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Abstract: This paper presents a scheduling problem of using multiple synthetic aperture radar (SAR)
satellites to observe a large irregular area (SMA). SMA is usually considered as a kind of nonlinear
combinatorial optimized problem and its solution space strongly coupled with geometry grows
exponentially with the increasing magnitude of SMA. It is assumed that each solution of SMA yields
a profit associated with the acquired portion of the target area, and the objective of this paper is to
find the optimal solution yielding the maximal profit. The SMA is solved by means of a new method
composed of three successive phases, namely, grid space construction, candidate strip generation
and strip selection. First, the grid space construction is proposed to discretize the irregular area into
a set of points in a specific plane rectangular coordinate system and calculate the total profit of a
solution of SMA. Then, the candidate strip generation is designed to produce numerous candidate
strips based on the grid space of the first phase. At last, in the strip selection, the optimal schedule for
all the SAR satellites is developed based on the result of the candidate strip generation. In addition,
this paper proposes a normalized grid space construction algorithm, a candidate strip generation
algorithm and a tabu search algorithm with variable neighborhoods for the three successive phases,
respectively. To verify the effectiveness of the proposed method in this paper, we perform simulation
experiments on several scenarios and compare our method with the other seven methods. Compared
to the best of the other seven methods, our proposed method can improve profit by 6.38% using the
same resources.

Keywords: multiple SAR satellites; scheduling method; grid space; strip generation; variable
neighborhood tabu search algorithm

1. Introduction

Synthetic aperture radar (SAR) satellites can acquire images of specified areas of the
Earth’s surface at observation requests with all-day and all-weather imaging capacity [1,2].
Image products acquired by SAR satellites are widely used in many fields, such as emer-
gency response in environments [3], target recognition and classification [4], urban planning
and architectural layout [5], and crop detection and disaster prevention [6,7]. With the
enhancement of imaging capabilities of SAR and the rapid growth in the number of SAR
satellites, customers are increasingly demanding timeliness in SAR image acquisition [8].
Therefore, it is necessary to use multiple SAR satellites with similar spatial resolutions for
ensuring quicker access to images of the target area [9].

The SMA can be described as follows: There is a large irregular area to be observed
and several SAR satellites on various orbits. The aim is to develop the optimal observation
schedule for each SAR satellite to acquire the maximal profit during the given schedule
time horizon. Therefore, SMA is a non-deterministic polynomial (NP-Hard) [10] and is
highly relevant to inventory [11], allocation [12], backpacking [13] and machine scheduling
problems [14].
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The difficulties in solving the SMA are as follows: (1) The SMA, which is strongly
coupled with geometry, has complicated forms and many constraints. (2) The variable that
represents the look angle takes its value from a continuous interval. Hence, the number of
solutions is infinite. (2) Taking the overlap between strips and the irregularity of the target
area into account, it is difficult to directly calculate the coverage of a specific strip. Based on
the above aspects, previous studies adopt heuristic algorithms and their variants instead of
exact algorithms to find the optimal solution of the SMA.

The current method to solve the SMA is composed of three successive phases, namely,
grid space construction, target decomposing and strip selection (GTS) [15]. In the grid space
construction, an area discretization method is proposed to discretize the target area into a
set of points in a specific plane rectangular coordinate system and calculate the total profit
of a solution, which is a subset of candidate strips. In the target decomposing, the target
area is split into several parallel candidate strips following the direction of the subpoint
trajectory of the SAR satellite. The SAR satellite could capture the whole image of the
region corresponding to a candidate strip in a single orbit during the given schedule time
horizon. The way of parallel splitting allows the variable that represents the look angle
to take values from discrete space, thus reducing the complexity of the SMA [15]. In the
strip selection, a solution is a subset of candidate strips and the aim is to find the optimal
solution corresponding to the maximum profit in solution space.

The GTS can be further improved to solve the SMA. In the grid space construction, it
is easy to generate a grid space in a rectangular area, whereas the target area to be observed
in the imaging mission is generally irregular. Therefore, designing a normalized strategy
to generate a grid space for an irregular area is necessary. In the target decomposing,
the parallel split method produces several parallel candidate strips with a fixed length
and location at each orbit of the SAR satellite. Hence, some better solutions in a global
context are likely to be excluded in the strip selection. An effective alternative strategy is to
generate more candidate strips with flexible positions and lengths according to the grid
of the first phase. Thus, there will be more high-quality solutions available for the strip
selection phase. Accordingly, a new three-phase method for SMA is proposed in this paper
and the main improvements are made as follows.

(1) A new three-phase method composed of grid space construction, candidate strip
generation and strip selection (GCS) is developed to solve the SMA in this paper. The
main difference between GCS and GTS is the second phase in which grid split is applied
in GCS whereas parallel split is applied in GTS. Compared with parallel split strategy,
grid split strategy could produce more candidate strips with a flexible position and length.
Hence, there will be more high-quality solutions available for the strip selection phase.
(2) This paper develops a normalized grid space generation algorithm, a candidate strip
generation algorithm and a variable neighborhood tabu search algorithm (VNTS) in the
three successive phases of the GCS. (3) To verify the advantages of the GCS–VNTS method
in this paper, we perform several numerical tests and compare the other seven solution
methods. The simulation results indicate that the GCS–VNTS method proposed in this
paper outperforms the other methods with the same resource consumption.

