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Abstract: Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and
the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting
systems, but also fitness and medical information awareness in daily life. In the last decade, human
activity recognition (HAR) has been extensively studied because of the strong correlation between
people’s activities and their physical and mental health. HAR can also be used to care for elderly
people in their daily lives. This study proposes an HAR system for classifying 18 types of physical
activity using data from sensors embedded in smartphones and smartwatches. The recognition
process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure
consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU
(BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN)
with a regularized extreme machine learning (RELM) algorithm was used. The experimental results
show an average precision of 98.3%, recall of 98.4%, an F1-score of 98.4%, and accuracy of 98.3%,
which results are superior to those of existing schemes.

Keywords: mHealth; human activity recognition; bidirectional gated recurrent unit (BiGRU);
regularized extreme machine learning (RELM)

1. Introduction

In 2019, the World Health Organization (WHO) proposed guidelines for digital health
interventions which provide information on the potential benefits, harms, feasibility, and
resources required for such interventions [1]. Digital health techniques include mobile
health (mHealth) and electronic health (eHealth) and have been recognized as important
tools for combating pandemic diseases [2,3]. mHealth employs mobile devices, mobile
communication techniques, and the Internet of Things (IoT) to enhance healthcare in various
areas, including traditional telemedicine, healthcare monitoring and alerting systems, drug-
delivery programs, and medical information awareness, detection, and prevention [4–6].

Presently, smartphones and smartwatches are the most important mobile devices in
mHealth [7,8]. They are equipped with various sensors and have many applications in
the monitoring, prevention, and detection of diseases. In more advanced services, they
can even provide basic diagnoses for conditions such as cardiology [9,10], diabetes [11,12],
obesity [13,14], smoking cessation [15], and chronic diseases [16]. Health and fitness appli-
cations (apps), which can detect the numbers of steps walked and stairs climbed in a day
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using accelerometers and gyroscopes, are the most popular apps. These physical activities
are used to calculate the number of calories spent. Over the past decade, recognition of
physical activities has been applied to prevent falls among the elderly [17–19]. However,
with the COVID-19 pandemic and an aging society, monitoring quarantined or elderly
individuals has become a major issue in mHealth. Numerous studies have shown that
people’s activities have strong correlations with their physical and mental health [20,21].
Therefore, recognizing physical activities using accelerometers and gyroscopes embedded
in smartphones and smartwatches is a critical challenge in mHealth.

In recent years, deep learning (DL) and machine learning (ML) have been widely
applied in mHealth [22–25]. In these studies, DL and ML models are not only used
for diagnosing, estimating, mining, and delivering physiological signals, but also for
preventing chronic diseases. However, in mHealth, the big data need to be delivered to
servers, such as hospitals or health management centers. Therefore, telecommunications
and navigation technologies are also important, in which the technologies of artificial
intelligence have been applied [26,27]. Stefanova-Pavlova et al. proposed the refined
generalized net (GN) to track users’ locations [28]. Silva et al. used Petri nets to process
the reliability and availability of wireless sensor networks in a smart hospital [29]. Ruiz
et al. proposed a tele-rehabilitation system to assist with physical rehabilitation during the
COVID-19 pandemic [30].

Convolutional neural networks (CNNs) can extract features from signals, while long
short-term memory (LSTM) can recognize time-sequential features. Therefore, some studies
have proposed deep neural networks that combine CNNs and LSTM to recognize physical
activities [31,32]. Li et al. utilized bidirectional LSTM (BiLSTM) for continuous human
activity recognition (HAR) and fall detection with soft feature fusion between the signals
measured by wearable sensors and radar [33]. The extreme learning machine (ELM) has
shown excellent results in classification tasks with extremely fast learning speed [34]. Chen
et al. proposed an ensemble ELM algorithm for HAR using smartphone sensors [35].
Their results showed that the performance was better than those of other methods, such
as artificial neural networks (ANNs), support vector machines (SVMs), random forests
(RFs), and deep LSTM. In order to improve the accuracy of HAR systems, more complex
deep learning models have been proposed. Tan et al. used smartphone sensors for HAR.
They proposed an ensemble learning algorithm (ELA) that combined a gated recurrent
unit (GRU), a hybrid CNN+GRU, and a multilayer neural network, then fused them with
the fully connected three layers [36]. In 2020, the International Data Corporation (IDC)
reported that wearable devices are being used more frequently to monitor health due to the
COVID-19 pandemic, resulting in a 35.1% increase in smartwatch sales [37]. Thus, more
activities could be classified and higher accuracies could be approached if smartphones
and smartwatches are synchronously used for HAR. Weiss et al. used smartphone and
smartwatch sensors for HAR with an RF algorithm [38]. Mekruksavanich et al. also used
smartphone and smartwatch sensors for HAR with a hybrid deep learning model called
CNN+LSTM [39]. Prior studies have shown that adding hand-movement signals measured
by smartwatch sensors can enhance the accuracy of HAR.

