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Abstract: Complete autonomous systems such as self-driving cars to ensure the high reliability
and safety of humans need the most efficient combination of four-dimensional (4D) detection,
exact localization, and artificial intelligent (AI) networking to establish a fully automated smart
transportation system. At present, multiple integrated sensors such as light detection and ranging
(LiDAR), radio detection and ranging (RADAR), and car cameras are frequently used for object
detection and localization in the conventional autonomous transportation system. Moreover, the
global positioning system (GPS) is used for the positioning of autonomous vehicles (AV). These
individual systems’ detection, localization, and positioning efficiency are insufficient for AV systems.
In addition, they do not have any reliable networking system for self-driving cars carrying us and
goods on the road. Although the sensor fusion technology of car sensors came up with good efficiency
for detection and location, the proposed convolutional neural networking approach will assist to
achieve a higher accuracy of 4D detection, precise localization, and real-time positioning. Moreover,
this work will establish a strong AI network for AV far monitoring and data transmission systems. The
proposed networking system efficiency remains the same on under-sky highways as well in various
tunnel roads where GPS does not work properly. For the first time, modified traffic surveillance
cameras have been exploited in this conceptual paper as an external image source for AV and anchor
sensing nodes to complete AI networking transportation systems. This work approaches a model
that solves AVs’ fundamental detection, localization, positioning, and networking challenges with
advanced image processing, sensor fusion, feathers matching, and AI networking technology. This
paper also provides an experienced AI driver concept for a smart transportation system with deep
learning technology.

Keywords: autonomous vehicle; AI networking; deep learning; localization; positioning; sensor
fusion; traffic surveillance camera

1. Introduction

Global giant autonomous self-driving tech companies and investors such as Tesla,
Waymo, Apple, Kia–Hyundai, Ford, Audi, and Huawei are competing to develop more
reliable, efficient, safe, and user-friendly autonomous vehicle (AV) smart transportation
systems, not only for competitive technological development demand but to also have
an extensive safety issue of valuing life and wealth. According to the World Health
Organization (WHO) report, yearly approximately 1.35 million [1] people are killed around
the world in crashes involving cars, buses, trucks, motorcycles, bicycles, or pedestrians, and
estimates that road injuries will cost the world economy USD 1.8 trillion [2] in 2015–2030.
Between 94% and 96% of all motor vehicle accidents are caused by different types of human
errors, found by the National Highway Transportation Safety Administration (NHTSA) [3].
To ensure human safety and comfort, researchers are trying to implement a fully automated
transportation system in which errors or faults will be turned to zero.
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In January 2009, Google started self-driving car technology development at the Google
X lab and after long sensor efficiency improvement research, in September 2015 Google
prefaced the world’s first driverless car where the car successfully rides a blind gentleman
on public roads under the project Chauffeur, that was renamed Waymo in December
2016 [4]. Tesla has begun an autopilot project in 2013 and after a couple of modifications,
in September 2020, Tesla reintroduced an enhanced autopilot capable of highway travel,
parking, and summoning, including navigation on city roads [5]. Other autonomous
self-driving car companies mentioned before are also improving their technology day by
day to achieve a competitive full automation system that can provide the most beneficial
experience for human safety, security, comfort, and smart transportation systems. Although
nowadays the success rate for autonomous self-driving car rides during testing periods
on public roads is higher than a human-driving car, it is not sufficient yet to operate full
automation and causes several errors, faults, and accident records [6–8]. A highly sensible
and error-free self-driving car is mandatory to establish reliability among people to use
AVs. Light detection and ranging (LiDAR), radio detection and ranging (RADAR), and car
cameras are the most used sensors in AV technologies for the detection, localization, and
ranging of objects [9–14].

To ensure exact localization and real-time positioning, AVs need a more reliable and
efficient four-dimensional (4D), such as height, width, length, and position, detection
system at any time that helps to make errorless decisions for self-driving cars. Remote
control or monitoring is also a major issue for AV performed by a global positioning system
(GPS) whose accuracy and communication capabilities are not sufficient because it does
not work equally in all weather conditions and situations. Some millimeters or centimeters
of range accuracy is needed for AVs in a smart transportation system, where GPS only
provides 3.0 m range accuracy [15].