At present, there is little research on SMA. The SMA is a variant of the polygon geo-
metric coverage problem [16], which is essentially an NP-Hard combinatorial optimization
problem [10]. The polygonal geometry coverage problem and satellite mission scheduling
problem are highly related to SMA. In the field of polygonal geometry coverage, the square
coverage optimization problem is one of the classical problems and usually uses multiple
small squares to cover a big rectangle. Study [17] studied the optimization problem of
orthogonally covering a big square with some small unequal squares and tried to find the
largest side length of the big square, which is similar to the situation of acquiring a larger
coverage with limited resources. In contrast to study [17], study [18] discussed the relation
between the number of unit squares and the side length of the big square, deriving the
upper and lower bound on the number of unit squares. Study [19] further investigated the
issue and recomputed the lower bound when n = 2 or n = 3. In addition, the problem
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of how to use the fewest unit squares to cover some given line segments is interesting;
study [20] proved that it is an NP-Hard problem in some cases. For the first time, study [21]
put a polynomial time approximation algorithm forward, using axis-parallel rectangles to
cover a rectilinear polygon with holes.

Among the many studies in the field of polygonal geometry coverage, study [22]
proposed the Single Frame Selection (SFS) problem with satellite imaging as the background
and designed an algorithm with polynomial time complexity. The SFS problem is to find
the best location of a single frame, yielding the maximal reward during each time window.
In addition, study [23] designed an approximation algorithm and an improved branch-
and-bound algorithm based on the SFS problem, analyzing the tradeoff between solution
quality and the corresponding computation time. By further studying the SFS problem,
study [24] generalized the SFS problem for a single imaging opportunity to the case of
multiple imaging opportunities, proposed the Multiple Frame Selection (MFS) problem and
developed a corresponding greedy algorithm. The above three articles proposed the SFS
and MFS problems and applied several efficient algorithms. However, their optimization
problems are aimed at the same scanning direction of a satellite and do not consider the
difference in imaging direction and size during cooperative scanning of multiple satellites.
In addition, the optimized objective functions are also different.

The satellite mission scheduling problem is one of the classical computational optimiza-
tion problems, which is composed of the target point and target area mission scheduling
problem. Study [25] first proposed a test data set of the target point scheduling problem for
SPOT satellites. Studies [26,27] presented a formulation of the problem that includes numer-
ous binary and ternary logical constraints, and they tested the tabu search algorithm with
realistic benchmark instances. To solve the satellite mission scheduling problem, study [28]
proved that one of the several 0–1 linear programs presents a smaller integrality gap. In ad-
dition, there were several mathematical programming methods, such as derived algorithms
using graph theory concepts [29], enumeration and interactive selection algorithm of a
multiple criteria path in a graph without circuit [30], and column generation algorithm with
decomposition techniques [31]. Mathematical programming algorithms may find optimal
solutions, but generally consume enormous resources [29–31]. Studies [32,33] presented a
two-phase scheduling method for the satellite scheduling problem. To solve the real-time
scheduling problem of Earth observation satellites, study [34] established a scheduling
model with multiple objectives and presented a new real-time processing algorithm.

In the field of satellite mission scheduling for a target area, study [35] proposed four
methods, including a local search algorithm, constraint programming algorithm, dynamic
programming algorithm and heuristic algorithm by using the parallel segmentation strategy.
Studies [36–38] presented a tabu search heuristic algorithm to select a subset of requests
to maximize profit. Studies [39,40] used the biased random key genetic and local search
heuristic algorithm to solve a multi-user observation scheduling problem. Study [41] con-
sidered many technical and managerial constraints and developed a constructive algorithm
that produced a feasible plan in a very short time. Study [42] proposed a heuristic algorithm
to develop the schedules and depicted the components of a decision support system for
environmental monitoring satellites. The above authors made considerable achievements
in the field of polygonal geometry coverage and satellite mission scheduling, but their
mathematical models and algorithms could not directly be applied to solve the SMA.

The objective of this paper is to find the optimal solution of the SMA, yielding the
maximal profit, and the main improvements in this paper are made as follows.

(1) A new three-phase GCS method, which is composed of grid space construction,
candidate strip generation and strip selection, is developed to solve the SMA in this paper.
Compared to the GTS method, the GCS method could produce more candidate strips with
a flexible position and length in the second phase. Therefore, there will be more high-
quality solutions available for the third phase of strip selection. (2) This paper develops a
normalized grid space generation algorithm, a candidate strip generation algorithm and
a VNTS algorithm in the three successive phases of GCS. (3) To verify the advantages of



Sensors 2023, 23, 3353 4 of 18

the GCS–VNTS method in this paper, we perform several numerical tests and compare the
other seven methods. The simulation results indicate that the GCS–VNTS method proposed
in this paper outperforms the other seven methods with the same resource consumption.

The remainder of this paper is organized as follows: we introduce the three phases
of GCS and the corresponding three algorithms in detail in Section 2, perform simulation
experiments on several scenarios and discuss simulation results in Section 3, and give the
conclusion in Section 4.

2. Materials and Methods
2.1. Problem Description

The target area waiting to be observed is a large region of the Earth’s surface and a finite
number of SAR satellites on various orbits are available to perform imaging operations.
The size of the target area is much wider than the swath width of a SAR. Hence, the target
area cannot be photographed by a SAR satellite in a single shot. Typically, only part of the
images of the target area could be captured by SAR satellites during the given schedule
time horizon because the SMA is usually an over-subscribed problem. Each solution of
SMA yields a total profit associated with the acquired portion of the target area and the
value of profit is a normalized number within the range of [0, 1]. The objective is to find the
optimal solution yielding the maximal profit. To better address the SMA, several terms are
defined as follows:

• Observation opportunity:

The observation window when a SAR satellite passes over the target area. Generally,
there are multiple observation opportunities for a SAR satellite to observe the target area
during the given schedule time horizon.

