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Abstract: Due to their rapid development and wide application in modern agriculture, robots,
mobile terminals, and intelligent devices have become vital technologies and fundamental research
topics for the development of intelligent and precision agriculture. Accurate and efficient target
detection technology is required for mobile inspection terminals, picking robots, and intelligent
sorting equipment in tomato production and management in plant factories. However, due to the
limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environ-
ment, the precision of small-target detection for tomatoes in real-world applications is inadequate.
Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm
and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly,
MobileNetV3-Large was used as the backbone network to make the model structure lightweight and
improve its running performance. Secondly, a small-target detection layer was added to improve
the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for
training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model
was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of
YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment
showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%.
The model is lightweight and has excellent detection performance, and so it can meet the real-time
detection requirements of tomato-picking robots in plant factories.

Keywords: tomato detection; YOLOv5; small-target detection; lightweight

1. Introduction

Plant factories are an innovative vertical agriculture solution, representing an ad-
vanced form of greenhouse agriculture capable of producing sustainable supplies of veg-
etables, herbs, flowers, and other crops throughout the year, based on relatively controlled
environmental conditions [1]. They also serve as an urban agriculture solution, providing
fresh, nutritious, and high-quality plant products to urban areas, allowing city residents
to consume freshly harvested vegetables [2]. Tomatoes are highly valued and widely
grown in greenhouses and plant factories. In 2020, the global tomato cultivation area was
approximately 5.05 million hectares, with an annual output of 186 million tons [3]. In
tomato target detection, the dense foliage of tomato plants frequently obstructs small-target
tomato varieties, resulting in a lower detection accuracy. Additionally, to enhance detection
accuracy, detection models commonly depend on complex and large heavyweight models,
which necessitate a high computing power and storage capacity and escalate the manufac-
turing costs of mobile and intelligent devices. These limitations hinder the use of robots for
pruning, pollination, harvesting, and other operations in plant factories.
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In the automated and intelligent production management process of tomato plant
factories, in addition to inspection and picking robots, intelligent control platforms also
require the monitoring of tomato growth and yield estimation. This requires the ability
to recognize and detect tomatoes and accurately determine the position and quantity of
tomato fruits. Traditional detection methods are mainly based on shape and color feature
extraction, making logical judgments based on the extracted information. Traditional
target detection methods include scale-invariant feature transform (SIFT) [4], histogram of
oriented gradient (HOG) [5], support vector machine (SVM) [6], and selective search for
object recognition [7]. Iwasaki et al. [8] presented a detection approach for mini tomatoes
that utilized hue information and candidate area curvature, achieving a detection rate
of 78.8%. Linker et al. [9] employed color and smoothness-based detection to estimate
the number of green apples in an orchard environment, achieving a high level of correct
detection accuracy, albeit at the cost of poor robustness. Wei et al. [10] proposed a method
that used an improved Otsu threshold algorithm to extract color features in the Ohta color
space [11], followed by segmentation using the Otsu threshold algorithm. The results
obtained for detecting the four fruits tested in the experiment were favorable. However, it
is worth noting that methods based solely on color features typically have less robustness.
Li et al. [12] proposed a detection method for tomato fruit using the fast normalization cross-
correlation function (FNCC) and circular Hough transform (CHT) detection methods. They
achieved favorable outcomes on the test dataset. However, the algorithm was susceptible
to changes in the environment and was applicable in only limited scenarios. Fu et al. [13]
employed image processing techniques to recognize and detect ripe kiwifruit. The approach
relied on performing numerous color-channel- and color-space-based operations, which
made it computationally demanding and less robust. In summary, traditional detection
methods are highly difficult to design and promote, especially in the case of an insufficient
sample size or number of features, and it is difficult to achieve high precision. In addition,
the robustness of detection is not high, so it is still challenging to apply these methods in
practical situations.

In recent years, with the successful application of deep convolutional neural networks
(DCNNs) in agriculture, computer-vision-based DCNN detection algorithms have provided
a new research direction for tomato fruit detection and classification. The DCNN target
detection methods can be divided into two categories according to the number of detection
stages: (1) Two-stage detection methods first enumerate the candidate frames for the
image and then classify and predict the candidate frames. Based on convolutional neural
networks (CNNs), regional convolutional neural network (RCNN) [14], Fast RCNN [15],
Faster RCNN [16], and so on belong to this type of detection method. Two-stage detection
models have a high precision and recall performance. However, their application in real-
time detection scenarios is challenging due to their large network size and slow operation
speed. (2) Single-stage detection methods directly extract features from the input image
and then directly locate and classify the target on the extracted features. The single-shot
MultiBox detector (SSD) [17] and You Only Look Once (YOLO) series [18–23] belong to this
type of detection method. Thanks to their network structure design, single-stage detection
models have a fast operation speed that can meet real-time performance requirements, and
the accuracy can reach the level of two-stage detection models.

With the further development of computer vision, it has been discovered that deeper
networks perform better in machine vision. However, the problem of model degradation
arises with the further deepening of the network. He et al. [24] addressed this issue by using
residual networks to further enhance the network to 152 layers and alleviate the problem
of feature degradation. The MobileNetV3-Large backbone network used in this study also
extensively employs residual structures to alleviate model degradation and further extract
features. Mnih et al. [25] used attention mechanisms in computer vision to reflect the focus
of the human gaze in deep learning models. Based on this, spatial attention mechanisms
and channel attention mechanisms have also been successful [26,27]. Howard et al. [28]
proposed MobileNetV3, a lightweight backbone network, by introducing an SE channel
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attention mechanism using depthwise separable convolutional and residual structures.
Inspired by this, we propose the SM-YOLOv5 model, which replaces the CSPDarknet53
backbone network with MobileNetV3-Large to reduce the model size and maintain high
accuracy in the detection of small tomato targets in plant factories.