To improve the accuracy of HAR systems, the development of more complex deep
learning models will be necessary. Thus, this study focuses on recognizing 18 different
physical activities, including body and hand movements, as well as eating movements,
utilizing data from sensors embedded in smartphones and smartwatches. The recognition
process involves two steps: feature extraction and HAR. To extract features, a hybrid
structure was used that consisted of a CNN and a recurrent neural network (RNN), while a
multilayer perceptron neural network (MPNN) was used for the recognition of activities.
The RNN was replaced with various other models, such as LSTM, GRU, BiLSTM, and
bidirectional GRU, to optimize the hybrid structure. The MPNN was trained separately
using backpropagation (BP), the ELM, and the regularized ELM (RELM). The HAR dataset
used in this study was obtained from the UCI Machine Learning Repository and specifically
the WISDM smartphone and smartwatch activity and biometrics dataset [31]. According to
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the experimental results, the proposed HAR system demonstrated superior performance
when compared to the systems developed in existing studies.

2. Materials and Methods

The proposed HAR system has three components: a data processing unit, a feature
extraction unit, and a classification unit, as illustrated in Figure 1. Physical activity sig-
nals are captured by a smartphone and a smartwatch and are subsequently sampled,
segmented, and reshaped for further processing. The sensor data features are extracted
using a hybrid CNN+RNN model. Finally, an MPNN is employed to classify the 18 types of
physical activities.
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feature extraction unit, and the classification unit.

2.1. UCI-WIDSM Dataset

The UCI-WISDM dataset [40] is comprised of tri-axial accelerometer and gyroscope
data obtained from 51 volunteer subjects. The subjects carried an Android phone (a Google
Nexus 5/5x or a Samsung Galaxy S5) in a front pocket of their pants and wore an Android
watch (an LG G Watch) on their wrist while performing eighteen activities, which were
categorized as body movements (walking, jogging, walking up stairs, sitting, and stand-
ing) included in many previous studies, hand movements (kicking, dribbling, catching,
typing, writing, clapping, brushing teeth, and folding clothes) representing activities of
daily life, and eating movements (eating pasta, drinking soup, eating a sandwich, eating
chips, and drinking from a cup) to investigate the feasibility of automatic food-tracking
applications [38]. The data were sampled at a rate of 20 Hz, and the 12 signals were seg-
mented into fixed-width sliding windows of 6.4 s with 50% overlap between them. Each
sample contained 12-channel signals, and each channel comprised 128 points. Samples
containing two activities were removed. The numbers of training and testing samples were
34,316 and 14,707, respectively, and the sample numbers for each of the eighteen activities
are presented in Table 1.

Table 1. Sample numbers of eighteen activities for model training and testing with the
UCI-WISDM dataset.

Activity Training Number Testing Number

Walking 1921 807
Jogging 1901 827

Walking up stairs 1920 808
Sitting 1895 833

Standing 1891 837
Kicking (soccer ball) 1932 797

Dribbling (basketball) 1906 822
Catching (tennis ball) 1893 835
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Table 1. Cont.