• Observation pattern:

The pattern formed by setting the observation start time, the observation end time
and the look angle of an observation opportunity. Each observation pattern corresponds
to a candidate strip of fixed swath width and variable length proportional to the observa-
tion duration.

• Schedule:

Observation scheme formed by selecting a candidate strip, namely, the observation
pattern for each observation opportunity. Each observation schedule corresponds to a
solution of SMA.

The images of the target area can be only captured within the field of view (FOV) of a
SAR satellite in an observation opportunity. FOV refers to the spatial scope that the SAR
satellite can observe in an observation opportunity. Typically, FOV is much larger than a
strip, which indicates that an observation opportunity could flexibly select the optimal one
from multiple candidate strips, as presented in Figure 1.

The SMA in this paper refers to multiple SAR satellites on multiple orbits and multiple
observation opportunities. Moreover, there are multiple observation patterns, namely,
multiple candidate strips in an observation opportunity. The schedule for all the SAR
satellites is a subset of candidate strips. Each schedule generates a different profit. The
profit associated with the acquired portion of the target area is defined by means of a
piecewise linear convex function [36], which takes values from the range [0, 1], as presented
in Figure 2. It should be noted that the value of profit will become higher as the imaged
area ratio (ratio of the acreage of the imaged area to the acreage of the whole target area)
increases and the value of profit will be 1 if the target area is completely imaged. This also
indicates that partial images have little value to customers and we focus on the total profit
to evaluate a schedule.
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Figure 1. Schematic illustration of SAR satellite imaging. (a) Strips with different look angles; (b) start
time and end time of a strip.
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Figure 2. The piecewise linear function for profit calculation.

2.2. Problem Formulation
2.2.1. Assumptions and Simplifications

Since the SMA in this paper is NP-Hard [10], it is necessary to simplify the SAR satellite
scheduling process before modeling. The simplifications we have made are as follows:

1. All the SAR satellites will only perform this mission during the given schedule time
horizon and there is only one SAR running on a SAR satellite;

2. Operation mode of the SAR is the broadside strip;
3. Only one observation pattern, namely, one candidate strip, is selected for each obser-

vation opportunity;
4. No consideration is given to the data download process of the SAR images captured

by satellites;
5. Resolution variation in the SAR satellites during one mission is considered acceptable

in a certain range.
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2.2.2. Sets and Parameters

The mathematical formulation is developed to solve the SMA and the notations used
in the formulation are presented as follows.

• R, the imaging request for the specified target area from the customer. The attributes
of R are defined as follows: A is the target area to be imaged. B is the required start
time of R. E is the required end time of R.

• S =
{

s1, s2, . . . , s|S|
}

, the set of SAR satellites. The attributes of si are defined as
follows: Ti is the maximum imaging duration of a single orbit of si. Gi is the maximum
look angle of si.

• Oi =
{

oi1, oi2, . . . , oi|Oi |

}
is the set of observation opportunities of si during the given

schedule time horizon. For oij, the following attributes are defined: sij is the calculated
start time of oij. eij is the calculated end time of oij.

• Pij =
{

pij1, pij2, . . . , pij|Pij |,
}

is the set of observation patterns of oij. For pijk, the
following attributes are defined: bijk is the calculated start time of pijk. cijk is the
calculated end time of pijk. gijk is the maximum look angle of pijk.

• Two functions, f and C, involved in the mathematical formulation are defined as follows:

f is the piecewise linear convex function formed by four points, namely, (0,0), (0.4,0.1),
(0.7,0.4) and (1,1). The function f is proposed to describe the relationship between total
profit and coverage ratio of a schedule.

C is the area calculation function involved in quantifying the rate of coverage
for schedules.

• Decision variable:

xijk =

{
1, the pijk is selected in schedule

0, otherwise
(1)

2.2.3. Mathematical Formulation

Based on the above problem simplification and parameter setting, the mathematical
formulation of the SMA can be illustrated as follows:

max f

C
(
∪|S|i=1 ∪

|Oi |
j=1 ∪

|Pij |
k=1xijk ∗ pijk

)
C(A)

 (2)

|Pij |

∑
k=1

xijk ≤ 1, ∀i ∈ [1, |S|], ∀j ∈ [1, |Oi|] (3)

B ≤ sij ≤ eij ≤ E, ∀i ∈ [1, |S|], ∀j ∈ [1, |Oi|] (4)

sij ≤ bijk ≤ cijk ≤ eij, ∀i ∈ [1, |S|], ∀j ∈ [1, |Oi|], ∀k ∈
[
1,
∣∣Pij
∣∣] (5)

cijk − bijk ≤ Ti, ∀i ∈ [1, |S|], ∀j ∈ [1, |Oi|], ∀k ∈
[
1,
∣∣Pij
∣∣] (6)

gijk ≤ Gi, ∀i ∈ [1, |S|], ∀j ∈ [1, |Oi|], ∀k ∈
[
1,
∣∣Pij
∣∣] (7)

Objective function (2) is intended to maximize the total profit of the observation
schedule. The total profit determines the quality of the observation schedule.