AVs’ perception systems [16] depend on the internal sensing and processing unit of
the vehicle sensors such as camera, RADAR, LiDAR, and ultrasonic sensors. This type of
sensing system of AVs is called single vehicle intelligence (SVI) in intelligent transportation
systems (ITS). In the SVI system, the AV measures the object vision data by cameras, the
relative velocity of the object or obstacle by RADAR sensors, the environment mapping
by LiDAR sensor, and ultrasonic sensors are used for parking assistance with very short-
range accurate distance detection. AVs with SVI can drive autonomously with the help of
sensor detection but are unable to build a node-to-node networking system because the
SVI is a unidirectional communication system where the vehicles can sense the driving
environment to drive spontaneously.

On the other hand, connected and AVs (CAVs) are operated by the connected vehicle
intelligence (CVI) system in ITS [17]. The vehicle-to-everything (V2X) communication
system is used in CVI for CAVs driving assistance. V2X communication is a combinational
form of vehicle-to-vehicle (V2V), vehicle-to-person (V2P), vehicle-to-infrastructure (V2I),
and vehicle-to-network (V2N). The CVI system for CAV, in general, can build a node-
to-node wireless network where the central node (vehicle for V2I and V2P) or principal
nodes (for V2V) in the systems’ communication range can receive and exchange (for V2N)
data packs. In the beginning, dedicated short-range communication (DSRC) was used for
vehicular communication. The communication range of DSRC is about 300 m. To develop
an advanced and secured CAV system, different protocols are developed, such as IEEE
802.11p in Mach 2012. For effective and more reliable V2X communication, long-term
evolution V2X (LTE-V2X) and new radio V2X (NR-V2X) are developed with Rel-14 to
Rel-17 between 2017 to 2021 under the 3rd generation partnership project (3GPP) [18]. The
features of Avs and CAVs are summarized and presented in Table 1.

Depending on AVs’ nonlinear characteristics and parameter uncertainty, researchers in
recent studies proposed some novel kinematic model-based and robust fusion methods for
localization and state estimation (velocity and attitude) to ensure high accuracy and reliabil-
ity by integrating different sensing and measuring units such as a global navigation satellite
system (GNSS), camera, LiDAR simultaneous localization and mapping (LiDAR-SLAM),
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and inertial measurement unit (IMU) [19]. The sideslip angle estimation and measurement
under severe conditions are one of the challenging sections of AV research in ITS where
the researchers are proposed different approaches and models such as automated vehicle
sideslip angle estimation considering signal measurement characteristics [20], autonomous
vehicle kinematics and dynamics synthesis for sideslip angle estimation based on the
consensus Kalman filter [21], vision-aided intelligent vehicle sideslip angle estimation
based on a dynamic model [22], and IMU-based automated vehicle body sideslip angle
and attitude estimation aided by GNSS using parallel adaptive Kalman filters [23–25]. The
main challenges of those types of integrated fusion are high latency, measurement delay,
and less reliability for long-distance communication in various driving conditions.

Table 1. The summarized features of AVs and CAVs.

Feature AVs CAVs

Intelligence SVI CVI
Networking Sensor’s network Wireless communication network

Range Approximately 250 m 300 m (DSRC) to 600 m (NR-V2X)
Communication Object sense by the sensors Node-to-node communication

Reliability Reliable (Not exactly defined) 95% (LTE-V2X), 99.999% (NR-V2X)
Latency No deterministic delay Less than 3 ms (LTE-V2X)