Activity Training Number Testing Number

Typing 1885 843
Writing 1880 766

Clapping 1945 783
Brushing teeth 1876 852
Folding clothes 1919 809

Eating pasta 1915 814
Drinking soup 1928 800

Eating a sandwich 1950 778
Eating chips 1898 830

Drinking from a cup 1861 866

2.2. Feature-Extraction Model

Figure 2 illustrates a feature-extraction model that employs a hybrid CNN and RNN
to extract the features of sensor signals. The fully connected layer, consisting of three layers,
is used to classify the 18 types of physical activities. After training, the outputs of the RNN
for the training samples serve as the feature samples to train the activation-classification
models. Since the human movements in each activity occur in chronological order, the
sensor signals represent time-sequential data. To address this, a time-distributed layer
comprising four 1D CNNs (i.e., four pairs of CNNs with three layers and a maximal pool
layer as the last layer) is stacked on top of the RNN. This separates a sample into four
segments, with each segment containing 32 points. In the convolutional layer, the number
of filters is 64; the kernel sizes are 3, 5, and 13; the stride is 1; and the padding is 4. In the
pooling layer, the kernel size is 2, and the stride is 2. The activation function employed
is ReLU. The RNN is replaced with the LSTM, BiLSTM, GRU, or BiGRU, with the unit
numbers of LSTM and GRU set to 128 and those of BiLSTM and BiGRU set to 256. The
batch size is set to 32, with the control reset gate and update gate using a sigmoid function
and the hidden state using a tanh function. The numbers of full connection layers are 128,
64, and 18, respectively, with ReLU used as the activation function in hidden layers and
softmax in the output layer. The loss function is the categorical Cross-Entropy (CE) function,
and the Adam optimizer is used [41], with the learning rate set to 0.0001. Equation (1) is
the formula for categorical CE:

CE = − log (
exp(ak)

∑M
i=1 exp(ai)

) (1)

where M is 18, ak is the score of softmax for the positive class, and ai is the score inferred by
the net for each class.
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2.3. Activation-Classification Model

The activation-classification model is a single-layer feedforward neural network
(SLFN) with the ELM algorithm [42]. Its advantages are the convergent time being shorter
than that of the BP method and its not converging to the local minimum. For an SLFN,
a training set S = {(Xr, Yir| Xi = (xr1, xr2, . . . , xrn)T ∈ Rn, Yr = (yr1, yr2, . . . , yrm)T ∈ Rm},
where Xr denotes the rth input vector and Yr represents the rth target vector. The output o
of SLFN with l hidden neurons can be expressed as:

ok =
l

∑
j=1

βkj f
(
WijXij + bj

)
, k = 1, . . . , m, (2)

where f (x) is the activation function in the hidden layer, Wji is the weight vector from the
input layer to the jth hidden node, Wji = (wj1, wj2, . . . ,wjn) ∈ Rn, bj is the bias of the jth
hidden node, βk is the weight vector from the hidden nodes to kth output layer, and l is
the number of hidden layers. In the ELM, activation functions are nonlinear functions that
provide nonlinear mapping for the system. Or is the rth output vector. Mean square error
(MSE) is the object function:

MSE =
N

∑
i=1

(Yi −Oi)
2, (3)

where N is the number of samples. The MSE will approach 0 as the number of hidden
nodes approaches to infinity. The output o of SLFN is equal to the target output y. Thus,
Equation (2) could be described as follows:

yk =
l

∑
j=1

βkj f
(
WijXij + bj

)
, k = 1, . . . , m. (4)

Y = Hβ, (5)

where Y is the output matrix, H is the matrix of the activation function in the hidden
layer, and β is the weight matrix from the hidden nodes to the output layer. ELM uses
random parameters Wij and bj in its hidden layer, and they are frozen during the whole
training process.

β = H†Y, (6)

where H† is the Moore–Penrose inverse. The resident, εi, is between the target and output
values of the ith sample.

