value function V(G,D) as follows: min max 𝑉(𝐷, 𝐺) = 𝐸 ∼ ( )[log 𝐷(𝑥)] + 𝐸 ∼ ( ) log 1 − 𝐷 𝐺(𝑧) ,  (3)

where z is the random noise input in the latent space; G(z) denotes the generated feature 
matrix; D(x) denotes the probability that the discriminator’s judgment of the generated 
features of the generator is true; 𝑝 (𝑥) denotes the distribution of the real features; and 𝑝 (𝑧) denotes the distribution of the generated features. 

The JS divergence between 𝑝 (𝑥) and 𝑝 (𝑧) was optimized to maximize the train-
ing effect of G and D in the game between the generator and discriminator to reach 𝑝 (𝑥) 
= 𝑝 (𝑧). However, the gradient vanishing phenomenon often occurs during the training 
process of the GAN, thereby resulting in the divergence of JS being a constant and pro-
ducing a gradient vanishing issue. The similarity index of the two distributions is calcu-
lated using the Wasserstein distance combined with the Sobolev constraint [34], which is 
more versatile compared with the Lipschitz constraint. 

The Wasserstein distance of the Sobolev constraint is min max 𝐿 (𝐷, 𝐺) = 𝐸 ∼ 𝐷(𝑥) − 𝐸 ∼ 𝐷 𝐺(𝑧) .  (4)

The constraint condition is 𝐸 ∼ , ∥∥∇ 𝐷(𝑥)∥∥ − 1 ≤ 0, 𝑥 ∼ 𝑝 , 𝑥 ∼ 𝑝 ,  (5)

where 𝑓 , (𝑥) is the probability density function of random variable x between 𝑥  and 𝑥 . Assuming that t is a random variable obeying a uniform distribution between [0,1], the 
linear interpolation of the real sample 𝑥  and generated sample 𝑥  is 

Figure 3. Structure of generator.

3.1.2. Discriminator Pretraining

The discriminator constantly learns from the generator to increase the recognition
accuracy of the sample. Herein, the CNN was utilized in the discriminator training process,
with the real and feature maps generated by the generator as the inputs, to determine
whether the generated feature map was suitable for a real distribution. Additionally,
dimensionality reduction was accomplished using a convolutional layer with a step size of
2, convolutional kernel size of 3 × 3, activation function of LeakyReLU, dropout operation
to avoid overfitting, parameter p = 0.2, and output layer activated by the Tanh activation
function. The fully linked layer outputted the final discriminant result.

3.1.3. Noise Prior Pretraining

In this study, the precision of the feature expansion was improved by training the
predictor to match the precise prior noise during the feature-generating process. First, the
images of the occluded commodities were input, and the predictor was utilized to match
the appropriate noise prior to guiding the generator for the generation of correct features.
These are highly similar to the known features of commodities and thus ensure the accuracy
of the generated features. The parameters were fixed and utilized for the expansion of
commodity features after numerous rounds of iterative training.

3.1.4. Loss Function

Through an adversarial game involving generator G and discriminator D, the GAN
optimizes the value function V(G,D) as follows:

min
G

max
D

V(D, G) = Ex∼pr(x)[log D(x)] + Ez∼pg(z)[log(1− D(G(z)))], (3)

where z is the random noise input in the latent space; G(z) denotes the generated feature
matrix; D(x) denotes the probability that the discriminator’s judgment of the generated
features of the generator is true; pr(x) denotes the distribution of the real features; and
pg(z) denotes the distribution of the generated features.