Constraint (3) indicates that, at most, one observation pattern is selected for each
observation opportunity.

Constraints (4) and (5) ensure that all observation operations must be executed within
the given schedule time horizon.
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Constraint (6) indicates that each candidate strip has a limitation of length proportional
to the maximum imaging duration of a single orbit of a SAR satellite, subject to the
constraint of energy capacity of the SAR satellite.

Constraint (7) is an illustration of the fact that the limitation of the maneuvering ability
of the SAR satellite cannot be ignored.

2.3. Three-Phase Method (GCS)

To solve the SMA, a new GCS method composed of grid space construction, candidate
strip generation and strip selection is proposed in this paper. The grid space construction is
developed to discretize the irregular area into a set of points in a specific plane rectangular
coordinate system and calculate the total profit of a solution of SMA. Then, the candidate
strip generation is designed to produce numerous candidate strips based on grid space.
The traditional parallel split method produces several parallel candidate strips with a
fixed length and location at each orbit of each SAR satellite [15]. Therefore, the size of
solution space is limited. The candidate strip generation method based on grid split could
produce more candidate strips with flexible positions and lengths. Thus, there will be
more high-quality solutions available for the strip selection phase. At last, in the strip
selection process, each subset of candidate strips corresponds to a solution and the total
profit determines the quality of a solution. A specific heuristic algorithm is designed to
search the optimal solution from the whole solution space. The main framework of the
GCS is depicted in Figure 3 and the detailed modules of the GCS are as follows.
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2.3.1. Grid Space Construction

As the Earth is an irregular ellipsoid and the target area is a large irregular area, the
region covered by a strip on the ground is not a standard rectangle. To acquire the obtained
profit of a strip, the target area is always discretized by a grid with a specific step, reducing
the couple with computational geometry [15]. Then, observing all cells in a grid of the
target area represents approximately observing the whole target area. Based on that, a point
is placed in the middle of a cell. If a strip covers a point, the area of the cell corresponding
to that point is completely observed. The number of points covered by a strip is summed to
calculate the profit of the strip. As described above, the target area is a large irregular area.
Therefore, it is necessary to develop a normalized grid generation algorithm. In this paper,
the surface of the target area is gridded in a specific plane rectangular coordinate system.

First, a rectangular area is defined according to the minimum horizontal coordinate
xmin, maximum horizontal coordinate xmax, minimum vertical coordinate ymin and max-
imum vertical coordinate xmax of the boundary vertices of the target area. Then, the
rectangular area is divided into a set of successive square cells with a specific step. As
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depicted in Figure 4, the set of these cells following the original spatial relations is called a
grid, denoted as follows:

E =
H
∪

α=1

V
∪

β=1

{
eα,β
}

(8)
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eα,β denotes the cell whose upper right X–Y coordinates are presented as follows:

x = xmin +
α(xmax − xmin)

H
(9)

y = ymin +
β(ymax − ymin)

V
(10)

It should be noticed that only a grid formed by the blue dotted line in Figure 4 needs
to be covered.

2.3.2. Candidate Strip Generation

The main existing method for generating a candidate strip is the parallel split method [15].
In the target decomposing phase, the parallel split method produces several parallel strips
with fixed lengths and locations and simplifies the SMA because the look angle takes values
from discrete space. However, the parallel split method only considers the look angle and
ignores the start and end times of the candidate strip, resulting in a limited number and
flexibility of candidate strips. Hence, some better solutions in a global context are likely to
be excluded in the strip selection.

An efficient alternative strategy is to generate more strips with flexible positions and
lengths according to the grid of the first phase. Thus, there will be more high-quality
solutions available for the strip selection. Accordingly, this paper develops a new candidate
strip generation algorithm with respect to three degrees of freedom, namely, look angle,
start time and end time. It is obvious that a candidate strip needs three points to determine
its position and length. The bottom point and top point determine the imaging start time
and imaging end time of the observation pattern, respectively, whereas the left point or
right point determines the look angle of the imaging pattern, as depicted in Figure 5.
It should be noticed that only three points that respect all constraints can form a valid
candidate strip. Once a candidate strip is chosen to perform, all points covered by this strip
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are obtained and the three points forming this strip are also considered to be covered by
this strip.
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Compared with the parallel spilt method, the way of the grid split has higher degrees
of freedom and can produce more candidate strips with a flexible position and length, as
depicted in Figure 6. The steps of the candidate strip generation algorithm based on the
grid split are shown in Algorithm 1.

Algorithm 1 Candidate strip generation algorithm.

Input: Imaging opportunity z and the set M of points.
Output: The set η of candidate strips.
for i← 1; i ≤ |M|; i ++

for j← 1; j ≤ |M|; j ++
for k← 1; k ≤ |M|; k ++

if three points 〈M(i), M(j), M(k)〉meet constraints of z
generate candidate strip ρ according to 〈M(i), M(j), M(k)〉 and z;
then η ← {η, ρ};

end
end

end
end

2.3.3. Strip Selection Phase

In strip selection, for each imaging opportunity, only one strip is selected to perform
from all the candidate strips. The objective of strip selection is to find the optimal subset of
candidate strips yielding the maximal profit. Based on that, the criterion for selecting strips
is to make the number of points covered by selected strips as large as possible. Therefore,
strip selection is a kind of set-covering problem [43], which is NP-Hard in a strong sense. A
solution of the strip selection comprises a number of 0–1 integer vectors equal to the number
of the observation opportunities Q in the given schedule time horizon, as illustrated in
Figure 7.
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Each 0–1 integer vector corresponds to an observation opportunity and the length
of 0–1 integer vector equals the number of observation patterns. A value of 1 represents
that the observation pattern is chosen, whereas a value of 0 indicates that the observation
pattern is not scheduled.