However, the ELM has the risk to approach the result of over-fitting model because it
bases on the empirical risk minimization principle [43]. Den et al. proposed a regularized
ELM (RELM) that used a weight factor γ for empirical risk [44].

min
1
2
‖β‖2 +

1
2

γ‖ε‖2, (7)

In order to obtain a robust estimate weakening outlier interference, εi can be weighted by a
factor vi. Equation (7) is changed thus:

min
1
2
‖β‖2 +

1
2

γ‖Dε‖2 (8)

where D = dia log(v1, v2, . . . , vN) and ε = [ε1, ε2, . . . , εN ]. The method of Lagrange
multipliers is used to search for the optimal solution of Equation (8):

L(β, ε, α) =
1
2
‖β‖2 +

γ

2
‖Dε‖2 − α(Hβ−O− ε) (9)
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where α is the Lagrange multiplier with the equality constraints of Equation (9). Setting
the gradients of L(β,ε,α) equal to zero gives the following Karush–Kuhn–Tucker (KKT)
optimality conditions [44,45]:

α = −γ(Hβ− T)T (10)

β =

(
I
γ
+ HT D2H

)†
HT D2T (11)

εi =
αi
γ

, (i = 1, 2, . . . , N) (12)

2.4. Experimental Protocol

The hardware used in this study comprised an Intel Core i7-8700 CPU and a GeForce
GTX1080 GPU. The operating system used was Ubuntu 16.04LTS, with development being
conducted in Anaconda 3 for Python 3.7. The deep learning tool used was Pytorch 1.10, and
the compiler used was Jupyter Notebook. To assess the proposed method’s performance,
we evaluated the optimal feature-extraction model and the activation-classification model
for HAR separately.

In the feature-extraction model, the RNN was replaced with LSTM, BiLSTM, GRU,
and BiGRU, separately. The training samples were used to adjust the parameters of the
hybrid CNN+RNN, while the testing samples were used to evaluate the performances of
these RNNs. The feature-extraction model that achieved the best performance was one in
which the RNN outputs for all training and testing samples were used as the new training
and testing samples to evaluate the activation-classification model.

In the activation-classification model, a multilayer perceptron neural network (MPNN)
was used to classify the 18 physical activities. The output number of the MPNN was 18, and
the input number depended on the number of RNN outputs. The training algorithms used
were BP, ELM, and RELM. The number (l) of hidden layers and the regularized parameter
(γ) of RELM were optimized using the grid-search method to find the optimal values.

2.5. Statistical Analysis

According to the proposed method, a sample was considered a true positive (TP)
when the classification activity was correctly recognized, as a false positive (FP) when
the classification activity was incorrectly recognized, as a true negative (TN) when the
activity classification was correctly rejected, and as a false negative (FN) when the activity
classification was incorrectly rejected. In this work, the performance of the proposed
method was evaluated using the measures given by Equations (13)–(16):

Precision (%) =
TP

TP + FP
× 100% (13)

Recall (%) =
TP

TP + FN
× 100% (14)

F1 − score (%) =
2× precision× Recall

Precision + Reacll
× 100% (15)

Accuracy (%) =
TP + TN

TP∓ TN + FP + FN
× 100% (16)

3. Results

In order to evaluate the effectiveness of the proposed method, we will present three
sets of results: those for the feature-extraction model, the activation-classification model,
and the training times of the models.
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3.1. Analysis of the Feature-Extraction Model