The JS divergence between pr(x) and pg(z) was optimized to maximize the training ef-
fect of G and D in the game between the generator and discriminator to reach pr(x) = pg(z).
However, the gradient vanishing phenomenon often occurs during the training process
of the GAN, thereby resulting in the divergence of JS being a constant and producing a
gradient vanishing issue. The similarity index of the two distributions is calculated using
the Wasserstein distance combined with the Sobolev constraint [34], which is more versatile
compared with the Lipschitz constraint.
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The Wasserstein distance of the Sobolev constraint is

min
G

max
D

Ls(D, G) = Ex∼pr D(x)− Ez∼pg D(G(z)). (4)

The constraint condition is

Ex∼ f xi ,xj ‖∇xD(x)‖2 − 1 ≤ 0, xi ∼ pr, xj ∼ pg, (5)

where f xi ,xj(x) is the probability density function of random variable x between xi and xj.
Assuming that t is a random variable obeying a uniform distribution between [0, 1], the
linear interpolation of the real sample xi and generated sample xj is

x = txi + (1− t)xj. (6)

Then, f xi ,xj(x) can be represented as

f xi ,xj(x) =


∫ xj

xi
1√
2πσ

e−
(x−µ)2

2σ2 dx
0, otherwise

, x = txi + (1− t)xj , (7)

where x is the linear interpolation between the real sample xi and the generated sample
xj; and µ and σ (σ > 0) are the mean and standard deviation of the Gaussian distribution,
respectively.

For D(x) to satisfy the Sobolev constraint, the gradient penalty GP was used, which is
defined as

GP = Ex∼px

[
(‖∇xD(x)‖2 − 1)2

]
. (8)

When discriminating the contours of generated features and real features, a contour
structure loss function called Hausdorff Distance loss was designed using the Hausdorff
Distance model, which is more sensitive to the contour structure. The pixel points on the
shallow contour feature map of the network were viewed as a set of k pixel points, where
the contour of the feature map extracted from the real image was Cr = {A1, A2, . . . , Ak},
and the goods’ contour of the generated feature map was Cg = {B1, B2, . . . , Bk}. The
directional Hausdorff Distance of the contours of the goods in the two images can be
expressed as

h
(
Cr, Cg

)
= max

Ak∈Cr
min

Bk∈Cg
‖Ak − Bk‖, (9)

h
(
Cg, Cr

)
= max

Bk∈Cg
min

Ak∈Cr
‖Bk − Ak‖. (10)

The coordinates of the pixel points in the real and generated feature maps correspond
to each other.

Thus, the Hausdorff Distance of the coordinates is

H
(
Cr, Cg

)
= max

{
h
(
Cg, Cg

)
, h
(
Cg, Cr

)}
. (11)

Therefore, the contour structure loss function LHausdor f f distance is

LHausdor f f−distance = H
(
Cr, Cg

)
. (12)

Consequently, the loss function of the discriminator in this study is

min
D

Ls(G, D) = Ex∼pr [D(x)]− Ex∼pg [D(x)],

+λEx∼ f xi ,xj [
(
‖∇xD(x)‖2 − 1)2]+ αH

(
Cr, Cg

)
,

(13)
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where Pg is the distribution of the generated feature map; Pr is the distribution of the
real feature map; x represents the linear interpolation between the real sample xi and the
generated sample xj; and λ is the weight coefficient, which is updated during the iteration
process and taken as λ = 8, α = 4.

To guarantee the consistency between the generated and real features during the
training process of the generator, the generator was trained iteratively using the combined
loss of adversarial loss L1 and gradient loss L2.

If only the contour structure loss function is available in the discriminator, the gener-
ator can guarantee only the generation of accurate coarse contours but not clear texture
features. Therefore, an adversarial loss function was added, and its expression is

L1 = max
D

[
log D((xr)) + log(1− D

(
xg
))
], (14)

where xr denotes the real feature distribution; and xg denotes the generated feature distribution.
The L1 loss function ensures that the generated texture features are accurate; however,

in the back-propagation process of the generated features, ensuring the feature coherence
of the generated feature maps is challenging. Therefore, this study introduced the gradient
loss function L2 to ensure coherence between the generated features and the real features,
as follows:

L2 =
x

Fr∪Fg

∣∣∣∣∇Fg(x, y)
∣∣∣∣dxdy, (15)

where Fr denotes the real feature map; Fg denotes the generated feature map; and∣∣∣∣∇Fg(x, y)
∣∣∣∣ denotes the pixel gradient modulus of the point (x, y) in the generated

feature map.
Thus, the loss function of the generator is as follows:

Lg = βL1 + γL2, (16)

where β and γ are weight coefficients.
The overall objective function is as follows:

min
G

max
D

L(G, D) = Ex∼pr [D(x)]− Ex∼pg [D(x)],

+λEx∼ f xi ,xj [
(
‖∇xD(x)‖2 − 1)2],

+αmax
{

h
(
Cr, Cg

)
, h
(
Cg, Cr

)}
,

+βmax
D

[
log D((xr)) + log(1− D

(
xg
))
],

+γ
s

Fr∪Fg
‖∇Fg(x, y)‖dxdy,

(17)

where λ, α, β, and γ are the weight coefficients used to guarantee that the loss functions
are balanced.

3.2. Expansion and Selection of Features

When recognizing similar occluded commodities, the number of features of the com-
modities typically determines the recognition accuracy. When a human hand picks up a
product and creates different degrees of occlusion, the effective features available for recog-
nition are reduced, and the commodity’s effective features need to be restored and expanded
to increase the accuracy of commodity recognition. This study utilized a pre-trained GAN,
semantic inference module, and predictor P to expand the number of commodity features.

3.2.1. Three-Channel Feature Extraction

When a commodity is occluded manually, using only a single gray channel to extract
the features results in poor commodity recognition accuracy. Consequently, in this study,
the recognition accuracy was improved by increasing the number of effective features of the
commodity by extracting the features of goods using red–green–blue (RGB) three-channel
feature extractor.
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First, the OpenCV library was used to intercept the frame of the product image from
a video stream photographed; subsequently, DarkNet53 was utilized as the backbone
network to extract and concatenate the RGB three-channel feature map. That is,

F∗ =
[
∑c

i=1 Fi
]
⊗ K, (18)

where F∗ is the feature map after feature fusion; c = 3 is the number of channels; Fi is the
feature map on the i-th channel; and K is a 1 × 1 convolution kernel.

The flow of feature extraction of RGB three-channel is shown in Figure 4.
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3.2.2. Feature Restoration and Expansion

Herein, targeting the situation where the goods have few valid features owing to
being occluded by hands, a combination of generative adversarial networks and semantic
inference was used to extract relevant detailed features such as contours and textures.

First, the LBP operator was used to extract the texture features of the image of a good
as it excels at describing the local texture features of the goods. Second, the previously
extracted image features were sent to a pre-trained predictor (P) that predicts the latent
spatial noise prior to adjusting its feature distribution. Finally, feature-matched noise was
utilized to guide the expansion of features using a pre-trained generator.

3.2.3. Features Selection

Given that a large variety and number of features are provided, which is not beneficial
for recognizing similar goods, herein, a self-designed lightweight attention mechanism,
multi-scale spatial attention (MSSA), combined with effective channel attention (ECA),
which focuses on the most distinctive features of the feature map and selects them in a
short period, was used.

In MSSA, a 1 × 1, 2 × 2, and 3 × 3 convolution kernels were used to extract the multi-
scale features to gain a feature pyramid, and the discrimination scores were calculated.
The higher the discrimination score, the greater the distinction between features. The
calculation process is as follows:

score = W2·SiLU(W1G(x)), (19)

where G denotes global average pooling; W1 and W2 are different full connection layers;
and the SiLU activation function was used to enhance the ability of non-linear activation.

Thus, the attention feature vectors were obtained through the discrimination score
pyramid under spatial pyramid pooling (SPPF).

In ECA, first, pooled feature maps were acquired utilizing global average pooling;
subsequently, a 3 × 1 fast convolution was utilized and the attention feature map was
acquired using a sigmoid activation function. Next, the expanded features were fused with
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the attentional feature map, and the feature vectors under MSSA and ECA were weightedly
fused to acquire the final selected features of goods. A flowchart of the feature selection is
presented in Figure 5.
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3.3. Features Distinction

The high similarity among features in the process of similar goods recognition under
occlusion is the most significant problem that must be resolved. Herein, first, the similarities
were classified at a finer scale to increase the spacing of the selected fine-grained features,
and then the most identifiable features were selected to further improve the recognition
accuracy. Further, metric learning based on the vMF distribution was used and a continuous
probability distribution that is a Gaussian distribution on a sphere which is a distribution
function for modeling high-dimensional spaces was used to increase the spacing of features.
The accuracy and effectiveness of the classification can be improved by mapping the feature
vectors to the unit hypersphere, treating them as feature points on the sphere, and then
clustering them. This increases the separation among various classes of features, which
provides each class with more distinct classification boundaries.