Zhang et al. [29] used the improved YOLOV4 model for apple fruit detection, imple-
mented the GhostNet feature extraction network with the coordinate attention module
in YOLOv4, and introduced depthwise convolution to reconstruct the neck and YOLO
head structure, achieving an mAP of up to 95.72%; however, the network scale was large.
Xu et al. [30] used the improved YOLOv5s model for the real-time detection of Zanthoxy-
lum and achieved good results in terms of both speed and precision. Tian et al. [31]
proposed an improved YOLOV3 model for detecting apples at different growth stages in
orchards with light fluctuations, complex backgrounds, overlapping apples, and overlap-
ping branches and leaves. After testing, the proposed YOLOV3-dense model was found to
be more effective than the original YOLOV3 model. In summary, DCNNs achieve a higher
accuracy and versatility than traditional methods. High-performance computers can sup-
port their computation but cannot achieve real-time performance on embedded devices. Su
et al. [32] employed a lightweight YOLOv3 model with a MobileNetV1 backbone network
for tomato ripeness classification detection in a greenhouse, achieving an mAP of 97.5%.
Despite its lightness, the size of the lightweight model was still 46.7 MB. Wang et al. [33]
utilized an improved YOLOv3 model for the online recognition and yield estimation of
tomato fruits in a PF environment, achieving a high mAP of 99.3%. However, the YOLOv3
model they employed was large-scale, rendering it difficult to apply in lightweight scenar-
ios. This study is based on YOLOv5, with the backbone network replaced by MobileNetV3
to further reduce the model’s weight and computational load. As a result, the model is
better-suited for deployment in embedded devices and harvesting robots.

In response to the demand for lightweight and high-precision tomato detection in PF
environments, this study proposes the SM-YOLOv5 lightweight model for small-target
tomato detection. This model addresses the limitations of current research and aims to pro-
mote the development of harvesting robots. Our research makes innovative contributions
to the study of lightweight target detection algorithms and their practical applications in
this field. Our contributions can be summarized as follows:

• The CSPDarknet53 backbone network was replaced by the MobileNetV3-Large
lightweight network in this study. The lightweight network employed squeeze-
and-excitation models and attention mechanisms to efficiently extract features in
the channel-wise dimension. This replacement resulted in a reduction in the model
size and a decrease in the computational demands.

• To enhance the accuracy of the lightweight model in detecting small-sized tomato fruits
in images, a small object detection layer was introduced into the network architecture.
This additional layer was capable of extracting more features to improve the accuracy
of the detection for overlapping or small objects and obscured tomato fruits.

• These enhancements are of high importance in plant factories, where the accurate
detection of small objects is crucial for effective and precise plant monitoring and
management. The lightweight network can also support embedded picking robots
when detecting tomato fruits, further highlighting its practical application potential.

The rest of this paper is organized as follows: Section 2 outlines the experimental envi-
ronment, dataset acquisition, and processing, as well as the evaluation metrics used in this
study. Section 3 describes the SM-YOLOv5 network model, the lightweight MobileNetV3-
Large backbone network, and the added small-target detection layer. Section 4 provides
a thorough comparison and analysis of the experimental results. Additionally, a com-
parison with mainstream methods and an ablation experiment were conducted. Finally,
Sections 5 and 6 provide the discussion and conclusion, respectively, including future
research directions and potential improvements.
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2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Image Acquisition

The data acquisition and research for this study were conducted within the Artificial
Light Plant Factory Laboratory at the Henan Institute of Science and Technology (HIST), lo-
cated in Xinxiang, China. The cultivar selected for the experiment was the “micro tomato”.
Based on the tomato growth cycle, images were collected at multiple stages of tomato
growth, commencing with tomato flowering in December 2021 and concluding with a con-
siderable number of ripe fruits in February 2022. The collection of images was performed
using a Canon 80D SLR camera, which resulted in a resolution of 6000 × 4000 pixels for
230 images. Additionally, the wide-angle camera of the iPhone 11 was used to collect
100 images with a resolution of 4032 × 3024 pixels. The compactness and convenience
of the mobile phone’s wide camera enabled the collection of images from difficult angles
and scenes that were not easily accessible to the DSLR camera, thus enhancing the overall
diversity of the dataset.

2.1.2. Dataset Annotation and Augmentation

In order to address the deficiency of the original dataset and imbalanced samples,
image processing techniques were utilized to increase the quantity of data in the initial
images. Random enhancement methods were applied, including rotations of 90, 180, and
270 degrees; brightness and darkness adjustments; horizontal and vertical flipping; and the
application of green and red filters. To generate tomato shapes that had not been previously
encountered by the model, rotation and flipping, as well as color filtering and brightness
adjustments, were used to simulate the LED lighting present in plant factories, thereby
adjusting the brightness and color spectrum in accordance with the plant growth cycle.
The resulting modifications to the overall scene lighting enhanced the model’s resilience
and accuracy. Following random image processing, 660 images were generated, and the
dataset was randomly partitioned according to a set proportion. The number of images in
the dataset and sample instances is presented in Table 1 and Figure 1.

Table 1. Number of tomato images and sample instances in the constructed dataset.

Set Number of Images Number of Green
Tomato Samples

Number of Red
Tomato Samples

Training 462 4183 4104
Validation 132 1240 1160

Testing 66 607 522
Total 660 6030 5786

The collected datasets underwent processing, and LabelImg labeling software was
utilized to annotate the positions of the tomatoes and their corresponding growth stages
within the dataset. The resulting annotation data for each image were uniformly stored as
an extensible markup language (XML) file in the visual object classes (VOC) format [34].
Figure 2 shows an example of a labeled annotation, which includes the coordinate informa-
tion on the image, while the statistical outcomes of the annotation process are provided in
Table 1.
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(a) (b)

(c) (d)

Figure 1. Attribute visualization results of the dataset in this study: (a) the number of dataset labels,
(b) the label ratio of the dataset, (c) the label location of the dataset, (d) the label size of the data.

Figure 2. Diagram illustrating dataset annotation using LabelImg.



Sensors 2023, 23, 3336 6 of 19

Figure 1 presents the statistical outcomes visualizing the shape, distribution, and
location of samples within the dataset. Figure 1a shows the distribution of the number of
samples, indicating that the sample distribution was relatively uniform. Figure 1b displays
the aspect ratio of the sample frame in the original image. Figure 1c demonstrates the
sample center point for the entire image, with each box representing the occurrence of a
sample, and the color depth reflecting the number of occurrences. The darker the color, the
more frequent the occurrence. The results indicated that the distribution of sample positions
in the image was relatively uniform. Figure 1d depicts the ratio of the width and height
of the sample for the whole picture. Each point indicates that the sample appeared in this
horizontal and vertical coordinate ratio. It can be observed that the sample concentration
was near the origin, and the sample was concentrated on a ray with an oblique angle of 45°.
The aspect ratio of the sample was close to a rectangle, and small-target samples dominated
the dataset. Overall, the distribution and composition of the dataset were relatively uniform
and reasonable, objectively reflecting the comprehensive performance of the improved
small-target detection algorithm.