Direction Unidirectional Multidirectional
Data rate N/A >30 Mbps

A new approach has been provided in this conceptual paper, fusion with a surveillance
camera detection system (FSCDS), which is a 4D sensing and networking system. FSCDS
can provide exact positioning and AI networking for smart transportation systems. The
proposed model provides preconceptions about detecting target ground conditions that
improve overall detection efficiency. It also helps in real-time monitoring, data collection,
and data processing for machine learning (ML). The proposed networking system has an
effective communication capability on both highways, underwater, and tunnel roads where
GPS working efficiency is limited. Although AVs’ sensors can create point cloud three-
dimensional (3D) modeling for object detection, the proposed detection system is more
efficient and accurate due to the integration of multi-sensor systems. A traffic surveillance
camera system is used as an anchor node [26] as well as an external image source shown
in Figure 1 and its infrastructure after some technical modification for maintaining AI
networking and communication between the AV to the base station. Experienced AI
drivers (EAID) will be the next-generation AV driver with the revolution of ML, deep
learning (DL), and data science technologies.
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Vision sensors [27,28] are highly effective for resolution information as well as for
DL, and LiDAR has exceptional mapping capability, but most of them are not based
on DL. For a perfect ML and DL-based model, the system needs a very large number
of data sensed by the sensors. For LiDAR sensors, 3D point cloud [29] substantiating
accuracy is high [30]. In harsh and extreme weather conditions such as glare, snow, mist,
rain, haze, and fog, all sensor sensing capabilities decrease exponentially. Designing an
automotive system for self-driving cars that can operate perfectly in all-weather conditions
is a big challenge for automation researchers. A terahertz [31] 6G (sixth generation) wireless
communication system will also contribute to achieving such a system for AVs. Booming DL
technology [32,33] helps to think about what the next generation AV of smart transportation
systems will be. AVs are driving millions of miles and collecting data that are the primary
data source for ML to train the systems and day-by-day will be capable of solving new
untrained problems with the DL approach.

A fully automated system (self-driving car) design is not only a complicated task but
also has major responsibility issues. In the six levels (0 to 5th) of automation shown in
Figure 2, the zero level has no automation and the 5th level has full automation [34]. For the
5th level system, the vehicle can perform all driving functions under all conditions. If any
fault, error, or accident occurs, then responsibility and liability will fully go into the system.
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The contributions of this paper can be summarized as follows:

• Traffic surveillance camera systems are introduced for the first time with AV fu-
sion technologies.

• For self-driving cars’ autonomous driving, 4D detection, exact localization, and AI
networking accuracy improvement methodologies are shown.

• Exact localization procedure mathematical affectation is figured for joint road vehicles’
geographical positioning with the multi-anchor node positioning system.
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• Deep learning-based AV driving systems and FSCDS technologies are proposed
for EAID.

The rest of the paper is organized as follows. Section 2 provides a detailed overview
of the related studies with problem estimations and sensor fusion technology in AVs. The
proposed detection, localization, and AI networking approaches of this paper are discussed
in Section 3. Qualitative detection improvement, networking performance, and finding
results are presented in Section 4. The conclusion with additional thoughts and further
research directions on Avs are discussed in Section 5.

2. State-of-the-Art Related Works and Problems Estimation

For proper driving assistance generally, three types of sensors are used in AVs; they
are camera, LiDAR, and RADAR. Laser beam reflection technology is used in LiDAR to
observe the surroundings of AVs. Car cameras take video (images) and detect the object
by applying advanced image processing (AIP) techniques and the Doppler properties of
electromagnetic waves are used in RADAR systems to detect the relative velocity and
position of targets or obstacles.

2.1. The Summarized Contributions Compared to Related Works

Generally, the sensor fusion technology of the camera, RADAR, and LiDAR is used
in AVs for object detection, classification, and localization. For the first time, the traffic
surveillance camera system is used in this work with the sensor fusion system for the 4D
detection of the target whose detection and object classification accuracy are much better
than the existing system because of having the actual length, width, and height of the object.
Anchor node and AI networking systems are installed with the traffic surveillance camera
system for exact localization and effective AI communications with AVs, where the existing
GPS communication accuracy is not enough for error-free localization and communication.
The mathematical affectation of the exact localization procedure is configured for joint road
vehicles’ geographical positioning with the multi-anchor node positioning system. This
work also provides a DL-based experienced AI driver concept for a smart transportation
system with CNN technology. A comparison of the recent related studies is presented in
Table 2.

Table 2. A comparison with the recent related studies.

Year Paper AV Applications Sensors

2016 Schlosser et al. [35] Pedestrian detection Vision and LiDAR
2016 Wagner et al. [36] Pedestrian detection Vision and Infrared
2017 Du et al. [37] Vehicle detection, lane detection Vision and RADAR
2018 Melotti et al. [38] Pedestrian detection Vision and LiDAR
2018 Hou et al. [39] Pedestrian detection Vision and Infrared
2018 Gu et al. [40] Road detection Vision and LiDAR
2018 Hecht et al. [10] Road detection LiDAR
2018 Manjunath et al. [14] Object detection RADAR
2019 Shopovska et al. [41] Pedestrian detection Vision and Infrared
2019 Caltagirone et al. [42] Road detection Vision and LiDAR

