
Citation: Feng, J. ; Gong, J.

AoI-Aware Optimization of Service

Caching-Assisted Offloading and

Resource Allocation in Edge Cellular

Networks. Sensors 2023, 23, 3306.

https://doi.org/10.3390/s23063306

Academic Editors: Hao Wang,

Małgorzata Kujawska, Vijayakumar

Varadarajan, Han-Chieh Chao, Lidia

Dobrescu, Sheng-Lyang Jang, Yi Wu,

Wencheng Lai, Adam W. Skorek and

Rashmi Bhardwaj

Received: 8 February 2023

Revised: 28 February 2023

Accepted: 17 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

AoI-Aware Optimization of Service Caching-Assisted
Offloading and Resource Allocation in Edge Cellular Networks
Jialiang Feng and Jie Gong *

The Guangdong Key Laboratory of Information Security Technology, School of Computer Science and
Engineering, Sun Yat-Sen University, Guangzhou 510006, China
* Correspondence: gongj26@mail.sysu.edu.cn

Abstract: The rapid development of the Internet of Things (IoT) has led to computational offloading
at the edge; this is a promising paradigm for achieving intelligence everywhere. As offloading can
lead to more traffic in cellular networks, cache technology is used to alleviate the channel burden.
For example, a deep neural network (DNN)-based inference task requires a computation service
that involves running libraries and parameters. Thus, caching the service package is necessary for
repeatedly running DNN-based inference tasks. On the other hand, as the DNN parameters are
usually trained in distribution, IoT devices need to fetch up-to-date parameters for inference task
execution. In this work, we consider the joint optimization of computation offloading, service caching,
and the AoI metric. We formulate a problem to minimize the weighted sum of the average completion
delay, energy consumption, and allocated bandwidth. Then, we propose the AoI-aware service
caching-assisted offloading framework (ASCO) to solve it, which consists of the method of Lagrange
multipliers with the KKT condition-based offloading module (LMKO), the Lyapunov optimization-
based learning and update control module (LLUC), and the Kuhn–Munkres (KM) algorithm-based
channel-division fetching module (KCDF). The simulation results demonstrate that our ASCO
framework achieves superior performance in regard to time overhead, energy consumption, and
allocated bandwidth. It is verified that our ASCO framework not only benefits the individual task
but also the global bandwidth allocation.

Keywords: edge computing; computation offloading; service caching; age of information; resource
allocation

1. Introduction

In recent decades, the Internet of things (IoT) has experienced rapid development
and become ubiquitous in our daily lives. IoT devices have proliferated and evolved with
advanced hardware architectures, and are being leveraged to create seamless networks
that cover every corner of our globe [1]. Along with the development of IoT devices, a
promising computing paradigm known as edge computing has arisen; this involves moving
the location of computation from the central network to the network edge [2]. Moving the
task execution from the cloud server to the multi-access edge computing (MEC) server (e.g.,
base station, access point) significantly alleviates the congestion of the core network and
releases the burden of the cloud. Tasks with real-time requirements, computation-intensive
characteristics, and high energy consumption (e.g., deep neural network (DNN)-based
automatic license plate recognition) appear. Mobile devices where tasks are generated
are constrained in terms of energy and computational capabilities (e.g., smartphones and
unmanned aerial vehicles). Therefore, it is necessary to offload tasks to nearby MEC servers
for remote execution [3], which is also known as computation offloading [4].

However, the exponential growth in the volume of offloaded data has led to increased
traffic burdens on cellular networks, causing channel congestion. Under unstable network
conditions, such as extremely high transmission latency, the performance of computation

Sensors 2023, 23, 3306. https://doi.org/10.3390/s23063306 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23063306
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063306?type=check_update&version=1

Sensors 2023, 23, 3306 2 of 26

offloading can drastically decline. A caching policy [5] is proposed to tackle this issue by
proactively storing the service in IoT devices, including MEC servers and mobile devices,
to reduce the traffic of the cellular network. If an IoT device caches the service libraries
and parameters, the task can be directly processed. Hence, the task processing time can
dramatically reduce [6]. A DNN-based task is executed by a corresponding service package,
consisting of reliable libraries and network parameters. Since the MEC server and mobile
devices process distinct types of tasks, it is impractical to proactively cache all types of
services due to storage limits. They only carry out caching whenever a task is required to
be executed, and the caches are stored within a restricted time horizon.