3.3.1. Feature Mapping and Clustering

Herein, the feature vectors were mapped onto the hypersphere using vMF distribution.
The feature vector x must conform to the vMF distribution on the sphere if it conforms to
the Gaussian distribution and the probability density function, which can be expressed as

f (x|µ, k) = cp(k)ekµT x, (20)

where µ, k are the mean vector and aggregation parameters, both of which parameterize
the vMF distribution, respectively; and cp(k) is the normalization constant, denoted as

cp(k) =
kp/2−1

(2π)p/2 Ip/2−1(k)
, (21)

where p is the number of variables and Ip/2−1(k) denotes the P/2− 1 first- class modified
Bessel function.
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The vMF clustering centers were determined by maximizing the vMF likelihood of
the training feature vectors. The vMF likelihood is defined as

p( f j|λ) =
eσµT fi

Z(σ)
,
∣∣∣∣ f j
∣∣∣∣ = 1, ||µ|| = 1, (22)

where µ is the mean value of the vMF distribution; σ is the standard deviation; λ = {µ, σ};
Z(σ) is the normalization constant; f j is the feature vector; i is the number of cluster centers;
and fi is the cluster centroid feature vector.

Note that the loss function must be minimized to maximize the vMF probability;
moreover, the feature vector f j is assumed to be assigned to the vMF clustering center
µi during training. In the clustering process, first, a random point was chosen from the
hyperspherical feature points as the centroid of the first class of features; subsequently, the
corresponding loss function was set to classify the nearest k points into one class. Here, k is
the aggregation parameter, which represents the number of feature points clustered close to
the centroid. Next, the second centroid point was determined, and so on, until the spherical
feature points were clustered into n classes to complete the overall clustering process.

Given that the spacing between the features is in the form of arcs as they are situated
on a sphere and move around the sphere as they cluster, their distances cannot be calculated
using only the Euclidean distance. Therefore, the distances between the feature vectors and
center vectors were quantified according to the angle θ between them, and an angle-based
loss function was constructed to constrain the entire clustering process. Figure 6 shows a
cross-section of the unit hypersphere feature.
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The following is the process of derivation. According to the cosine theorem,

cos θ =
∑N

i
(
xi

2 + yi
2)− d2

2
√

∑N
i xi

2·
√

∑N
i yi

2
, (23)

where (x1, x2, . . . , xN), (y1, . . . , yN) denotes two random feature vectors with N dimensions
on the hypersphere; and d denotes the Euclidean distance between them.

Given that the features lie in the unit hypersphere, the radius is 1, which yields

θ = arccos
2− d2

2
. (24)
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The angle-based loss function Lθ can be defined as

Lθ = arccos
2−∑N

n=1 (xi_n − xj_n)
2

2
, (25)

where (xi_1, xi_2, . . . , xi_N) are the coordinates of the i-th cluster center on the unit hyper-
sphere of dimension N, and the size of N depends on the dimension of the feature vectors;
and

(
xj_1, xj_2, . . . , xj_N

)
are the coordinates of the jth feature vector on the unit hyper-

sphere of dimension N. Minimizing Lθ enables better clustering of the k points closest to
the clustering center.

In the process of finding the (i + 1)-th centroid, a probability formula was used, defined
as follows:

p =
d( fi, f j)

2

∑ f j∈F d( fi, f j)
2 , (26)

where fi is the i-th cluster center feature point on the hypersphere; and f j is the jth feature
point on the hypersphere.

Under the constraint of the loss function, feature points are constantly clustered to
form n classes of features on the hypersphere, with each class consisting of k feature points.