2019 Zhang et al. [43] Road detection Vision and Polarization
camera

2019 Crouch et al. [9] Velocity detection LiDAR and RADAR
2020 Minto et al. [44] Object detection RADAR
2021 Chen et al. [12] Object detection Vision and LiDAR
2022 Zhang et al. [45] Object detection Vision
2022 Ranyal et al. [46] Road detection Vision
2022 Ghandorh et al. [47] Road detection Vision
2023 Wang et al. [48] Vehicle detection, lane detection RADAR

This paper All obstacles detection, localization, and AI
networking

Sensor fusion with traffic
surveillance camera
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Although the existing individual sensing and sensor fusion technologies of car sensors
came up with good efficiency for detection and location, the proposed approaches will
assist in achieving a higher accuracy of 4D detection, precise localization, and real-time
positioning. Moreover, the proposed system will establish strong AI networking for AV far
monitoring and data transmission systems.

2.2. Sensors in AV for Object Detection

Self-driving AVs are fully dependent on the sensing system of car cameras, LiDAR, and
RADARs. With the combination of all sensed output data from the sensors, called sensor
fusion, the AV decides whether it drives, brakes, or turns left–right, and so on. Sensing
accuracy is the most crucial for self-driving cars to make error-free driving decisions.
Figure 3 presents the area of an AV’s surround monitoring by car sensors for autonomous
driving performance.
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Generally, eight sets of camera imaging systems are used in AVs to perform different
detection sensing such as one set of narrow forward cameras, one set of main forward
cameras, one set of wide forward cameras, four sets of side mirror cameras, and one set of
rear-view back side cameras. A narrow forward camera with 200 m capture capability is
used for long-range front object detection. The main forward camera with 150 m capture
capability is used for traffic sign recognition and lane departure warning. A 120-degree
wide forward camera with 60 m detection capability is used for forward actual detection.
Four sets of mirror cameras are used for side detection in which the first two cameras each
with 100 m capture capability are used for rearward looking and another two cameras
each with 80 m capture capability are used for forward monitoring. The collision warning
rear-view camera with 50 m detection capability is used in an AV’s backside for parking
assistance and rear-view mirror.

Three types of different range RADARs such as low range, medium range, and high
range RADARs are used for the calculation of an object’s or obstacle’s actual localization,
positioning, and relative velocity. A long-range RADAR with 250 m detection capability
is used for emergency braking, pedestrian detection, and collision avoidance. Three sets
of short-range RADARs, each with 40 m front-side detection capability, are used for cross-
traffic alert and parking assistance. Two sets of medium-range RADARs, each with 80 m
backside detection capability are used for collision avoidance and parking assistance.
Another two sets of medium-range RADARs, each with 40 m rear detection capability, are
used for rear collision warning. Some short-range with 20 m detection capacity ultrasonic
passive sensors are also used for collision avoidance and parking assistance.

The AV’s surround is mapped by LiDAR 360, used for the surround-view, parking
assistance, and rear-view mirror. In our proposed sensor fusion algorithm, the main
three types of AV sensors such as camera, RADAR, and LiDAR are considered. RADAR
performances for distance and relative velocity measurements are far better than the
ultrasonic sensor. The AV has several cameras for the surrounding view, traffic sign
recognition, lane departure warning, side mirroring, and parking assistance. LiDAR is
basically used for environmental monitoring and mapping. RADARs provide cross-traffic
alerts, pedestrian detection, and collision warning to avoid accidents. In AVs, short-range,
medium-range, and long-range RADARs are generally used for sensor measurement
purposes and ultrasonic for short-range collision avoidance as well as parking assistance.

2.3. Sensor Fusion Technology in AV

RADAR working performances are reliable in adverse weather and low light con-
ditions and have very impressive sensing capabilities such as relative velocity detection,
visual obstruction identification, and obstacles distance measurement but its performance
may be decayed by signal interference. RADAR is not good for color detection, traffic sign
or object classification, object contour, capture rate, and data resolution. LiDAR also has
signal interference effects, but is sovereign for 3D mapping, point cloud architecting, object
distance detection, and low light working capability. The cameras’ optical sensing is signal
interference-free and decent in color detection, traffic sign classification, object classifica-
tion, object contouring, data resolution, and capture rate. Camera, LiDAR, RADAR, and
ultrasonic sensors have individual detection advantages and limitations [49–52], which are
listed in Table 3. After summarizing and graphing, Figure 4 gives an overlooked view of
different sensor detection [53–55].
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Table 3. Pros and cons of camera, LiDAR, RADAR, and ultrasonic detection technologies in AV systems.