The learning curves for the hybrid CNN+LSTM model are depicted in Figure 3, where
(a) and (b) represent the accuracy and loss curves, respectively. The blue line corresponds
to the training data, while the original line corresponds to the validation data. The optimal
values for the accuracy and loss function are achieved at epoch 29. When applied to the
testing data, the model achieved an average precision, recall, F1-score, and accuracy of
93.8%, 93.8%, 93.8%, and 94.1%, respectively. The total training time for the model was
130.26 s. In Figure 4, the learning curves for the hybrid CNN+GRU model are presented,
where (a) and (b) denote the accuracy and loss curves, respectively. The blue line represents
the training data, while the original line represents the validation data. The optimal values
for the accuracy and loss function are attained at epoch 28. When evaluated on the testing
data, the model achieved an average precision, recall, F1-score, and accuracy of 92.6%,
92.6%, 92.5%, and 92.2%, respectively. The total training time for the model was 98.67 s. The
learning curves for the hybrid CNN+BiLSTM structure are displayed in Figure 5, where
(a) and (b) represent the accuracy and loss curves, respectively. The blue line corresponds
to the training data, while the original line corresponds to the validation data. The optimal
values for the accuracy and loss function are achieved at epoch 30. When applied to the
testing data, the model achieved an average precision, recall, F1-score, and accuracy of
95.3%, 95.3%, 95.3%, and 95.3%, respectively. The total training time for the model was
138.86 s. In Figure 6, the learning curves for the hybrid CNN+BiGRU model are presented,
where (a) and (b) denote the accuracy and loss curves, respectively. The blue line represents
the training data, while the original line represents the validation data. The optimal values
for the accuracy and loss function are attained at epoch 29. When evaluated on the testing
data, the model achieved an average precision, recall, F1-score, and accuracy of 95.7%, 95.4%,
95.5%, and 95.2%, respectively. The total training time for the model was 108.69 s. Table 2
provides an overview of the performances of four feature-extraction models. Although
the hybrid structures with BiLSTM and BiGRU require more training time per epoch than
LSTM and GRU (4.60 s vs. 4.49 s and 3.74 s vs. 3.52 s, respectively), their testing accuracies
are superior to those of LSTM and GRU (95.3% vs. 94.1% and 95.2% vs. 92.2%). Given that
the hybrid structure with BiGRU saves 19% of training time compared to BiLSTM and that
their accuracies are very similar (95.25% vs. 95.3%), the feature-extraction model based on
the hybrid CNN+BiGRU structure was chosen for building the HAR system.

Table 2. The performances of the feature-extraction models with LSTM, GRU, BiLSTM, and
BiGRU, separately.

RNN Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Training Time
(s/epoch)

LSTM 93.8 93.8 93.1 94.1 4.49
GRU 92.6 92.6 92.5 92.2 3.52
BiLSTM 95.3 95.3 95.3 95.3 4.60
BiGRU 95.7 95.4 95.5 95.2 3.74
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3.2. Analysis of the Activation-Classification Model

To classify the 18 types of physical activities, an MPNN was utilized, where the input
and output nodes were set to 256 and 18, respectively. The MPNN was trained using three
activation-classification algorithms: BP, ELM, and RELM. The performance of ELM and
RELM was influenced by two parameters: the regularized index (γ) and the number of
hidden layers (l).

3.2.1. Performance of the MPNN with the BP Algorithm

The MPNN with the BP algorithm had two hidden layers with 128 and 64 nodes,
respectively, where ReLU was used as the activation function in the hidden layers and
softmax in the output layer. Table 3 shows the performances of the MPNN with the BP
algorithm for 18 physical activities on the testing data. The model achieved an average
precision of 97.1%, an average recall of 97.2%, an average F1-score of 97.2%, and an accuracy
of 97.2%. The total training time was 10.563 s. Among the 18 activities, the worst F1-scores
were obtained for the eating pasta, catching a ball, and eating a sandwich activities, which
all involve hand and eating movements.
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Table 3. The performances of the MPNN with the BP algorithm for 18 types of physical activities.

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Walking 97.2 98.0 97.6

97.2

Jogging 97.3 98.8 98.0
Stairs 97.7 97.0 97.3
Sitting 98.0 97.2 97.6
Standing 98.6 98.0 98.3
Kicking 95.8 96.4 96.1
Dribbling 96.6 97.1 96.8
Catching a ball 95.9 95.0 95.4
Typing 98.8 99.1 98.9
Writing 99.0 98.5 98.7
Clapping 97.5 98.0 97.7
Brushing teeth 97.3 97.3 97.3
Folding clothes 98.0 99.1 98.5
Eating pasta 95.0 94.9 94.9
Drinking soup 96.6 96.6 96.6
Eating a sandwich 95.1 96.2 95.6
Eating chips 96.8 96.9 96.8
Drinking from a cup 96.7 96.3 96.5

Average 97.1 97.2 97.2

3.2.2. The Optimal Parameters of the RELM

The SLFN utilized both ELM and RELM algorithms, and the optimal parameters for
the RELM were determined using a grid-search method. For the RELM, the regularized
index (γ) was set to 5 × 10−4, and the number of hidden layers was gradually increased
from 256 nodes to 8000 nodes. Table 4 displays the testing accuracies and training times
for various numbers of hidden layers. The highest accuracy of 98.35% and a training time
of 3.80 s were achieved with 6000 hidden nodes. After that, when l was fixed at 6000, γ
gradually increased from 5 × 10−4 to 4. Table 5 shows the testing accuracies and training
times for different regularized indexes. It was observed that the most accurate results and
the highest training time were obtained when γ was set to 5 × 10−4. In Equation (7), the
empirical risk, ‖ε‖2, is regularized by γ. Thus, the performances of the ELM and RELM
would be close in this study.