3.3.2. Feature Classification

The softmax loss function is normally used for the classification of features. After
inputting the final feature vectors of the fully connected layer, the result is normalized,
the input features are converted into the form of probability, and the one with the highest
probability score is the final result of classification. Unlike the general softmax loss function,
this study used spherical softmax loss which can better describe the distribution of feature
points on the sphere and classify them.

This loss function can be defined as

Ls = −
1
N ∑N

i=1 log
es cos θyi

∑C
j=1 es cos θj

, (27)

where s is the scale factor and s = 5; N is the number of feature points; C is the number of
categories; θyi is the angle between the weight matrix of the sample labels and the feature
vector xi; and θj is the angle between the weight matrix of the jth class of sample labels and
the feature vector xj.

For the final classification, the fine-grained characteristics that were clustered and
mapped onto the hypersphere were fed into the softmax function, and the results of goods
detection under occlusion were output.

4. Experimental Results and Analysis

To evaluate the performance of the proposed algorithm in feature restoration and
product recognition accuracy, an ablation experiment and a comparative experiment are set
up, and the performance of the algorithm is evaluated according to the experimental data.

4.1. Dataset

Owing to the complex situation of smart retail containers in practical applications, at
present, only commodities appear in the open-source dataset, with no character interaction
or alternative complex environments; therefore, the recognition accuracy of the algorithm in
the actual application process cannot be guaranteed. To ensure that commercial standards
can be reached in the actual operation process, the experimental data used in this study
were all obtained from the self-made smart retail container dataset, which contains a total
of 12 types of goods, including canned, bagged, and bottled goods. By filming the entire
process from opening the door to picking up the product and closing the door, the video
frame of the product picture from each angle was captured for training. Among them, the
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lighting conditions were normal indoor lighting and the background was dark owing to the
light strip. Figure 7 shows the number of images for each product in the dataset. Figure 8
shows some of the pictures in our dataset.
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Figure 8. Some of the pictures in our dataset. Below these images are the names of these products.

4.2. Experiment Platform

The experimental platform included an operating system Windows 10, graphics card
NVIDIA GeForce RTX3060, processor AMD Ryzen 7 5800H with Radeon Graphics. The
Pytorch1.11 deep neural network framework and Python3.7 were used to build the network
models. Figure 9 shows the UI Interface of proposed method.
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4.3. Feature Restoration and Expansion Result

Note that owing to the occlusion caused by the hand when purchasing goods, some
of the features of goods are missing, thus causing a decrease in recognition accuracy.
Therefore, feature restoration and expansion were utilized to increase recognition accuracy.
The following experiments were conducted to evaluate the effects of feature restoration and
expansion. Further, a self-made dataset was utilized for feature restoration and expansion,
in which a mask was used to simulate the occlusion caused by the hand.

4.3.1. Ablation Experiment

To justify the effectiveness of the Hausdorff Distance applied in the loss function of
the discriminator in the proposed feature restoration and expansion algorithm in this study,
a video frame during the user picking up the goods was shot and the ablation experiment
was performed with the loss function in WGAN and WGAN-GP, which are the peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). After several
debugging and optimization cycles, the parameters in the code were set with 300 epochs, a
batch size of 32, Adam optimizer, learning rates of the generator and discriminator as 0.0001
and 0.0004, respectively, and the hyperparameters β1 and β2 as 0.5 and 0.9, respectively.
The results of the experiments are listed in Table 1.

Table 1. Ablation experiment of loss function.

Loss Function PSNR SSIM

LossGAN + lossWasserstein 19.0742 0.7367
LossGAN + lossWasserstein−GP 19.2039 0.7481

Ours 1 19.9782 0.7664
1 Ours (lossGAN + lossWasserstein−GP + lossHausdor f f ). Note: Bold is the best result.