Machine learning plays a significant role in the wireless network [7]. Considering
a distributed machine learning scenario [8], the DNN is trained in a distributed manner.
Then, the trained parameters of the DNN are assembled on an application server. The
application server gathers all of the trained parameters and further trains a global DNN.
Since the new data are generated from mobile devices, the trained parameters are updated
ceaselessly and the global DNN is retrained based on the newly gathered parameters at the
end of every global training round. Thus, the global DNN always reflects the up-to-date
trained parameters. However, mobile devices may not fetch the latest parameters in every
round. Hence, the cached DNN model may be outdated, which should be updated to keep
the model fresh. To measure the freshness of the global service parameters at the MEC
servers and the mobile devices, we introduce the concept of AoI [9], which is defined as the
elapsed time since the generation of the latest received global service parameters response.
The global service parameters are generated by training at the end of every global training
round. When the MEC server or mobile device is required to execute inference tasks, it
first checks whether fresh service parameters exist. If the service parameters are stale, the
MEC server or mobile device needs to request the application server to fetch the up-to-date
trained parameters for inference task execution.

1.1. Challenges

To realize distributed machine learning and service caching, the following challenges
should be addressed:

1.1.1. Cost of the Task

On the one hand, the inference task completion time needs to be less than its corre-
sponding maximal tolerance deadline. Thus, minimizing the inference task completion
time is necessary for real-time requirements. On the other hand, the inference tasks are
generated on energy-constrained mobile devices, which carefully make the offloading
decisions to minimize energy consumption. Therefore, it is challenging to minimize the
cost of the inference task consisting of time delay and energy consumed.

1.1.2. Bandwidth Consumption of the Application Server

If IoT devices fetch the latest service parameters from the application server, it utilizes
the limited wireless bandwidth of cellular networks. Therefore, there is a trade-off between
the fetching time and the total available bandwidth. If the application preferentially guar-
antees the fetching time, the remained bandwidth is not enough to serve other applications,
and vice versa. Thus, the challenge of time and bandwidth trade-off needs to be addressed.

1.1.3. Matching between Wireless Channels and IoT Devices

In a condition of limited bandwidth, the matching between the wireless bandwidth
and IoT devices is significant enough to minimize the fetching time since an IoT device
may experience diverse channel fading and co-channel interference on different wireless
channels. Hence, it is the third challenge to match between wireless channels and IoT
devices to further minimize the service fetching time.

Sensors 2023, 23, 3306 3 of 26

1.2. Related Work
1.2.1. Offloading with Cache

Some works make offloading decisions by considering the cache technology. In [10],
an algorithm was devised by taking into account the multi-cast opportunity with cache in
a multi-user scenario. A computing offloading and content caching model was proposed
to reduce the time delay in the internet of vehicles in [11]. In [12], an optimal computing
offloading and caching policy was designed to minimize the latency in a hybrid mobile
system. In [13], an approximation collaborative computation offloading scheme and a
game-theoretic collaborative computation offloading scheme were devised to achieve better
offloading performance and scale well with the increasing computation task numbers. The
above works do not consider the age of the cache, which may degrade the QoS.

1.2.2. Cache of Data

In terms of data caching, existing works focus on frequently reused data to improve
performance. In [14], a deep supervised learning method was adopted to make real-time
decisions in a dynamic vehicle network. An online caching placement and prediction-based
data pre-fetch method were designed in [15] to address the uncertainty of future task
parameters. In [16], a cache deployment strategy in a large-scale Wi-Fi system was adopted
to maximize the caching benefit and achieve better caching performance. In [17], a joint
power allocation–caching problem was formulated to maximize the downlink performance
in the caching FiWi network. However, these works do not take into account the caching of
the service, which is crucial in the DNN-based task.

1.2.3. Cache of Service

With respect to service caching, a few works consider caching services to enhance
system efficiency. In [18], an online caching algorithm was proposed to minimize the
overall computation delay. An extremely compelling (but much less studied) problem
was studied in MEC-enabled dense cellular networks in [19]. In [20], an online service
caching algorithm was devised to achieve the optimal worst-case competitive ratio under
homogeneous task arrivals. In [21], a cache placement algorithm was adopted to minimize
the data traffic forwarded to the remote cloud. The above-mentioned works only studied
the cache and did not combine it with offloading.