As the strip selection is NP-Hard in a strong sense, it is difficult to directly find the
optimal subset of candidate strips using exact algorithms. However, heuristic algorithms
and its variants, such as the genetic algorithm (GA) [15], tabu search algorithm (TS) [36]
and simulated annealing algorithm (SA) [44], are effective for solving the SMA. This paper
further improves the neighborhood structure of TS and proposes a variable neighborhood
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tabu search algorithm (VNTS) to search the optimal solution. There are two neighborhoods,
namely, the base neighborhood and extended neighborhood developed in the VNTS. In
the searching process of the VNTS, the basic neighborhood is designed to quickly find
the local optimal solution of the current subspace, whereas the extended neighborhood is
designed to enter a new subspace by expanding the scope of the current space. Alternating
two neighborhoods can effectively improve the search efficiency and prevent the searching
process from being trapped in a local subspace. At each iteration of the search process,
VNTS explores the solution space of SMA by moving from the current solution s to the
“best” solution in its neighborhood N(s).

• Base neighborhood:

As described above, the solution is a subset of candidate strips. Therefore, selecting
an observation opportunity based on the current solution and iterating through all the
observation patterns of this observation opportunity, excepting the current observation
pattern, can generate a number of neighborhood solutions. The base neighborhood is
composed of the set of neighborhood solutions generated by selecting multiple observation
opportunities in the above manner. If the number of observation patterns for each selected
observation opportunity is α and the number of selected observation opportunities is β, the
summed number of solutions of base neighborhood is (α− 1)β.

• Extended neighborhood:

Selecting a pair of observation opportunities and simultaneously combining its ob-
servation patterns can generate a number of neighborhood solutions. The extended neigh-
borhood is composed of the set of neighborhood solutions generated by selecting several
pairs of observation opportunities in the above manner. If the number of observation
patterns for each selected observation opportunity is α and the number of selected obser-
vation opportunities is β, the summed number of solutions of extended neighborhood is(

α2 − 1
)

β/2.
It is obvious that the scope of the search space of the extended neighborhood is

much larger than that of base neighborhood. The search process is dominated in the base
neighborhood and supplemented by the extended neighborhood. After completing a
given number of iterations in the base neighborhood, the search process will switch to the
extended neighborhood. Alternating two neighborhood structures essentially drives the
algorithm to continuously search different valid subspaces. The flow diagram of the VNTS
proposed in the strip selection is depicted in Figure 8 and the detailed steps of VNTS are
given in Algorithm 2.

Algorithm 2 Steps of variable neighborhood tabu search algorithm.

Input: Candidate strips and imaging opportunities.
Output: The feasible observation solution yielding the maximal profit.
Set tabu length, termination condition and neighborhood switching condition;
Generate initial solution s;
Use s as the current solution and current optimal solution;
Use the base neighborhood as the current neighborhood structure;
while not termination-condition do

Generate the current neighborhood N(s) of current solution s;
Select a new solution from N(s) according to Metropolis-criterion;
if switching condition for another neighborhood structure then

Switching to another neighborhood structure;
end if
updating the tabu list, current solution and current optimal solution.

end while
return current optimal solution;
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3. Results and Discussion

In this section, we performed several simulated experiments to test the effectiveness
of the proposed GCS method and VNTS algorithm in various scheduling scenarios based
on the Chinese SAR satellite platform. The simulation experiment was executed on a PC
with Intel© (TM) i7-11700 (2.50 GHz CPU speed) and 52 GB RAM. The configurations of
the scheduling scenarios are depicted as follows.

3.1. Simulation Parameters
3.1.1. Imaging SAR Satellites

From the Chinese SAR satellite database, we chose five SAR satellites on various
orbits to perform simulated experiments. They were L-SAR 01A, L-SAR 01B, GAOFEN 3,
GAOFEN 3-02 and GAOFEN 3-03, whose orbit information could be acquired from the
website https://celestrak.com/ (accessed on 2 November 2022). Several parameters of the
five SAR satellites and their sensors are listed in Table 1.

3.1.2. Imaging Areas

To verify the effectiveness of the GCS method and VNTS algorithm proposed in this
paper, Gabon and Belarus, having different sizes, shapes and latitudes, were selected as the
two imaging areas. The parameters of the two imaging areas are listed in Table 2.

https://celestrak.com/
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Table 1. Several parameters of the five selected SAR satellites and their sensors.

Name L-SAR (01A,01B) GAOFEN (3,3-02,3-03)

Orbit height (km) 607 755
Inclination (◦) 97.83 98.43

Range of incidence angle (◦) 10~60 19~50
Resolution (m) 3 5

Maximum imaging duration
of a single orbit (min) 7.5 10

Swath width (km) 50 50

Table 2. Parameters of Belarus and Gabon.