Table 4. The testing accuracies and training times for various numbers of hidden layers with γ set at
5 × 10−4.

N Accuracy
(%)

Training
Time (s) N Accuracy

(%) Training Time (s)

256 97.10% 2.49 2000 97.85% 2.654
300 97.33% 2.402 2500 97.88% 2.757
400 97.54% 2.414 3000 97.91% 2.892
500 97.60% 2.393 3500 97.97% 2.989
600 97.60% 2.444 4000 97.98% 3.093
700 97.65% 2.492 4500 98.01% 3.223
800 97.70% 2.528 5000 98.05% 3.317
900 97.74% 2.506 5500 98.15% 3.466

1000 97.76% 2.603 6000 98.25% 3.802
1100 97.78% 2.592 6500 98.02% 3.826
1200 97.81% 2.600 7000 98.05% 3.886
1300 97.81% 2.617 7500 97.99% 3.894
1400 97.82% 2.622 8000 98.05% 4.116
1500 97.83% 2.624
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Table 5. The testing accuracies and training times for the different regularized indexes with l set
at 6000.

γ Accuracy (%) Training Time (s)

4 50.69 3.530
2 96.95 3.348
1 97.70 3.359

5 × 10−1 97.80 3.414
1 × 10−1 97.82 3.616
5 × 10−2 97.85 3.484
1 × 10−2 97.86 3.512
5 × 10−3 97.92 3.607
1 × 10−3 98.04 3.584
5 × 10−4 98.25 3.802

3.2.3. Performances of the SLFN with the ELM and RELM Algorithms

For the ELM algorithm, the SLFN had one hidden layer with 6000 nodes. Figure 7
shows the confusion matrix of the classification of eighteen activities. The performances
of writing, clapping, brushing teeth, eating chips, and drinking from a cup activities were
better than those for the ELM algorithm. Table 6 presents the performances of the SLFN
with the ELM algorithm on the testing data. The model achieved an average precision of
97.9%, a recall of 97.9%, an F1-score of 97.9%, and an accuracy of 97.8%. The total training
time was 7.52 s. The F1-scores for the eating pasta, catching a ball, and eating a sandwich
activities rose to 98.0%, 96.4%, and 98.1%, respectively.
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Table 6. The performances of SLFN with the ELM algorithm for 18 types of physical activities.

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Walking 99.1 99.3 99.2

97.8

Jogging 100.0 100.0 100.0
Stairs 98.2 97.9 98.0
Sitting 97.8 98.2 98.0
Standing 98.5 99.1 98.8
Kicking 95.2 96.8 96.0
Dribbling 98.3 97.8 98.0
Catching a ball 96.6 96.2 96.4
Typing 98.0 97.8 97.9
Writing 99.1 97.0 98.0
Clapping 97.2 98.1 97.6
Brushing teeth 95.4 97.1 96.2
Folding clothes 99.0 97.5 98.2
Eating pasta 98.3 97.7 98.0
Drinking soup 97.6 98.5 98.0
Eating a sandwich 97.7 98.5 98.1
Eating chips 96.9 96.9 96.9
Drinking from a cup 98.7 98.0 98.3

Average 97.9 97.9 97.9

For the RELM algorithm, l was set to 6000 for the SLFN, and γ was set to 5 × 10−4.
Figure 8 shows the confusion matrix of the classification of eighteen activities. The eating
pasta activity was easily confused with the drinking soup and drink from a cup activities.
Catching a ball was easily confused with kicking a ball. Table 7 shows the performances of
the SLFN with the RELM algorithm on the testing data. The model achieved an average
precision of 98.3%, a recall of 98.4%, an F1-score of 98.4%, and an accuracy of 98.3%. The
total training time was 3.59 s. The F1-scores for the eating pasta, catching a ball, and eating
a sandwich activities rose to 98.1%, 97.6%, and 99.2%, respectively.
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Table 7. The performances of the SLFN with the RELM algorithm for 18 types of physical activities.