Sensors Pros Cons

Camera

• High-speed imaging
• Passive sensor
• Best for recognition
• No need for high power
• Inexpensive
• Infrared or thermal availability
• Interference-free
• High sensing resolution
• AI and deep learning research are

very advanced

• Light and visibility dependent
• Easily affected by shadow or reflections
• Get dirty frequently
• Direct 3D is not possible without any stereo

LiDAR

• Direct 3D information
• Performed in both day and night
• Very high accuracy measurements
• High resolution
• At present, AI research is very advanced

• Very expensive
• No appearance information
• Ineffective under rain and fog
• Have rotating parts
• Most of LiDAR is not a deep learning base yet

RADAR

• Captures direct distance and velocity
• Inexpensive
• Performed both day and night
• Immunity to adverse weather
• Detect potentially long-range
• Reliable and proven technology
• Solid state

• Provides very noisy output
• Object boundary detection is not good
• Limited classification capability
• Poor resolution
• Unable to detect small objects
• AI research just started

Ultrasonic Sensor

• Has sensing capability with all material types
• Not affected by atmospheric dust, rain,

snow, etc.
• Can work in all adverse conditions
• Provides good readings in sensing large-sized

objects with hard surfaces

• Air needs to travel and is easily affected
by wind

• Highly sensitive to temperature variation
and vapors

• Difficulties in reading from soft, curved, thin,
and small objects

Sensor fusion also called multisensory data fusion or sensor data fusion is used to
improve the specific detection task. In AVs, the primary sensors of cameras, RADAR, and
LiDAR are used for object detection, localization, and classification. The distributed data
fusion technology shown in Figure 5 is used in the proposed system. In five levels of data
fusion technologies, wide-band and narrow-band digital signal processing and automated
feature extraction are performed in the first level (level 0) fusion domain for pre-object
assessment. The second level (level 1) or object assessment is the fusion domain of image
and non-image fusion, hybrid target identification, unification, and variable level of fidelity.
In the third and fourth levels (levels 2 and 3), situation and impact assessments are the
fusion domain of the unified theory of uncertainty, the automated section of knowledge
representation, and cognitive-based modulations. The fifth level (level 4) called process
refinement is the fusion domain of optimization of non-commensurate sensors, the end-to-
end link between inference needs and sensor control parameters, and robust measures of
effectiveness (MOE) or measures of performance (MOP). The summarized flow chart of
sensor fusion technologies [56–59] in AVs is shown in Figure 6.
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3. Proposed Approaches for Detection, Localization, and AI Networking

Infront object or obstacle distance, relative velocity, surround mapping, traffic sign
as well object classification, and object 3D format estimation are the most fundamental
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objectives of AV sensors. To establish a multi-modal and high-performance autonomous
system, accurate 3D point cloud or formatting is crucial and needs the actual height, width,
and length for perfect object detection [60]. The car camera can detect its front side (target
back side) only, but it is difficult for the actual length measurement.

3.1. Detection Approach

The proposed detection approach established a hybrid system to obtain the actual
4D formations of targets or obstacles where the actual height and width measurements
are received by the car camera and the actual length measurement is received by the
surveillance camera birds’ eye or mountain view, shown in Figure 7. Although in the
conventional system the length is calculated by LiDAR 3D for obtaining the 3D bounding
box, the proposed model’s 3D formation accuracy will be more accurate because of having
an actual length received from the surveillance camera system. Moreover, researchers are
working to replace LiDAR [61] with advanced RADAR systems as well as multi-sensed
3D camera imaging with AIP technologies because of some commercial use limitations of
LiDAR such as its high expense, high signal interference and noise, and the problem of
having rotating parts. “Will have or have not LiDAR”, the detection by surveillance camera
systems, will be supportive for self-driving AVs in all conditions.
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Now, the resulting of the Maximum Heading Similarity (MHS) [62] metrics for sensor
fusion are expressed as:

MHS f1 =
n

∑
j=1

max s(r̃) (1)

In (1), s(r̃) is the estimated fusion value of the AV sensors. The Average Detection
Precision (ADP), s(r̃) [63], for the car sensors is expressed as:

s(r̃) = p̂(cc,i) ∪ p̂(lc,i) ∪ p̂(rc,i) (2)

In (2), p̂(cc,i), p̂(lc,i), and p̂(rc,i) are the individual AV detection precision of the car
camera, LiDAR, and RADAR, respectively.
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If the detection precision of the car sensor fusion and traffic surveillance camera are
p̂( fc), and p̂(ctsc,i), respectively, then the overall ADP of fusion with the surveillance camera
system is expressed as:

s(k̃) = p̂( fc) ∪ p̂(ctsc,i) (3)

For the overall fusion with surveillance camera images in (3), the MHS metrics can be
expressed as:

MHS f2 =
n

∑
j=1

max s(k̃) (4)

In (4), MHS f2 is the overall fusion detection upliftment. The anchor nodes installed
with traffic surveillance cameras provide real-time 4D localization and positioning informa-
tion shown in Figure 8.
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AI networking is one of the crucial requirements in advanced AV technology for
far monitoring and data communication. The proposed model provides real-time data
transmission and communication concepts for an effective AV system where the vehicles,
surveillance camera transceiver, base station, cloud internet, and satellite are connected for
fruitful communication. Because of having multi-networking systems, this model works
effectively for data communication and real-time positioning in tunnel roads where GPS
does not work properly. The wireless AI networking model between AVs, satellites, base
stations, and cloud internet monitoring is shown in Figure 9.

3.2. Localization Approach

The AVs’ localization calculation of the joint road position is shown in Figure 10 where
A(x1, y1), B(x2, y2), and C(x3, y3) are three anchor nodes and their distances from the
unknown blind node P(Xi, Yi) are d1, d2, and d3, respectively. The general relations among
the A, B, C, and P points can be expressed as:

(xn − Xi)
2 + (yn −Yi)

2 = dn
2; n = 1, 2, 3 (5)
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Figure 9. Proposed AI multi-networking technology for AV with modified traffic surveillance
camera system.
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To solve those three sets in (5) of linear equations and to remove the quadratic terms
X2

i and Y2
i , subtracting the third equation (n = 3) from the two previous ones (n = 1, 2),

resulting in two remaining equations which are:

(x1 − Xi)
2 − (x3 − Xi)

2 + (y1 −Yi)
2 − (y3 −Yi)

2 = d1
2 − d3

2 (6)

(x2 − Xi)
2 − (x2 − Xi)

2 + (y2 −Yi)
2 − (y2 −Yi)

2 = d2
2 − d3

2 (7)

Rearranging (6) and (7), the results can be expressed as:

2(x3 − x1)Xi + 2(y3 − y1)Yi = (d2
1 − d2

3)− (x2
1 − x2

3)− (y2
1 − y2

3) (8)

2(x3 − x2)Xi + 2(y3 − y2)Yi = (d2
2 − d2

3)− (x2
2 − x2

3)− (y2
2 − y2

3) (9)

Equations (8) and (9) can be easily rewritten as an equation of linear matrix as:

2
(

x3 − x1 y3 − y1
x3 − x2 y3 − y2

)(
Xi
Yi

)
=

[
(d2

1 − d2
3)− (x2

1 − x2
3)− (y2

1 − y2
3)

(d2
2 − d2

3)− (x2
2 − x2

3)− (y2
2 − y2

3)

]
(10)

The actual position of the blind node P(Xi, Yi) can be easily determined by solving (10).
The proposed prediction-based detection and multi-anchor positioning system improves
the overall detection and reduces localization errors.