Name Belarus Gabon

Maximum longitude (◦) 32.74 15.53
Minimum longitude (◦) 23.16 8.70
Maximum latitude (◦) 56.17 2.33
Minimum latitude (◦) 51.24 −3.93

Area(km2) 207,721 260,547

3.1.3. Imaging Time

We defined the UTCG time range from “1 January 2022 00:00:00.000” to “2 January 2022
00:00:00.000” as the given schedule time horizon to perform all the simulated experiments.
The real-time spatial position of SAR satellites can be obtained based on orbit information.
Then, the visible time windows of imaging opportunities can be calculated according to
the relative spatial position between the five SAR satellites and the two imaging areas. The
number of imaging opportunities of each SAR satellite for Belarus and Gabon is given in
Table 3.

Table 3. Number of observation opportunities.

Name Belarus Gabon

L-SAR 01A 4 2
L-SAR 01B 4 2
GAOFEN 3 4 2

GAOFEN 3-02 4 2
GAOFEN 3-03 3 2

3.2. Comparison Results with Other Methods

There were several simulated experiments conducted to evaluate the performance of
the GTS and GCS. In addition, to verify the effectiveness of the VNTS algorithm proposed in
this paper, we compared the results of TS [36], SA [44], GA [15] and VNTS. Table 4 provides
the profit results of the four algorithms implemented under GCS and GTS strategies, respec-
tively, when the running time of algorithms is one second. To comprehensively compare
the profit results of all the scenarios in the iteration process, we plotted the profit values of
the obtained schedules versus the run time of the CPU in Figure 9. Moreover, Figure 10
shows the profit of the final schedules as the number of imaging opportunities increases.
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Table 4. Simulation results of four algorithms under GCS and GTS methods.

Strategy Algorithm Profit of
Belarus

Profit of
Gabon

GCS

VNTS 0.9644 0.4168
TS 0.8872 0.3846
SA 0.8933 0.3918
GA 0.8639 0.3773

GTS

VNTS 0.7940 0.3292
TS 0.6800 0.2921
SA 0.7094 0.2949
GA 0.6137 0.2586
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Figure 9. The profit of the obtained schedule versus the run time of CPU. (a) The profit of schedules
for Belarus using the GCS strategy; (b) the profit of schedules for Belarus using the GTS strategy;
(c) the profit of schedules for Gabon using the GCS strategy; (d) the profit of schedules for Gabon
using the GTS strategy.
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Table 4 provides the obtained profit results of the four algorithms implemented under
the GCS and GTS strategies, respectively, when the running time of the algorithms is one
second. The profit results of Table 4 show that the effect of the GCS strategy is much better
than that of the GTS strategy when using the same algorithm in the third phase. When
performing the imaging mission on Belarus, our GCS–VNTS method outperforms the
GTS–VNTS method by 21.46% and the GCS–SA method outperforms the GTS–SA method
by 25.92%. The results of the comparison of the 16 scenarios in Table 4 show that the GCS
strategy has a profit improvement of more than 20% over the GTS strategy when the same
algorithm is employed. In addition, the worst profit results provided by GCS–GA are
better than the best results provided by GTS–VNTS. In comparison with the GTS–VNTS
method, the GCS–GA method increases the profit of Belarus and Gabon by 8.80% and
14.61%, respectively. Hence, the GCS strategy is more effective than the GTS strategy when
solving the SMA. The main difference between the GTS and GCS is the second phase in
which the parallel split method is employed in GTS, whereas the grid split method is
employed in GCS. Compared with the parallel split method, the grid split method can
produce more candidate strips with flexible positions and lengths according to the grid of
the first phase. Based on that, the magnitude of the solution space is increased and there
will be more high-quality solutions available for the third phase.

Figure 9 shows the curves of the profit values of the obtained schedules versus the run
time of the CPU in one second. The curves of the GCS show a more smoothly increasing
trend versus the run time than the curves of the GTS, which indicates that the solution
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space of GCS is much larger than GTS and better solutions of GCS are included in the third
phase of strip selection. In addition, the results of the initial solutions of GA are better
than three other algorithms because the optimal one among multiple initial solutions is
employed in GA, whereas a random initial solution is employed in three other algorithms.
However, GA generally provides the worst values in the final schedule. In contrast to GA,
VNTS searches the solution space with an ordinary random initial solution and finally
obtains the best values. In addition, TS and SA generally provide similar values of the final
schedules. The profit results of the final schedules for Belarus using the GCS strategy show
that the VNTS gained 8.70% against the TS and 7.96% against the SA. Compared to the best
of the other seven methods, our proposed GCS–VNTS method can improve profit by 6.38%
using the same resources. Based on the above discussion, the GCS strategy outperforms
GTS strategy by a wide margin and the proposed GCS–VNTS method outperforms the
other seven methods with the same computational time consumption.

Additionally, in order to explore the details of the obtained final schedules, Figure 10
plots the profit values of the final schedules versus the number of imaging opportunities.
It should be noted that the observation schedule should be re-developed in a global
perspective, rather than simply adding or subtracting several strips from the original
schedule when the number of observation opportunities changes. In addition, we are of the
opinion that observation profit is a better indicator of value creation than the imaged area
ratio. Hence, the functional relationship between the observation profit and the imaged
area ratio will also affect the profit results to some extent. However, it should be noted that
the change in the functional relationship between the observation profit and the imaged
area ratio does not affect the effectiveness of the GCS–VNTS method proposed in this paper.