4.3.2. Comparison Experiment

To evaluate the capability of the Semantic inference module applied in generative
adversarial network for feature restoration and expansion, the commonly utilized image
inpainting algorithms partial convolution (PC) [35] and edge connect [36] were compared
with the proposed method. Convolution visual evaluation was used to evaluate the effect
of feature restoration and expansion, with experimental results indicating that the proposed
method is superior to the abovementioned methods. The experimental results are shown
in Figure 10.
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4.4. Recognition Results of Occluded Goods
4.4.1. Ablation Experiment

To evaluate the effectiveness of prior GAN and spherical clustering in the occluded
goods recognition algorithm in this study, a neural network ablation experiment based on
DarkNet53 was performed, and its capability was evaluated using the F1 score and mean
average precision (mAP).

F1− Score = 2× precision× recall
precision + recall

, (28)

mAP =
∑N

n=1 AveP(n)
N

, (29)

where N denotes the number of queries; and AveP(n) denotes the average precision.

precision =
TP

TP + FP
, (30)

recall =
TP

TP + FN
, (31)

where TP denotes the positive samples predicted to be positive by the model; FN denotes
the positive samples predicted to be negative by the model; and FP denotes the negative
samples predicted to be positive by the model.

After debugging and optimization, the parameters in the code were set as 100 epochs,
batch size 8, Adam optimizer, a learning rate of 0.0001, and the hyperparameters β1, β2
were both equal to 0.999. The following experiments are based on the parameters used
to train the neural networks and the experimental results are as Table 2. Although both
our F1 score and mAP are superior to other combinations, the optimal parameters remain
to be explored.

Table 2. Parameters of ablation experiment of neural network.

Backbone F1 Score mAP

DarkNet53 (baseline) 0.94 0.934
DarkNet53 + Attention 0.95 0.980
DarkNet53 + Pr-GAN +

Attention 0.95 0.985

Ours 0.98 0.996
Note: Bold is the best result.
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To evaluate the recognition performance of various neural network combinations on
the dataset, the P–R curve, denoting the precision–recall curve, was utilized. In theory, the
larger the area enclosed by the P–R curve and the horizontal and vertical axes, the stronger
the capability of the algorithm. Results demonstrate that the P–R curve of the proposed
method is superior to the following network combinations. The experimental results are
shown in Figure 11.
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4.4.2. Comparison Experiment

To evaluate the effectiveness of feature selection under the proposed attention mecha-
nism, that is, ECA + MSSA, a comparison experiment based on squeeze excitation (SE) [37],
convolutional block attention module (CBAM) [38], and ECA [39] was conducted to com-
pare the attention heatmap with the proposed method. The experimental results are shown
in Figure 12, with the proposed method achieving the best performance.
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[37], convolutional block attention module (CBAM) [38], and ECA [39] was conducted to 
compare the attention heatmap with the proposed method. The experimental results are 
shown in Figure 12, with the proposed method achieving the best performance. 
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To justify the improvement of proposed attention mechanism on increasing the recog-
nition accuracy, the effects of the proposed attention mechanism were compared with
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other attention mechanisms through recognition accuracy; that is, the actual videos of the
purchasing process were recognized and the recognition results of each frame of the videos
were averaged such that the class corresponding to the highest confidence was the ultimate
recognition result of this purchasing process. Recognition accuracy denotes the number of
correctly recognized videos divided by the total number of videos. The recognition accu-
racy in the following experimental results was based on the standard. The experimental
results, including the F1 score, mAP, and recognition accuracy, are listed in Table 3.

Table 3. Parameters of comparison experiment of attention mechanism.

Network Combinations F1 Score mAP Accuracy

DarkNet53 (baseline) 0.94 0.934 0.894
DarkNet53 + SE 0.95 0.980 0.907

DarkNet53 + CBAM 0.96 0.983 0.899
DarkNet53 + ECA 0.96 0.984 0.916

Ours (DarkNet53 + MSSA + ECA) 0.98 0.995 0.937
Note: Bold is the best result.