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Walking 99.1 99.2 99.1

98.25

Jogging 99.4 100.0 99.7
Stairs 97.8 97.8 97.8
Sitting 98.2 98.3 98.2

Standing 99.0 99.7 99.3
Kicking 97.3 97.0 97.1

Dribbling 98.1 98.7 98.4
Catching a ball 97.9 97.3 97.6

Typing 99.1 99.0 99.0
Writing 98.8 98.8 98.8

Clapping 98.0 97.0 97.5
Brushing teeth 96.3 97.6 96.9
Folding clothes 99.1 98.8 98.9

Eating pasta 98.0 98.3 98.1
Drinking soup 97.7 97.9 97.8

Eating a sandwich 100.0 98.4 99.2
Eating chips 97.9 98.0 97.9

Drinking from a cup 98.5 99.1 98.8

Average 98.3 98.4 98.4

4. Discussion

The proposed HAR system involves the use of a hybrid CNN+RNN model to extract
activation features from accelerometers and gyroscopes in smartphones and smartwatches.
This method was originally proposed by Tan et al. [36]. Since the accelerometer and
gyroscope signals for activities are time-sequential, the performance of different RNN
models can vary for HAR. In this study, LSTM, GRU, BiLSTM, and BiGRU were explored,
and the classifying performances of BiLSTM and BiGRU were found to be very similar.
However, BiGRU had a shorter training time than BiLSTM (108.69 s vs. 138.86 s) and
was therefore used to extract the activation features. To enhance the performance of the
classifier, the SLFN with the RELM algorithm was used. The ELM algorithm, which utilizes
an SLFN with hidden neural weights and bias, was proposed by Huang et al. [46,47].
The ELM has an extremely fast training time and good generalized performance. Deng
et al. proposed the RELM, which is based on the structural risk minimization principle
of statistical learning theory and overcomes the drawbacks of the ELM [44]. Table 8
summarizes the total performances of the activation-classification models, the MLNN with
BP, and the SLFN with the ELM and RELM. It was found that the classifying performances
of the ELM and RELM were very similar (97.8% vs. 98.2% accuracies). The reason for this
was the very small regularized weight, γ. However, the training time of the ELM was
shorter (7.52 s vs. 10.56 s). However, the RELM exhibited the best performance for HAR
despite its longer total testing time (feature extraction plus classification) compared to the
ELM (0.038 s vs. 0.025 s).

Table 8. Total performances of activation-classification models: MLNN with BP and SLFN with the
ELM and RELM.

MPNN with BP SLFN with ELM SLFN with RELM

Precision (%) 97.1 97.9 98.3
Recall (%) 97.2 97.9 98.4
F1-score (%) 97.2 97.9 98.4
Accuracy (%) 97.2 97.8 98.2
Training time (s) 10.56 7.52 3.59
Total testing time (s) 0.103 0.025 0.038
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Table 9 presents a comparative analysis of our proposed method with those of other
studies that utilized the UCI-WISDM smartphone and/or smartwatch activity and bio-
metrics dataset for six/eighteen activities. Previous studies [36,48–52] only classified six
activities, while studies [38,39] classified eighteen activities. As shown, the proposed HAR
system using the hybrid CNN+BiGRU model and the SLFN with the RELM achieved an
F1-score and an accuracy of 98.4% and 98.2%, respectively, which are among the best results
reported in the literature.

Table 9. Comparative results of various methods using the UCI-WISDM dataset.