4. Conclusions

This paper presented the SMA problem of using multiple SAR satellites to observe
a large irregular target area. We discussed the main difficulties in solving the SMA and
introduced the current GCS framework. SMA is usually considered as a kind of NP-Hard
combinatorial optimization problem strongly coupled with geometry. Hence, it is difficult
to solve the SMA in a straightforward manner. We proposed a new GCS method composed
of three successive phases, namely, grid space construction, candidate strip generation and
strip selection. The grid space construction establishes the profit evaluation system and the
candidate strip generation produces more flexible candidate strips based on grid split than
the traditional parallel split method. At last, a VNTS algorithm was developed in the third
phase to search the optimal solution yielding the maximal profit. To verify the effectiveness
of the GCS–VNTS method, we performed numerical tests on several simulated instances.
The computational results of the simulation experiments indicated that the GCS strategy
has a profit improvement of more than 20% over the GTS strategy when the same algorithm
is employed. Compared to the best of the other seven methods, our proposed GCS–VNTS
method can improve profit by 6.38% using the same resources. Hence, the effectiveness of
the GCS–VNTS method proposed in this paper is verified.
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10. Karpiński, M. Vertex 2-coloring without monochromatic cycles of fixed size is NP-complete. Theor. Comput. Sci. 2017, 659, 88–94.
[CrossRef]

11. Song, J.S.; Xiao, L.; Zhang, H.; Zipkin, P. Optimal policies for a dual-sourcing inventory problem with endogenous stochastic lead
times. Oper. Res. 2017, 65, 379–395. [CrossRef]

12. Jarrah, A.I.; Qi, X.; Bard, J.F. The destination-loader-door assignment problem for automated package sorting centers. Transp. Sci.
2014, 50, 1314–1336. [CrossRef]

13. Furini, F.; Iori, M.; Martello, S.; Yagiura, M. Heuristic and exact algorithms for the interval min–max regret knapsack problem.
INFORMS J. Comput. 2015, 27, 392–405. [CrossRef]

14. Janiak, A.; Kovalyov, M.Y.; Lichtenstein, M. On a single machine-scheduling problem with separated position and resource effects.
Optimization 2015, 64, 909–911. [CrossRef]

15. Xu, Y.; Liu, X.; He, R.; Chen, Y. Multi-satellite scheduling framework and algorithm for very large area observation. Acta.
Astronaut. 2020, 167, 93–107. [CrossRef]

16. Horiyama, T.; Ito, T.; Nakatsuka, K.; Suzuki, A.; Uehara, R. Complexity of Tiling a Polygon with Trominoes or Bars. Discrete.
Comput. Geom. 2017, 58, 686–704. [CrossRef]

17. Abbott, H.L.; Katchalski, M. Covering squares with squares. Discrete. Comput. Geom. 2000, 24, 151–170. [CrossRef]
18. Soifer, A. Covering a square of side n + ε with unit squares. J. Comb. Theory. A. 2006, 113, 380–383. [CrossRef]
19. Januszewski, J. A Note on Covering a Square of Side Length 2 + ∈ with Unit Squares. Am. Math. Mon. 2009, 116, 174–178.

[CrossRef]
20. Acharyya, A.; Nandy, S.C.; Pandit, S.; Roy, S. Covering segments with unit squares. Comp. Geom-Theor. Appl. 2019, 79, 1–13.

[CrossRef]
21. Kumar, V.S.A.; Ramesh, H. Covering rectilinear polygons with axis -parallel rectangles. SIAM J. Comput. 2003, 32, 1509–1541.

[CrossRef]
22. Song, D.; van der Stappen, A.F.; Goldberg, K. Exact algorithms for single frame selection on multiaxis Satellites. IEEE T. Autom.

Sci. Eng. 2006, 3, 16–28. [CrossRef]
23. Song, D.; Goldberg, K.Y. Approximate Algorithms for a Collaboratively Controlled Robotic Camera. IEEE T. Robot. 2007, 23,

1061–1070. [CrossRef]
24. Bansal, M.; Kianfar, K. Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service

Zones. INFORMS J. Comput. 2017, 29, 152–169. [CrossRef]
25. Bensana, E.; Lemaitre, M.; Verfaillie, G. Earth observation satellite management. Constraints 1999, 4, 293–299. [CrossRef]
26. Vasquez, M.; Hao, J.K. A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of

an earth observation satellite. Comput. Optim. Appl. 2001, 20, 137–157. [CrossRef]
27. Vasquez, M.; Hao, J.K. Upper bounds for the SPOT 5 daily photograph scheduling problem. J. Comb. Optim. 2003, 7, 87–103.

[CrossRef]
28. Gabrel, V. Strengthened 0–1 linear formulation for the daily satellite mission planning. J. Comb. Optim. 2006, 11, 341–346.