2.2. Experimental Environment

The experimental setup in this research comprised an Ubuntu 18.04 operating system
and an NVIDIA GeForce RTX 3090 graphics card with 24G memory. The PyTorch 1.8.0
framework, computer unified device architecture (CUDA) version 11.1, and cuDNN ver-
sion 8.3 deep neural network acceleration library were utilized for model development
and training.

During the training of the model in this study, the anchor box parameters that were
obtained from the K-means machine learning algorithm were set as the hyperparameters
and used for training. The training, validation, and test datasets were automatically
and randomly divided in a ratio of 7:2:1. The network model was initialized with pre-
trained weight parameters that were obtained from training on the Common Objects in
Context (COCO) dataset to accelerate the convergence of the model parameters. The cosine
annealing optimization method was utilized to update the learning rate and network
weight parameters, with a batch size of 32 and 600 iterations. The standard image input size
was set to 640 × 640. After training the proposed SM-YOLOv5 model and a comparison
model, the DCNN mainstream detection model was employed to compare and analyze the
proposed method.

2.3. Model Evaluation Metrics

The evaluation of model performance is a crucial step in assessing a model’s detection
ability and robustness. To accomplish this, a unified evaluation standard must be utilized to
evaluate model performance based on the results obtained from training different models.
This study employed several evaluation metrics to assess model performance, including av-
erage precision (AP), mean average precision (mAP), and floating-point operations (FLOPs).
The precision, recall, and F1-score calculations are shown in Formulas (1) through (4); these
metrics are commonly used in the literature [35]. A precision–recall curve (PR) could be
plotted using the associated precision and recall values, and the area under the PR curve
was defined as AP. The independent variable was averaged from 0 to 1, and 101 points
were used to calculate the gradient integral, which was computed using Formulas (5) and
(6). The mAP was determined by taking the mean value of AP for the two classifications of
green and red fruits, as shown in Formula (7).

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1− Score = 2× Precision× Recall
Precision + Recall

(4)

AveragePrecision =
1

101 ∑
r∈{0,0.01,0.02,...,0.99}

Pintep(r) (5)

Pintep(r) =
(Precision(r) + Precision(r + 0.01))× 0.01

2
(6)

meanAveragePrecision =
∑ AveragePrecision

sum(Class)
(7)

where TP denotes the number of true-positive samples that were correctly classified as
positive samples, FP denotes the number of false-positive samples that were incorrectly
classified as positive samples, FN denotes the number of false-negative samples that were
incorrectly classified as negative samples, and TN denotes the number of true-negative
samples that were correctly classified as negative samples.

3. Proposed SM-YOLOv5 Model

YOLOv5 is a state-of-the-art single-stage object detection algorithm that has achieved
significant improvements in both accuracy and speed compared to its predecessors in
the YOLO series [36]. Due to its original architecture, it can be used for the classification
of 80 categories. However, in specific applications, only a few categories are typically
required. In the case of tomato fruit detection, where the fruit may be small or occluded
by leaves, a lightweight YOLOv5 method, namely SM-YOLOv5, is proposed in this paper.
The model architecture is illustrated in Figure 3. The MobileNetV3-Large backbone was
used for feature extraction, and the anchor frames, regressed by K-Means machine learning,
were used in the prediction layer to train the network. A small-target scale detection layer
was added to enhance the model’s ability to detect small targets. Finally, the four-layer
detection content was fused for non-maximum suppression (NMS) calculation [37], and the
position and classification of all tomato fruits were outputted. The model used a weight
file trained on the COCO dataset [38], and the transfer learning idea was employed to
accelerate the model convergence and avoid network non-convergence due to random
weights. Figure 4 presents a flowchart of the training and detection process of SM-YOLOv5.
Model evaluation was performed using unified evaluation standards, including AP, mAP,
and FLOPs, for model comparison and evaluation. The PR curve was used to calculate the
AP, and the mean value of the AP for the two classifications of green fruit and red fruit was
taken as the mAP. The calculation formulas for precision, recall, and F1 score are shown in
Formulas (1)–(4).

3.1. Lightweight MobileNetV3-Large Backbone Network

The CSPDarknet53 backbone network, utilized by YOLOv5, can effectively extract
image features. However, due to the high computational resources and storage space re-
quirements, its real-time detection applicability in embedded systems is limited. To address
this issue, this study proposes the SM-YOLOv5 model, which employs MobileNetV3-Large
as the backbone network for a lightweight design. MobileNetV3-Large is made up of nu-
merous bneck units. In each bneck unit, depthwise separable convolution (DWS-Conv) is
employed instead of conventional convolution operations to extract features while minimiz-
ing the number of parameters and computations. As presented in Figure 5, the depthwise
separable convolution is partitioned into two stages. Initially, each input channel undergoes
channel-by-channel depthwise convolution (DW-Conv), and then the output undergoes
pointwise convolution (PW-Conv). A depthwise weighted combination is performed, and
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the final feature map is output [28]. The SE module (squeeze-and-excitation) channel
attention mechanism [26] is utilized in the channel separable convolution to enable the
network to automatically identify the importance of each feature channel, leading to an
enhanced effect. Finally, the residual network structure is utilized to alleviate the difficulty
in feature transfer as the network depth increases. The detailed parameters of each layer
of MobileNetV3-Large as the backbone network and the corresponding output layer are
presented in Table 2 [39].

X X X

XXXConvolution Layer

Upsampling Layer

Detection Layer

SENet Structure

Feature Layer

 Concat

MobileNetV3-
Large Backbone

Small Target 
Detection

FPN

PAN

Figure 3. The integrated architecture of SM-YOLOv5 includes a backbone network (in blue) that
was replaced with MobileNetv3-Large. The small-target detection layer added based on the original
three-layer target detection model is represented by the red box. The FPN and PAN structures
(in yellow and cyan boxes, respectively) were supplemented with a small object detection layer to
enhance the detection of small targets.