1.2.4. Age of Information

In regard to the age of information, some works focused on minimizing the AoI of
the optimized goal. In [9], the concept of AoI was first proposed, and general methods
were derived to calculate the age metric, which can be applied to broad types of service
systems. Dynamic cache content update scheduling algorithms were designed to minimize
the average AoI of the dynamic content delivered to the users in [22]. In [23], a dueling
deep R-network-based status updating algorithm was proposed by combining the dueling
deep Q-network and R-learning to minimize the average cost. In [24], an algorithm aimed
to obtain an optimal trade-off between age and latency was adopted for the freshness-aware
buffer update in a mobile edge scenario. However, these works did not leverage the AoI
metric to improve the offloading performance in an edge system.

1.3. Contribution

In this paper, we consider an AoI-aware service caching-assisted offloading scenario.
Our objective is to minimize the weighted sum of the average completion delay, energy
consumption, and allocated bandwidth. We decompose the original problem into three
subproblems: minimizing the average time overhead cost and energy consumption of
inference tasks, minimizing the required average bandwidth, and minimizing the fetching
time of responding IoT devices. Furthermore, to solve the subproblems, we propose the
AoI-aware service caching-assisted offloading framework (ASCO) to deal with them, which
consists of three modules: the method of Lagrange multipliers with the KKT condition-

Sensors 2023, 23, 3306 4 of 26

based offloading module (LMKO), the Lyapunov optimization-based learning and update
control module (LLUC), and the Kuhn–Munkres (KM) algorithm-based channel-division
fetching module (KCDF). Simulation results show that our ASCO framework achieves
superior performance compared to other baseline combinations in terms of time overhead,
energy consumption, and allocated bandwidth. The main contributions of the paper are
summarized as

1. To minimize the average time overhead cost and energy consumption of inference
tasks, we transform the problem into a Lagrangian dual problem. Then, we propose
the LMKO module based on the method of Lagrange multipliers with Karush–Kuhn–
Tucker (KKT) conditions to make an optimal offloading decision.

2. To minimize the required average bandwidth, we transform the problem into a
Lyapunov plus penalty problem by minimizing the total required bandwidth while
keeping the requesting data queue backlog stable. Further, we propose the LLUC
module based on the Lyapunov optimization to derive an optimal dequeued rate.

3. To minimize the fetching time of IoT devices, we consider the problem of finding
the perfect matching by maximizing the sum of the link weights in the equalling
subgraph. Moreover, we propose the KCDF module based on the KM algorithm to
obtain the optimal matching decision.

The novelty of the paper consists of three aspects. First we propose an AoI-aware
service caching-assisted offloading scenario, which has not been considered in the litera-
ture. This scenario takes into account the service caching in distributed machine learning,
including the service libraries and parameters. It is a popular technology and worthy to
be investigated. We also consider the freshness of the service caching for the computation
offloading. Existing works omit the AoI of the caching, especially the service caching, which
degrades the offloading performance. We aim to minimize the costs from both the mobile
device side and the global perspective. Then, we propose the novel ASCO framework,
including three modules. The proposed algorithm outperforms the existing baselines.

The rest of the paper is organized as follows. We elaborate on the system module in
Section 2. An analysis of the formulated problems is detailed in Section 3. Section 4 presents
the proposed solution. The evaluation simulation is described in Section 5, followed by the
conclusion in Section 6.

2. System Model

We consider an AoI-aware service caching asymmetric network consisting of heteroge-
neous mobile devices and MEC servers in Figure 1. A set of |N | mobile devices indexed by
n is denoted as N = {1, · · · , |N |}, e.g., smartphones and intelligent vehicles. A set of |M|
MEC servers indexed by m is denoted asM = {1, · · · , |M|}, e.g., access points and base
stations. Since an AI-based inference task generated from the mobile device is computation-
intensive and has real-time requirements, the mobile device with constrained computation
capability needs to offload the inference task to the MEC server with sufficient computation
resources. On the one hand, the inference task is processed by the corresponding service.
For instance, an image recognition inference task is inferred by a DNN service running in
service libraries, e.g., machine learning frameworks. On the other hand, caching data can
alleviate the transmission traffic during the offloading and include content caching and
service caching.