[CrossRef]
29. Gabrel, V.; Moulet, A.; Murat, C.; Paschos, V.T. A new single model and derived algorithms for the satellite shot planning problem

using graph theory concepts. Ann. Oper. Res. 1997, 69, 115–134. [CrossRef]
30. Gabrel, V.; Vanderpooten, D. Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling

an earth observing satellite. Eur. J. Oper. Res. 2002, 139, 533–542. [CrossRef]

http://doi.org/10.3390/aerospace10010033
http://doi.org/10.3390/aerospace9030142
http://doi.org/10.3390/rs10050802
http://doi.org/10.1109/TGRS.2020.3009284
http://doi.org/10.3390/su14148401
http://doi.org/10.3390/rs14133213
http://doi.org/10.1109/TGRS.2006.887024
http://doi.org/10.1177/1729881419890715
http://doi.org/10.1016/j.tcs.2016.10.011
http://doi.org/10.1287/opre.2016.1557
http://doi.org/10.1287/trsc.2014.0521
http://doi.org/10.1287/ijoc.2014.0632
http://doi.org/10.1080/02331934.2013.804077
http://doi.org/10.1016/j.actaastro.2019.10.041
http://doi.org/10.1007/s00454-017-9884-9
http://doi.org/10.1007/s004540010023
http://doi.org/10.1016/j.jcta.2005.08.005
http://doi.org/10.1080/00029890.2009.11920925
http://doi.org/10.1016/j.comgeo.2019.01.001
http://doi.org/10.1137/S0097539799358835
http://doi.org/10.1109/TASE.2005.860617
http://doi.org/10.1109/TRO.2007.907488
http://doi.org/10.1287/ijoc.2016.0722
http://doi.org/10.1023/A:1026488509554
http://doi.org/10.1023/A:1011203002719
http://doi.org/10.1023/A:1021950608048
http://doi.org/10.1007/s10878-006-7912-4
http://doi.org/10.1023/A:1018920709696
http://doi.org/10.1016/S0377-2217(01)00188-6


Sensors 2023, 23, 3353 18 of 18

31. Gabrel, V.; Murat, C. Operations Research in Space and Air; Springer: Dordrecht, The Netherlands, 2003; pp. 103–122.
32. Wu, G.; Liu, J.; Ma, M.; Qiu, D. A two-phase scheduling method with the consideration of task clustering for earth observing

satellites. Comput. Oper. Res. 2013, 40, 1884–1894. [CrossRef]
33. Liu, X.; Bai, B.; Chen, Y.; Feng, Y. Multi satellites scheduling algorithm based on task merging mechanism. Appl. Math. Comput.

2014, 230, 687–700.
34. Wang, J.; Zhu, X.; Yang, L.T.; Zhu, J.; Ma, M. Towards dynamic real-time scheduling for multiple earth observation satellites. J.

Comput. Syst. Sci. 2015, 81, 110–124. [CrossRef]
35. Lemaıître, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.M.; Bataille, N. Selecting and scheduling observations of agile satellites.

Aerosp. Sci. Technol. 2002, 6, 367–381. [CrossRef]
36. Cordeau, J.F.; Laporte, G. Maximizing the value of an earth observation satellite orbit. J. Oper. Res. Soc. 2005, 56, 962–968.

[CrossRef]
37. Bianchessi, N.; Cordeau, J.F.; Desrosiers, J.; Laporte, G.; Raymond, V. A heuristic for the multi-satellite, multi-orbit and multi-user

management of earth observation satellites. Eur. J. Oper. Res. 2007, 177, 750–762. [CrossRef]
38. Habet, D.; Vasquez, M.; Vimont, Y. Bounding the optimum for the problem of scheduling the photographs of an Agile Earth

Observing Satellite. Comput. Optim. Appl. 2010, 47, 307–333. [CrossRef]
39. Tangpattanakul, P.; Jozefowiez, N.; Lopez, P. Recent Advances in Computational Optimization; Springer: Cham, Switzerland, 2015;

pp. 143–160.
40. Tangpattanakul, P.; Jozefowiez, N.; Lopez, P. A multi-objective local search heuristic for scheduling Earth observations taken by

an agile satellite. Eur. J. Oper. Res. 2015, 245, 542–554. [CrossRef]
41. Bianchessi, N.; Righini, G. Planning and scheduling algorithms for the COSMO-SkyMed constellation. Aerosp. Sci. Technol. 2008,

12, 535–544. [CrossRef]
42. Wang, P.; Reinelt, G.; Gao, P.; Tan, Y. A model, a heuristic and a decision support system to solve the scheduling problem of an

earth observing satellite constellation. Comput. Ind. Eng. 2011, 61, 322–335. [CrossRef]
43. Beasley, J.E.; Chu, P.C. A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 1996, 94, 392–404. [CrossRef]
44. Liu, Y.; Zhang, S.; Hu, H. A Simulated Annealing Algorithm with Tabu List for the Multi-Satellite Downlink Schedule Problem

Considering Waiting Time. Aerospace 2022, 9, 235. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cor.2013.02.009
http://doi.org/10.1016/j.jcss.2014.06.016
http://doi.org/10.1016/S1270-9638(02)01173-2
http://doi.org/10.1057/palgrave.jors.2601926
http://doi.org/10.1016/j.ejor.2005.12.026
http://doi.org/10.1007/s10589-008-9220-7
http://doi.org/10.1016/j.ejor.2015.03.011
http://doi.org/10.1016/j.ast.2008.01.001
http://doi.org/10.1016/j.cie.2011.02.015
http://doi.org/10.1016/0377-2217(95)00159-X
http://doi.org/10.3390/aerospace9050235

	Introduction 
	Materials and Methods 
	Problem Description 
	Problem Formulation 
	Assumptions and Simplifications 
	Sets and Parameters 
	Mathematical Formulation 

	Three-Phase Method (GCS) 
	Grid Space Construction 
	Candidate Strip Generation 
	Strip Selection Phase 


	Results and Discussion 
	Simulation Parameters 
	Imaging SAR Satellites 
	Imaging Areas 
	Imaging Time 

	Comparison Results with Other Methods 

	Conclusions 
	References