Training
images

Augmentation
and resize SM-YOLOv5 Obtain predicted

bounding box

Back propagation

Loss

GT bounding box

No

End

Input
images

Resized to
640x640

Trained 
SM-YOLOv5

Obtain predicted
bounding box NMS Detection  

Results End

Yes
Reach predicted

epoch?

Figure 4. Flowchart illustrating the training and detection process of SM-YOLO, with the training
phase represented by orange boxes and the detection phase represented by green boxes.
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Depthwise Convolution Separable Convolution

Figure 5. Schematic diagram of separable convolution.

The proposed model enhances the detection of small-sized targets in real-time tomato
detection by incorporating an additional layer for small-target detection, in addition to the
original three layers for detecting targets of varying scales. This model fuses three layers
of feature data with one layer of small-target features to achieve better performance. To
improve the small-target detection accuracy, MobileNetV3-Large is used as the backbone
network, and four different-sized feature layers are extracted for prediction. Table 2 presents
the network architecture parameters of MobileNetV3-Large and the corresponding output
layer for each of the four feature layers. The improved model balances accuracy and speed
by employing 3, 640, 640 color images as input. The replaced MobileNetV3-Large backbone
network extracts features of sizes 802, 402, and 202 at layers 6, 13, and 15, respectively. The
three-layer features correspond to small, medium, and large fields of view, which detect
small, medium, and large tomato targets in the images, respectively. For detailed detection,
the 1602 feature images extracted by the third layer of MobileNetV3-Large are used as
the input to enable the network to detect tomato targets that are blurred or obscured in
the image background, thereby improving the detection ability of panoramic images of
tomatoes within the PF environment.

Table 2. Parameters of MobileNetV3-Large network architecture and corresponding prediction layers.

Layer Input Size Kernel
Size Expand #out 1 SE 2 NL 3 s 6 Detection

Layer

1 320, 320, 8 3 × 3 16 16 RE 4 1
2 320, 320, 8 3 × 3 64 24 RE 2
3 160, 160, 16 3 × 3 72 24 RE 1 Detection1 5

4 160, 160, 16 5 × 5 72 40 X 7 RE 2
5 80, 80, 24 5 × 5 120 40 X RE 1
6 80, 80, 24 5 × 5 120 40 X RE 1 Detection2 5

7 80, 80, 24 3 × 3 240 80 HS 4 2
8 40, 40, 40 3 × 3 200 80 HS 1
9 40, 40, 40 3 × 3 184 80 HS 1

10 40, 40, 40 3 × 3 184 80 HS 1
11 40, 40, 40 3 × 3 480 112 X HS 1
12 40, 40, 56 3 × 3 672 112 X HS 1
13 40, 40, 56 5 × 5 672 160 X HS 2 Detection3 5

14 40, 40, 80 5 × 5 960 160 X HS 1
15 20, 20, 40 5 × 5 960 160 X HS 1 Detection4 5

1 The term “out” indicates the dimension size of the output. 2 “SE” indicates whether the layer uses the squeeze-
and-excite structure. 3 “NL” indicates the type of nonlinear function. 4 “HS” indicates the use of the h-swish
nonlinear function, and “RE” indicates the use of the ReLU nonlinear function. 5 “Detection 2,3,4” are the
three-layer detection layers of the original YOLOv5 model, and “Detection 1” is the small-target detection layer
added in this paper. 6 “s” indicates the step size. 7 “X” indicates that SE is used in the layer.

3.2. Small-Target Detection Layer

The small-target detection layer is capable of addressing the challenge of accurately
detecting small, partially obscured, or blurred targets within an image. YOLOv5 has
successfully implemented multi-scale target detection, thereby compensating for the short-
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coming of detecting targets at a single scale [40]. The comparison of multi-scale detection
in Figure 6a–c demonstrates the output results of each scale layer prediction after NMS in
multi-scale detection. Figure 6a illustrates the output of the large-target detection layer,
where many small-target tomato fruits were not accurately detected, but the recognized
samples had a high confidence score. This could have been due to the fact that the larger
tomato fruits contained more distinctive information, and the network fully extracted these
features for detection. On the other hand, as shown in Figure 6c for the small-target detec-
tion layer, only one large tomato fruit was not accurately detected, and the confidence score
was high. This could have been because the output of this layer involved more features
in the NMS operation. The application of overlapping and merging calculations to more
prediction results could enhance the confidence of the detection outcomes, as is evident
for the mid-target detection presented in Figure 6b and the multi-scale fusion detection
depicted in Figure 6d. In the current example, the mid-target detection layer successfully
recognized all tomato fruits with a high confidence compared to the multi-scale detection
layer. The multi-scale detection layer was shown to be effective in detecting targets of differ-
ent sizes and improving the confidence of the detection results. The average confidence of
multi-scale fusion detection was observed to be higher, and combining the detection results
of the small-target layer and the large-target layer through multi-scale fusion achieved
better detection results. SM-YOLOv5 was designed to use four-scale feature fusion target
detection to enhance the model’s ability to detect small, partially obscured, or blurred
tomato targets.

counter:13     mean confidence:0.96

(a)

counter:21    mean confidence:0.89

(b)

counter:20    mean confidence:0.95

(c)

counter:21     mean confidence:0.96

(d)

Figure 6. Comparison of multi-layer detection results. Detection results for (a) large targets,
(b) medium targets, (c) small targets, and (d) multi-layer target fusion detection. Borders and
text background colors indicate that the recognized classification was “green” or “red” fruit. White
circle callouts indicate tomato fruits that were not correctly identified.
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3.3. Trained Anchors and Transfer Learning