3.3. Deep Learning Approach

To improve the accuracy of fully autonomous driving and AI networking systems, DL
technology with CNN and AI systems are applied appropriately, as shown in Figure 11.
Recent research and studies have shown that DL and CNN techniques are vulnerable
to adversarial sample inputs crafted to force a deep neural network (DNN) to provide
adversary-selected outputs [64,65]. The combinations of fusion data and surveillance cam-
era images estimate an accurate 4D formation of the target with a CNN, shown in Figure 12.
The AV driving system will be learned during the driving period by reinforcement learning
with different driving conditions and achieve smart self-decision-making capabilities in
unknown conditions being experienced by AI drivers for AVs [66–68].
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Dataset for Train the Model

The CARLA (CarSim) simulator has been used for different driving condition simula-
tions in various environments. CARLA is used for advanced AV research and is popular for
simulation diversity with enriched library datasets. The users can make variations indepen-
dently on the demand such as driving environment, dynamic weather, number of vehicles
on the road, sensor sets, and sensor range. The simulator can process the fusion data re-
ceived from various sensors. For the individual sensor detection precision calculation and
comparison with the proposed model, the camera, RADAR, and LiDAR sensors are used
individually. To obtain fusion and FSCDS detection precision values, combinational sensing
has been used. The PythonAPI for CARLA is openly available with repository examples
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here, https://github.com/carla-simulator/carla/tree/master/PythonAPI (accessed on
8 January 2023). For the training of the model with a big fusion date, the unScenes [69]
integrated dataset is used. The unScenes dataset is a popular large-scale dataset used
for AV research collected data from entire sensors such as six cameras, five RADAR, one
LiDAR, GPS, and IMU. The unScenes includes 7×more object annotations compared to
the KITTI dataset.
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Object detection and localization are the two major parts to gain a complete image
understanding of DL. In three AV sensors, the vision sensors are only DL-based but LiDAR
and RADAR are not properly yet. Fast and faster regions with CNN (R-CNN) are generally
used for object region detection and localization. The ImageNet dataset, Astyx Dataset
HiRes2019 dataset, and Berkeley DeepDrive dataset are used for the camera, RADAR,
and LiDAR detection measurements to calculate the detection precision accuracy of the
proposed system. From those datasets, of the huge collection, only six objects have been
chosen such as cars, bicycles, motorcycles, buses, trucks, and pedestrians. The fusion
ADP and FSCDS ADP values are calculated by MHS metrics (Equations (1)–(4)) from the
value calculation (for the camera, RADAR, and LiDAR) with individual datasets and the
elimination process with the assumption values. The ImageNet project, a large visual
database, is designed for the software research of visual object recognition where about
14 million images have been hand-annotated to indicate what objects are pictured, and one
million of the image bounding boxes are also provided. Astyx Dataset HiRes2019 is an
automotive RADAR-centric dataset for DL-based 3D object detection whose size is more
than 350 MB and consists of 546 frames. The Berkeley DeepDrive dataset is comprised of
more than 100 K video sequences with diverse kinds of annotations including image-level
tagging, object bounding boxes, drivable areas, lane markings, and full-frame instance
segmentation. The Berkeley DeepDrive dataset possesses geographic, environmental, and
weather diversity, which is very useful for autonomous training models so that they are
less likely to be surprised by new operating conditions [70].

4. Experimental Results with Qualitative Detection and Networking Performance
Analysis of the Proposed Systems

By using traffic surveillance cameras, the AV’s fusion detection system can obtain a
clear bird’s eye view of targets or obstacles already shown in Figure 7, where there are
wireless AI networking systems between the AV and traffic surveillance camera systems
and can easily measure the actual length or shape of that target. A comparison of the
exact detection capability is shown in Figure 13, where the 3D bounding box formation
accuracy is much better in FSCDS for having exact detection data. The 2D image input
from the car camera sensor can measure the obstacle behind the front car clearly and the
approximate shape is calculated by using the depth calculation of the LiDAR input, which
is not properly efficient for object 3D detection and point cloud mapping. A comparative
average detection precision accuracy (ADPA) distributed fusion of different sensors is
shown in Figure 14, whereby the combination of the surveillance camera image, car camera

https://github.com/carla-simulator/carla/tree/master/PythonAPI
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image, and LiDAR provides the most reliable detection and tracking performance. Table 4
provides the application and performance analysis of the proposed approach.
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Table 4. Compressional performance analysis of traditional fusion and the proposed FSCDS.

Issues Conventional AV Detection Proposed FSCDS

4D detection for localization
and positioning

Partially possible by AV’s sensors (camera,
RADAR, and LiDAR).

Figures 7 and 13 show how the proposed
FSCDS perfectly detects the 4D position and

exact localization for AVs.

Real-time ground
preconception for smart

detection assistance

Not available (GPS detection preconception
assistance is not enough, even not applicable at

every location and all-weather conditions).