Ref. Classification Method Activities/
Wearable Devices F1-Score (%) Accuracy (%)

[36] CNN+GRU 6/phone 91.7 NA

[38] Riege forest 18/phone and watch NA 94.4
[39] CNN+LSTM 18/watch 96.3 96.2
[48] CNN+handcrafted features 6/phone NA 93.3
[49] ConvAS 6/phone NA 94.9
[50] CNN+LSTM 6/phone and watch NA 96.0

[51] Hesitant fuzzy belief
structures 6/phone and watch NA 95.82

[52] ConvAE-LSTM 6/Phone 97.4 97.1

Proposed method Hybrid CNN+BGRU
SLFN with RELM 18/phone and watch 98.4 98.2

For the opening HAR datasets, the sensors, which are all accelerometers and gyro-
scopes, are embedded in smartphones or smartwatches or are body-worn [38,52]. The
greater the number of sensors, the higher the accuracy of HAR. Table 10 displays the
F1-scores of 18 physical activities using the accelerometers and gyroscopes embedded in the
smartphones and smartwatches. We explored the performance of our proposed method
when only using these sensors, specifically, either the accelerometers or the gyroscopes.
When HAR used the sensors of the smartphones and smartwatches, the average F1-scores
were 90.7% and 89.1%, respectively. When only the accelerometers or gyroscopes of the
smartphones and smartwatches were used for HAR, the average F1-scores were 94.1% and
76.9%, respectively. These results suggest that the accelerometers provide more information
than the gyroscopes for HAR.

Table 10. F1-scores of 18 physical activities using the accelerometers and gyroscopes embedded in the
smartphones and smartwatches.

Activities
Phone Watch

Phone Watch Acce. Gyro. All
Acce. Gyro. Acce. Gyro.

Walking 96.3 93.1 94.8 89.7 99.2 96.3 98.1 83.2 99.2
Jogging 97.0 97.1 98.5 94.1 97.8 98.7 97.6 96.7 99.7
Stairs 88.2 79.7 80.0 69.7 92.3 89.2 95.12 78.7 97.8
Sitting 83.6 40.5 80.6 55.0 91.4 87.5 94.3 68.4 98.3

Standing 88.3 58.1 89.2 61.8 93.7 90.7 93.1 68.8 99.3
Kicking 79.8 70.4 87.7 77.7 90.0 89.7 92.9 77.0 97.2

Dribbling 84.4 60.5 91.6 74.14 90.5 93.6 95.2 87.3 98.4
Catching 76.2 70.5 95.3 80.4 87.2 91.7 89.0 90.3 97.6
Typing 91.3 40.0 94.3 77.2 90.6 96.0 94.2 81.2 99.1
Writing 89.6 54.4 88.7 71.8 91.8 89.9 96.2 78.7 98.8

Clapping 89.0 77.4 96.0 83.3 91.7 96.5 94.3 94.4 97.5
Brushing teeth 87.6 61.7 95.5 75.5 88.39 97.0 92.5 89.9 97.0
Folding clothes 82.5 62.2 90.7 67.2 91.1 95.1 95.0 83.0 98.9

Eating pasta 85.5 25.5 77.3 54.5 89.6 85.4 90.9 63.1 98.2
Drinking soup 80.1 27.6 78.5 56.2 84.7 83.1 93.1 66.5 97.8

Eating a sandwich 83.6 15.6 48.7 26.3 90.6 69.8 94.8 42.2 99.2
Eating chips 81.4 21.0 66.8 41.4 81.9 71.7 89.3 50.0 98.0

Drinking from a cup 85.7 26.4 77.7 55.8 89.7 81.9 96.2 67.1 98.8

Average 86.2 54.6 85.2 67.4 90.7 89.1 94.1 76.0 98.4
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5. Conclusions

The proposed deep learning model utilizes the hybrid CNN+BiGRU for feature extrac-
tion from the signals of sensors embedded in smartphones and smartwatches and the SLFN
with the RELM algorithm for the classification of 18 physical activities, including body,
hand, and eating movements. The experimental results demonstrate that the proposed
model outperforms other existing schemes that utilize deep learning or machine learning
methods in terms of F1-scores and accuracy. Notably, the worst F1-score was found in the
classification for brushing teeth. Our investigation shows that using different deep learning
models for feature extraction and classification during the training phase can effectively
increase recognition accuracy and training time. Moreover, since the data are recorded
by smartphones and smartwatches, our proposed method has the potential to be used for
mHealth in real time in environments without embedding of wireless sensor networks. The
weakness of this study is that it ignores signals sent when two activities are transferring.
Thus, in the future, we will explore this problem.
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