The anchor serves as the fundamental basis for the prediction bounding box output of
a network. The prediction layer extracts multiple sets of sizes and ratios based on the anchor
scale and subsequently computes the predicted classification probability and positional
information of all the results. In YOLOv5, an anchor regression is performed using the
K-means clustering algorithm based on the labeled sample information, after which it is
assigned to the appropriate scale feature map [41]. By default, the YOLOv5 network uses
the regression cluster of the COCO dataset as the highest-priority frame, and the anchors
for different scale features are shown in Table 3. To improve the detection ability of deep
networks for tomatoes in plant factories, their shapes were analyzed, and the optimal size
of the annotation frame in the dataset was calculated. This process enhanced the accuracy
and robustness of the model, and the anchor was recalculated using K-means clustering.
The anchor regression clustering process used the following parameters: a cluster count
of 9 or 12, twice the aspect ratio threshold, 10,000 iterations, and the determination of
optimal anchors through machine learning. By utilizing this method, the accuracy and
robustness of the deep network for detecting tomatoes in plant factories were improved,
as evidenced by the final anchor box PR recall rate of 0.9997. The optimal parameters for
the tomato anchor and tomato small-target anchor in Table 3 were obtained by performing
regression clustering under the conditions of three-layer and four-layer target detection,
respectively, and replacing the anchor training model with the COCO dataset. The aspect
ratio of the anchor boxes obtained from the regression clustering tended to be rectangular,
which aligned with the shape of the round tomato fruits present in the images.

Table 3. A set of anchor values for COCO, tomato, and tomato small-target detection.

Downsampling COCO Anchor Tomato Anchor Our Anchor

2×
4× 18 × 17, 22 × 23, 26 × 25
8× 10 × 13, 16 × 30, 33 × 23 19 × 19, 30 × 29, 40 × 38 34 × 34, 52 × 52, 45 × 44

16× 30 × 61, 62 × 45, 59 × 119 51 × 49, 62 × 63, 76 × 73 57 × 53, 65 × 66, 81 × 76
32× 116 × 90, 156 × 198, 373 × 326 89 × 85, 108 × 106, 132 × 130 93 × 91, 110 × 108, 134 × 133

The concept of transfer learning is employed to address issues of underfitting and con-
vergence difficulties during model training. By utilizing network model weights pre-trained
on relevant datasets, the applicability of a model to new scenarios can be improved [42].
Since the COCO dataset contains a large number of image data, the network weights
trained on it could be used for the detection task presented in this paper. Thus, the pro-
posed SM-YOLOv5 network was initialized with the COCO-trained weights, followed by
the fine-tuning and training of the network. The application of pre-trained weights from
a diverse range of datasets to the training of a new network can overcome the challenges
associated with the slow or difficult convergence of randomly generated network weights
and enhance the network’s representational capacity.

4. Results and Analyses
4.1. SM-YOLOV5 Training and Validation

In order to provide a comprehensive comparison, all models were trained and vali-
dated using the same dataset. Figure 7 demonstrates the training process of the four models
used: (1) the original YOLOv5 model; (2) YOLOv5 with a small-target detection layer,
referred to as Small-YOLOv5(S-YOLOv5); (3) YOLOv5 with MobileNetv3-Large replacing
the backbone network, referred to as MobileNetV3-YOLOv5 (M-YOLOv5); and (4) YOLOv5
with MobileNetv3-Large replacing the backbone network and a small-target detection layer,
referred to as SM-YOLOv5. In the initial stages of all detection model training, the learning
efficiency of the models was high, and the convergence speed of the training curve was
fast. As the number of training epochs increased, the slope of the training curve gradually
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decreased and eventually stabilized. With an increase in the number of training epochs,
the localization loss, confidence loss, and classification loss results changed, as shown in
Figure 7a–c,f–h. It can be observed that each loss function gradually converged.

The precision and recall metrics continued to improve and converge with the increase
in the number of training epochs, as depicted in Figure 7d,e. The green curve, representing
the use of MobileNetV3-Large, exhibited lower performance than the original model.
However, by augmenting MobileNetV3-Large with a small component, the red curve of the
target detection layer ultimately aligned with the curve of the original model, indicating
that the same precision and recall level as the original model were achieved.

As illustrated by the map in Figure 7i, at an intersection over union (IoU) threshold of
0.5, the model proposed in this paper attained the same level of detection accuracy as the
original model while exhibiting a reduction in model scale and parameters. Conversely, as
demonstrated by the map in Figure 7j, in the threshold range of 0.5 to 0.95, the proposed
model’s detection performance markedly decreased, revealing a diminished ability to detect
targets at higher IoU thresholds. In summary, the proposed algorithm achieved a high
accuracy while reducing the model scale compared to the original algorithm. However, the
model’s expression ability was observed to decrease in the high confidence interval (>0.9).

Figure 7. Training results of different models.

4.2. SM-YOLOV5 Model Testing

The proposed SM-YOLOv5 model, which is lightweight and suitable for small-target
detection, was evaluated to demonstrate its effectiveness in detecting tomato fruits. The
experimental results presented in Table 4 indicated that the proposed method achieved
an average precision of 98.6% and 99.0% for green and red fruits, respectively, with an
mAP of 98.8%. Additionally, the model required only 7.6 GFLOPs of computing power.
Therefore, the proposed approach not only improved the accuracy of tomato detection
but also reduced the computational burden, making it suitable for real-time detection
in embedded devices. These findings provide valuable insights for the development of
intelligent tomato-picking robots capable of detecting small targets.
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Table 4. Detection results for tomato fruit using SM-YOLO model.

Tomato Fruit Color Precision (%) Recall (%) AP (%) mAP (%)

Green 98.0 96.2 98.6 98.8Red 98.5 96.8 99.0
All precision and recall values were obtained at a confidence level of 0.59, which corresponded to the peak point
in the F1 curves of both categories.

4.3. Performance Comparison

To validate the proposed model’s effectiveness, the same dataset and validation set
were used for model training and evaluation. The final network weights obtained from
model training were used to assess the results on the same validation set. Additionally, to
further verify the model’s effectiveness, we compared the proposed SM-YOLOv5 model
with other mainstream DCNN target detection models. The comparison models, including
SSD, YOLOv3, Faster RCNN, and YOLOv5s, were trained and tested on the same dataset.
The experimental results, shown in Table 5, revealed that the SM-YOLOv5 model’s mAP
reached 98.8%, which was 1.4% higher than the original YOLOv5 model. Additionally,
the model’s computing power requirement was only 7.8GFLOPs, providing a noticeable
computing performance advantage over other models. Thanks to the search network
structure employed by MobileNetV3-Large, the detection performance reached a high level,
further enhancing its computing performance advantages.