Before starting the AV fusion sensing function,
the FSCDS model provides a preconception
about sensing ground that assists to prevent

error sensing.

AV efficiently remote
monitoring and control

The smart GPS system is used for satellite AV
monitoring, but the satellite signal is

attenuated by obstacles and does not work
properly in harsh weather. (GPS positioning

horizontal accuracy 3 m [15]).

By fitting anchor nodes with surveillance
cameras and establishing wireless networking
(Figure 9) between the AV and node to the base
station, FSCDS establishes a strong real-time

remote monitoring and control system.

Working (networking)
availability in the tunnel or

underwater road

Indoor working efficiency is not enough for
signal attenuation.

FSCDS’s working efficiency is equally best
both on highway and tunnel roads.

Point cloud 3D object
modeling Efficient [64]. FSCDS is more efficient because of the exact 4D

detection (Figure 13) system.

The data rate for users Conventional data rate [71].

In FSCDS, high-speed data communication is
possible for AV users because of CNN and

smart AI networking in the proposed
communication system.

The individual approximate detection capability and a combination of sensor fusion
detection are represented in Figure 15, where the detection probable assumption of sensors
is between zero and one. The comparative diagram of car sensor fusion and overall fusion
with surveillance camera detections is shown in Figure 16, where the proposed FSCDS’s
overall detection capacity is much better than only car sensor fusion detection. In FSCDS,
the surveillance camera provides extra information about obstacles, targets, and road
conditions with an AI networking system that improves the overall detection capability of
the fusion output. The comparison of the detection accuracy of fusion and FSCDS is shown
in Figure 17, where the FSCDS detection performance is much better than the fusion value
of car sensors. Figure 18 shows the localization accuracy comparison of fusion detection
and FSCDS.
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5. Conclusions

Advanced driver assistance systems for a reliable AV are mandatory in a smart trans-
portation system which needs to have a multi-sensing, AI networking, quick and correct
decision making, and intelligent operating capability under all situations and conditions.
Smart detection, more accurate positioning, AI networking, remote monitoring, control,
and driving in harsh weather are the maximal significant challenges for self-driving au-
tomated systems in which the proposed 4D detection and AI networking system will be
capable of solving those limitations. The proposed system’s localization, positioning, 3D
point cloud, and intelligent networking are much better than conventional systems because
of having smart detection and AI networking which also assist to operate simultaneously
in different conditions such as driving in harsh weather and tunnel road AV driving.

The EAID model has been proposed to design all AVs under a deep learning-based
model because thousands of new driving decisions and conditions will be alive during
driving periods and the system will be learned by ML technologies. It is also capable of
taking efficient and quick decisions in an unknown situation. Although at present LiDAR
has a significant role in AVs surround mapping and detection, this sensor is so expensive,
has a rotating component, and noise is affected by signal interference. It is hoped that
researchers will soon be able to replace LiDAR with inexpensive and efficient advanced
image (optical, thermal, and so on) processing and smart AI networking technologies. AV
users will feel safer, secure, and comfortable with EAID.

Further work can be carried out in the following area: The availability of data is
crucial for AVs’ exact localization and networking, hence the robust algorithm will be
modeled for harsh weather and adverse driving conditions; the proposed model is affluent
to the wireless ITS so the security model for wireless networking will be developed for
a reliable communication system and avoid malfunctioning; for EAID development, the
large amount of fusion dataset will be collected for DL purpose from the real driving
environment for training the AV; the effectiveness and robustness of the proposed concept
will be verified by real vehicle tests in various driving environments.
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4D Four-Dimensional
6G Sixth Generation
ADAS Advanced Driver Assistance Systems
ADPA Average Detection Precision Accuracy
AI Artificial Intelligence
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AIP Advanced Image Processing
AV Autonomous Vehicle
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
EAID Experienced Artificial Intelligent Driver
FSCDS Fusion with Surveillance Camera Detection System
GPS Global Positioning System
LiDAR Light Detection and Ranging
MHS Maximum Heading Similarity
ML Machine Learning
NHTHA National Highway Transportation Safety Administration
QoS Quality of Services
RADAR Radio Detection and Ranging
R-CCN Region with Convolutional Neural Network
RoI Region of Interest
SAE Society of Automotive Engineers
WHO World Health Organization
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