To evaluate the proposed algorithm for occluded goods recognition, several main-
stream object detection algorithms were compared with the proposed algorithm, and
the F1 score and mAP of each algorithm during the training process were recorded for
comparison. The experimental results are shown in Figure 13.
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During the process of good recognition, a detection frame was drawn on the detected
goods, and on this detection frame, the class and corresponding confidence were marked.
A schematic is shown in Figure 14, which shows different scenarios and the purchasing
process based on different persons.
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To evaluate the generalization capability of various object recognition algorithms, the
smart retail goods were divided into three shapes and the videos of each shape of goods
were recognized in the actual purchasing process. The training effect of each algorithm
reached an optimal state on the same dataset. The recognition accuracy results are presented
in Table 4. The approach in this paper achieved good results, but there is little progress in
the recognition accuracy of canned goods, which needs improvement.

Table 4. Comparison experiment of recognition accuracy of different kinds of goods on
various algorithms.

Algorithm Models Bottle Shaped Can Shaped Bag Shaped

EfficientDet 84.74 88.23 76.94
CenterNet 81.31 62.39 61.87

SSD 82.14 84.23 74.18
Faster-RCNN 82.56 65.60 71.49

RetinaNet 88.47 81.04 74.17
YOLOv5 91.13 83.43 80.57
YOLOX 91.77 96.43 84.62

Ours 94.64 96.80 91.42
Note: Bold is the best result.

To reflect the improvement of the proposed algorithm on the recognition accuracy
of occluded similar goods, a comparison experiment comprising four groups of similar
goods on various algorithms was designed. The recognition accuracy of each good was
recorded, as summarized in Table 5. For similar goods recognition, Table 5 shows that
the proposed approach performs well in most cases, but still has shortcomings in a small
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number of cases such as in recognizing “Sprite_Bottled” and “Little Nongfu Spring”, which
needs improvement.

Table 5. Comparison experiment of recognition accuracy of occluded similar goods on
various algorithms.

Classes of Similar Goods Faster-RCNN SSD RetinaNet YOLOv5 YOLOX Ours

Large C’estbon 95.96 88.67 95.94 99.84 95.87 99.91
C’estbon 75.14 76.21 75.26 80.09 96.74 97.62

Sprite_Canned 59.76 83.54 78.91 81.48 96.44 96.53
Sprite_Bottled 90.92 93.36 90.37 99.89 96.87 97.46

Large Pepsi Cola 86.76 86.04 98.81 97.62 97.68 98.94
Pepsi Cola 83.11 77.64 88.60 97.24 82.79 97.49

Nongfu Spring 77.14 63.08 94.46 91.82 92.16 95.27
Little Nongfu Spring 62.74 84.09 74.18 90.16 89.62 87.46

Average Accuracy 78.94 81.58 87.07 92.27 93.52 96.34

Note: Bold is the best result.

5. Conclusions

This study proposed an algorithm for the recognition of occluded goods under prior
inference and spherical clustering, which resolves not only the problem of few features
of goods caused by hand occlusion but also the occasion when the features of goods are
highly similar.

1. To solve the problem of the small number of good features due to occlusion, the
generator and predictor of the network were pretrained, and noise was used prior
to guide the generation of features. By jumping and connecting context features
for semantic inference, these features could be restored and expanded. The contour
structure loss function based on the Hausdorff Distance designed in this study was
used in the process of feature restoration and expansion to ensure the generation of
accurate contour features.

2. To resolve the situation in which the product features are highly similar, MSSA+ECA
was used to select the features in a fine-grained manner and the most discriminative
features were screened out. The spherical model under the vMF distribution was used
to map the feature vectors to the unit hypersphere and cluster it, thereby increasing the
distance between features. In the spherical feature clustering process, the angle loss
function designed in this study was used to effectively improve the clustering effect.

The experimental results in this study achieved good subjective and objective evalua-
tion results, thus proving the feasibility and effectiveness of the proposed method. However,
the proposed algorithm must be optimized and improved. Given that feature restoration
and clustering require a certain amount of time and the consumption scenarios are complex,
the real-time performance and generalization ability of the algorithm need to be improved
in future research. Additionally, the algorithm process can be further explored to improve
real-time and generalization capabilities to deal with more complex situations. In the future,
the algorithm can be applied to the unmanned smart vending method of goods in shopping
malls, supermarkets, and other places to provide a reliable and good recognition method
for the smart retail field.
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