The small-target detection layer proposed in this study could effectively address the
issue of reduced feature extraction resulting from the reduction in network scale. This was
evidenced by the improvements in various detection performance results. The current study
presents a novel target detection model that exhibited exceptional performance in terms of
both detection accuracy and computational efficiency. Specifically, this model offers distinct
advantages when applied to the detection of tomatoes within a PF environment.

Table 5. Comparison of training and validation results for YOLOv5, SSD, YOLOv3, Faster RCNN,
and SM-YOLOv5.

Network Backbone Number of
Detection Layers mAP (%) GFLOPs Weight Size

(MB)

YOLOv5 CSPDarknet53 3 97.4 15.8 14.9
SSD VGG16 6 90.7 30.5 182.0

YOLOv3 Darknet53 3 97.5 154.9 470.2

Faster RCNN VGG16 Regional
proposal 81.2 63.9 522.0

SM-YOLOv5 MobileNetV3-Large 4 98.8 7.6 6.3

4.4. Ablation Experiment

To further verify the optimization’s effectiveness, an optimization strategy ablation
experiment was carried out based on the YOLOv5 model. The same training set and
verification sets were used for training and verification. First, the original YOLOv5 model
and each improved model were trained, and then the model performance was evaluated
using the same verification dataset and method. The test results are shown in Table 6.
The test results showed that using the more streamlined MobileNetV3-Large to replace
the CSPDarknet53 backbone network could effectively reduce the network size from the
required computing power of 15.8 GFLOPs to 4.7 GFLOPs, theoretically increasing the
model prediction speed threefold. The model’s accuracy was reduced due to the small
parameter scale of the proposed model. Adding a small-target detection layer to the original
model was proposed to improve the model results. The experimental results showed that
the detection effect of the model could be increased. By adding a small-target detection
layer to M-YOLOv5 to form the SM-YOLOv5 model, the computing power was increased to
7.6 GFLOPs; however, this was only half that of the original model. In theory, the detection
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speed could be doubled, and the mAP also reached 98.8%; all aspects of the performance
matched the level of the original model and improved upon it.

The training results presented in Figure 8 illustrate the performance evaluation based
on the ablation experiment. The curve intuitively reflects the change in each performance
index with confidence. Specifically, in the PR curve in Figure 8a and Formula (2), the
accuracy reflects the proportion of predicted positive samples corresponding to the ground
truth (GT) samples at a particular confidence level, indicating the performance of the
model verification and false-detection rate. Lower confidence levels may have yielded
some low-confidence false-detection results corresponding to GT samples, which led to a
higher accuracy. However, as the confidence level increased, the false-detections with a
low confidence and the results with a low confidence were filtered and excluded, resulting
in reduced accuracy. This trend was intuitively reflected in the curve, which shows that the
model’s accuracy gradually decreased with the increase in the confidence level.

Table 6. Training and validation result comparison between YOLOv5, SSD, YOLOv3, Faster RCNN,
and SM-YOLOv5 models.

Network Small-Target
Detection Layer

Improved
Backbone

Detection
Layer

Precision
(%)

Recall
(%) mAP (%) GFLOPs Weight

Size (MB)

YOLOv5 3 97.9 94.8 97.4 15.8 14.9
S-YOLOv5 X 1 3+1 98.0 96.2 98.0 23.4 14.9
M-YOLOv5 X 3 97.9 95.4 98.3 4.7 6.33

SM-YOLOv5 X X 3+1 97.8 96.7 98.8 7.6 6.33

Since the values of precision and recall were dependent on the confidence threshold, the values reported in
the table correspond to the confidence threshold at which the maximum value of the F1 score was achieved.
1 “X” indicates that the improvement is used in the model.

Furthermore, the comparison between the proposed and original models in Figure 8a
shows that the curve of the original model rose earlier, whereas the proposed model’s
curve inclined more slowly in the low-confidence interval. However, the proposed model
surpassed the original model later, and it reached the maximum accuracy of 1 first.

In the PR curve and Formula (3) shown in Figure 8b, the recall rate reflects the
proportion of predicted positive sample results corresponding to ground truth samples and
all positive sample results predicted under a specific confidence level. It reflects the model’s
performance in recalling actual positive samples and identifying missed checks. At low
confidence levels, the model predicted more samples, and the proportion corresponding
to ground truth was also higher, which was reflected in the recall rate. However, as the
confidence level increased, the predictions were gradually filtered out, and the recall rate
decreased until it reached a minimum value of 0.

Figure 8b reveals that the proposed model was more sensitive in the high-confidence
interval and declined earlier compared to the original model. This may have been due to the
proposed model’s utilization of a small-scale backbone network, resulting in less-sufficient
feature extraction than the original model. The proposed model dropped sharply after
the confidence level reached 0.8, which indicated a decrease in the model’s expression
ability. In contrast, the original model dropped sharply after the confidence level reached
0.9. When combined with the precision curve and application procedure, the recall rate
was significantly reduced. Nonetheless, confidence intervals for higher performance could
still be obtained.

The PR curve and Formulas (5)–(7) depicted in Figure 8c associate the confidence
value with two values, and the area under the curve represents the model’s mAP value.
The formula describes the discontinuous gradient integration method utilized during the
model training, which comprehensively reflects the model’s performance. The figure shows
that the performance of the proposed model was relatively close to but improved upon
that of the original model, meeting the requirements for application.
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In Figure 8d and Formula (4), the F1 score is the harmonic mean of precision and
recall, which provides a comprehensive performance index for the model and its maximum
performance point. The proposed model achieved the same maximum value as the original
model without significant performance degradation.

Comparing the curves in Figure 8a,b, it is observed that the accuracy of the proposed
model was more sensitive at a low confidence and recall and at a high confidence, which
was also reflected in the F1-score curve. The F1-score curves were slightly lower than the
original model at low-confidence intervals (less than 0.2) and high-confidence intervals
(higher than 0.8). However, this did not affect the proposed model’s high speed and
accurate detection in the best confidence interval.

(a) precision curve (b) recall curve

(c) PR curve (d) F1 curve

Figure 8. Visualization of the results from ablation experiments conducted using YOLOv5, S-YOLOv5,
M-YOLOv5, and SM-YOLOv5 methods.

5. Discussion

To address the problem of the difficulty of using general deep learning target de-
tection technology to detect the different growth states of tomato fruits while ensuring
a light weight and high precision in the environment of plant factories, this paper pro-
posed a YOLOv5 tomato fruit growth state detection model using the MobileNetV3-Large
backbone network.

The method was based on the YOLOv5 network model and used MobileNetV3-Large
to replace the CSPDarknet53 backbone network for efficient feature extraction. The search
structure used by MobileNetV3-Large can efficiently extract enough features on small-scale
networks. For tomato fruits, the image tends to be rectangular in proportion; therefore, the
K-Means clustering algorithm was used for regression in the tomato dataset to obtain the
best anchors and participate in network training as a hyperparameter. In order to address
the insufficiencies arising from the utilization of the MobileNetV3-large backbone network,
we proposed the incorporation of a small-target detection layer to improve the three-layer
multi-scale detection structure of the original model. This augmentation is particularly
well-suited to scenarios in which the target object, in this case tomato fruit, is comparatively
small within the context of plant factories; by integrating a smaller backbone network
with an additional small-target detection layer, our network was capable of predicting
all relevant features with minimal computational overhead, requiring only 7.6 GFLOPs.
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Furthermore, our approach achieved an mAP score of 98.7% and had a compact model file
size of only 6.3 MB.

The approach outlined in this paper achieved the accurate and efficient detection of
tomato fruits in testing scenarios, with a performance on par with and improved compared
to that of the original YOLOv5 model. The subsequent steps involve implementing the
model for detection in embedded systems and robots, refining the network model to
enable the real-time detection of tomato fruit growth status in tomato-picking robots, and
collaborating with multi-eye 3D cameras to precisely locate the tomato fruits within the
robot’s workspace. By achieving accurate coordinate positioning, the aim is to enable
high-precision, automated picking by robots.

6. Conclusions

In the present study, we proposed a novel algorithm, SM-YOLOv5, for the detection
of tomato fruits in a PF laboratory environment. Our algorithm was specifically designed
to satisfy the lightweight requirement of picking robots and the high-precision demands of
control systems employed in plant factories. Based on the experimental research and result
analysis conducted in this study, the main findings were as follows:

1. Lightweight: The proposed model backbone was replaced with the MobileNetV3-
Large network, which is a lightweight architecture that reduced the model’s FLOPs to
7.6 GFLOPs and its size to 6.3 MB.

2. Small-target detection: The additional detection layer resulted in the improved perfor-
mance of the proposed algorithm in detecting tomatoes that were obscured, overlap-
ping, or small in size.

3. Accuracy: The proposed model was modified to reduce its scale by replacing the back-
bone with a lightweight alternative. To ensure accurate detection while maintaining
the model’s lightweight characteristic, a small detection layer was integrated into its
architecture. This operational enhancement resulted in a significant improvement in
accuracy, with the test set achieving a score of 98.8%.

In contrast to conventional detection algorithms, SM-YOLOv5 exhibited robustness
in accurately detecting tomato fruits while effectively identifying targets that were far-
off, partially obscured, and overlapping in PF environments. Moreover, the lightweight
characteristic of the model proposed in this paper provides significant advantages for the
design of picking robots and control systems.
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Abbreviations
The following abbreviations are used in this manuscript:

CHT Circular Hough transform
CNNs Convolutional neural networks
COCO Common Objects in Context
CUDA Computer unified device architecture
DCNNs Deep convolutional neural networks
DW-Conv Depthwise convolution
DWS-Conv Depthwise separable convolution
FLOPs Floating-point operations
FNCC Fast normalized cross-correlation function
GT Ground truth
HOG Histogram of oriented gradient
IoU Intersection over union
M-YOLOv5 Mobilenet-YOLOv5
NMS Non-maximum suppression
PF Plant factory
PW-Conv Pointwise convolution
RCNN Regional convolutional neural network
SIFT Scale-invariant feature transform
S-YOLOv5 Small-YOLOv5
SM-YOLOv5 Small-Mobilenet-YOLOv5
SSD Single-shot MultiBox detector
SVM Support vector machine
VOC Visual object classes
XML Extensible markup language
YOLO You Only Look Once

References
1. Xi, L.; Zhang, M.; Zhang, L.; Lew, T.T.S.; Lam, Y.M. Novel Materials for Urban Farming. Adv. Mater. 2022, 34, 2105009. [CrossRef]

[PubMed]
2. Ares, G.; Ha, B.; Jaeger, S.R. Consumer Attitudes to Vertical Farming (Indoor Plant Factory with Artificial Lighting) in China,

Singapore, UK, and USA: A Multi-Method Study. Food Res. Int. 2021, 150, 110811. [CrossRef] [PubMed]
3. Food and Agriculture Organisation. Food and Agriculture Organisation of the United Nations (FAOSTAT). Available online:

https://www.fao.org/faostat/en/#data/QCL/ (accessed on 4 January 2023).
4. Lindeberg, T. Scale Invariant Feature Transform. Scholarpedia 2012, 7, 10491. [CrossRef]
5. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1,
pp. 886–893.

6. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support Vector Machines. IEEE Intell. Syst. Their Appl. 1998,
13, 18–28. [CrossRef]

7. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

8. Iwasaki, F.; Imamura, H. A Robust Recognition Method for Occlusion of Mini Tomatoes Based on Hue Information and Shape of
Edge. In Proceedings of the International Conference on Computer Graphics, Multimedia and Image Processing, Kuala Lumpur,
Malaysia, 17–19 November 2014; pp. 516–521. [CrossRef]

9. Linker, R.; Cohen, O.; Naor, A. Determination of the Number of Green Apples in RGB Images Recorded in Orchards. Comput.
Electron. Agric. 2012, 81, 45–57. [CrossRef]

10. Wei, X.; Jia, K.; Lan, J.; Li, Y.; Zeng, Y.; Wang, C. Automatic Method of Fruit Object Extraction under Complex Agricultural
Background for Vision System of Fruit Picking Robot. Optik 2014, 125, 5684–5689. [CrossRef]

11. Wu, J.S.; Zhang, B.; Gao, Y.L. An Effective Flame Segmentation Method Based on Ohta Color Space. Adv. Mater. Res. 2012,
485, 7–11. [CrossRef]

12. Li, H.; Zhang, M.; Gao, Y.; Li, M.; Ji, Y. Green Ripe Tomato Detection Method Based on Machine Vision in Greenhouse. Trans.
Chin. Soc. Agric. Eng. 2017, 33, 328–334.

13. Fu, L.; Tola, E.; Al-Mallahi, A.; Li, R.; Cui, Y. A Novel Image Processing Algorithm to Separate Linearly Clustered Kiwifruits.
Biosyst. Eng. 2019, 183, 184–195. [CrossRef]

http://doi.org/10.1002/adma.202105009
http://www.ncbi.nlm.nih.gov/pubmed/34668260
http://dx.doi.org/10.1016/j.foodres.2021.110811
http://www.ncbi.nlm.nih.gov/pubmed/34863501
https://www.fao.org/faostat/en/#data/QCL/
http://dx.doi.org/10.4249/scholarpedia.10491
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1142/s0219467815400045
http://dx.doi.org/10.1016/j.compag.2011.11.007
http://dx.doi.org/10.1016/j.ijleo.2014.07.001
http://dx.doi.org/10.4028/www.scientific.net/AMR.485.7
http://dx.doi.org/10.1016/j.biosystemseng.2019.04.024


Sensors 2023, 23, 3336 18 of 19

14. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

15. Girshick, R. Fast R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015; pp. 1440–1448. [CrossRef]

16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. Adv.
Neural Inf. Process. Syst. 2015, 28, 1–9. [CrossRef]

17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016; Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]

19. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [CrossRef]

20. Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

21. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
22. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding Yolo Series in 2021. arXiv 2021, arXiv:2107.08430.
23. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. arXiv 2022, arXiv:2207.02696.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
25. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. In Proceedings of the 27th International

Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.
26. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]
27. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European

Conference Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19. [CrossRef]
28. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
29. Zhang, C.; Kang, F.; Wang, Y. An Improved Apple Object Detection Method Based on Lightweight YOLOv4 in Complex

Backgrounds. Remote Sens. 2022, 14, 4150. [CrossRef]
30. Xu, Z.; Huang, X.; Huang, Y.; Sun, H.; Wan, F. A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking

Robot under a Complex Background, Based on an Improved YOLOv5s Architecture. Sensors 2022, 22, 682. [CrossRef]
31. Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple Detection during Different Growth Stages in Orchards Using the

Improved YOLO-V3 Model. Comput. Electron. Agric. 2019, 157, 417–426. [CrossRef]
32. Su, F.; Zhao, Y.; Wang, G.; Liu, P.; Yan, Y.; Zu, L. Tomato Maturity Classification Based on SE-YOLOv3-MobileNetV1 Network

under Nature Greenhouse Environment. Agronomy 2022, 12, 1638. [CrossRef]
33. Wang, X.; Vladislav, Z.; Viktor, O.; Wu, Z.; Zhao, M. Online Recognition and Yield Estimation of Tomato in Plant Factory Based

on YOLOv3. Sci. Rep. 2022, 12, 8686. [CrossRef]
34. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (Voc) Challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
35. Taha, A.A.; Hanbury, A. Metrics for Evaluating 3D Medical Image Segmentation: Analysis, Selection, and Tool. BMC Med.

Imaging 2015, 15, 29. [CrossRef] [PubMed]
36. Li, W.; Feng, X.S.; Zha, K.; Li, S.; Zhu, H.S. Summary of Target Detection Algorithms. In Proceedings of the Journal of Physics:

Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1757, p. 012003. [CrossRef]
37. Neubeck, A.; Van Gool, L. Efficient Non-Maximum Suppression. In Proceedings of the 18th International Conference on Pattern

Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 850–855. [CrossRef]
38. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft Coco: Common Objects in

Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 740–755.

39. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Searching for
Mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28
October 2019; pp. 1314–1324. [CrossRef]

40. Ju, M.; Luo, H.; Wang, Z.; Hui, B.; Chang, Z. The Application of Improved YOLO V3 in Multi-Scale Target Detection. Appl. Sci.
2019, 9, 3775. [CrossRef]

http://dx.doi.org/10.1109/cvpr.2014.81
http://dx.doi.org/10.1109/iccv.2015.169
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/cvpr.2016.91
http://dx.doi.org/10.1109/cvpr.2017.690
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/tpami.2019.2913372
http://dx.doi.org/10.1117/12.2636811
http://dx.doi.org/10.3390/rs14174150
http://dx.doi.org/10.3390/s22020682
http://dx.doi.org/10.1016/j.compag.2019.01.012
http://dx.doi.org/10.3390/agronomy12071638
http://dx.doi.org/10.1038/s41598-022-12732-1
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1186/s12880-015-0068-x
http://www.ncbi.nlm.nih.gov/pubmed/26263899
http://dx.doi.org/10.1088/1742-6596/1757/1/012003
http://dx.doi.org/10.1109/icpr.2006.479
http://dx.doi.org/10.1109/iccv.2019.00140
http://dx.doi.org/10.3390/app9183775


Sensors 2023, 23, 3336 19 of 19

41. Zhong, Y.; Wang, J.; Peng, J.; Zhang, L. Anchor Box Optimization for Object Detection. In Proceedings of the 2020 IEEE Winter
Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; IEEE: Snowmass Village,
CO, USA, 2020; pp. 1275–1283. [CrossRef]

42. Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; Huang, X. Pre-Trained Models for Natural Language Processing: A Survey. Sci. China
Technol. Sci. 2020, 63, 1872–1897. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/WACV45572.2020.9093498
http://dx.doi.org/10.1007/s11431-020-1647-3

	Introduction
	Materials and Methods
	Data Acquisition and Preprocessing
	Image Acquisition
	Dataset Annotation and Augmentation

	Experimental Environment
	Model Evaluation Metrics

	Proposed SM-YOLOv5 Model
	Lightweight MobileNetV3-Large Backbone Network
	Small-Target Detection Layer
	Trained Anchors and Transfer Learning

	Results and Analyses
	SM-YOLOV5 Training and Validation
	SM-YOLOV5 Model Testing
	Performance Comparison
	Ablation Experiment

	Discussion
	Conclusions
	References