Considering a distributed machine learning scenario, an application server period-
ically trains an up-to-date DNN and then distributes it to the MEC servers and mobile
devices, among which the inference task data are hardly reusable while the DNN service is
frequently reusable. Thus, different from cashing the inference task data, caching the DNN
service significantly reduces the transmission time. Note that the DNN service consists
of the service libraries and service parameters. Since a DNN with the latest parameters
owns better inference accuracy based on the periodical training, the service parameters
should be updated when it has a new version. The service libraries are static and are only
transmitted once for caching while the service parameters are dynamic. We define the AoI

Sensors 2023, 23, 3306 5 of 26

as the elapsed time since the generation of the latest received service parameters at MEC
servers or mobile devices, which measures the freshness of service parameters. If the AoI
of service parameters is less than the periodical training round, then the parameters are
considered to be the latest version and fresh enough to be used for inference. Otherwise,
since a new version is generated at the application server, the parameters are stale and
need to be updated to the latest version. Note that mobile devices do not hold the AoI
information on the side of MEC servers due to privacy concerns and transmission overhead.

Figure 1. Schematics of the offloading cases.

2.1. Task Model

Considering a time-slotted system, a set of |T | timeslots indexed by t is denoted as
T = {1, · · · , |T |}. The inference task generated from the mobile device n at timeslot t is
denoted as kn(t). A set of |J | service types indexed by j is denoted as J = {1, · · · , |J |}.
For instance, plate image recognition and face recognition are distinct types of services.
Each inference task has a corresponding service type; the relationship is represented as
follows: xtyp

kn(t),j
= 1 if kn(t) is of type j; otherwise, xtyp

kn(t),j
= 0. This satisfies the condition

that each inference task can only be executed by a service of a certain type, at most:
∑j∈J xtyp

kn(t),j
= 1.

The inference tasks are computation-intensive and have maximum time tolerance. We
define the inference task profile of kn(t) as (dkn(t), ckn(t), Tmax

kn(t)
), where dkn(t) is the inference

task input size, ckn(t) is the task computation amount, and Tmax
kn(t)

is the task maximum
completion tolerance deadline. Take the task image recognition as an example, dkn(t) is the
image bit size, and ckn(t) represents the required CPU cycles of the DNN service. Tmax

kn(t)
is

the image recognition deadline, meaning that the inference task processing delay cannot
exceed the tolerance time.

2.2. Communication Model

The application server, mobile devices, and MEC servers mutually communicate
under the cellular network. Based on the Shannon theory, the transmission rate between
the mobile device n and MEC server m can be referred to as

rn,m(t) = bn,m(t) log2(1 +
pn,m(t)hn,m(t)
σ2 + In,m(t)

), (1)

where bn,m(t) is the allocation bandwidth, pn,m(t) means the transmission power from n to
m, hn,m(t) is the channel gain, σ2 represents the additive white Gaussian noise, and In,m(t) is
the co-channel interference that mobile device n suffers on the cellular channel, respectively.
The transmission power affects the achievable spectral efficiency, and a highly allocated
bandwidth can lead to an efficient transmission rate. The channel gain between each one

Sensors 2023, 23, 3306 6 of 26

varies due to mobility. Since mobile devices are energy-constrained, the transmission power
has an upper bound: pn,m(t) ≤ pmax, where pmax is the maximum transmission power.

Moreover, the uploading time of inference task kn(t) from the mobile device n to the
MEC server m can be calculated as

Tupl
n,m,kn(t)

= xexe
m,kn(t)(t)

dkn(t)

rn,m(t)
, (2)

where xexe
m,kn(t)

(t) is the offloading decision and defined as xexe
m,kn(t)

(t) = 1 if kn(t) is offloaded
to m; otherwise, xexe

m,kn(t)
(t) = 0. It satisfies: ∑m∈M xexe

m,kn(t)
(t) ≤ 1, meaning that each

inference task is offloaded to one MEC server at most.
The transmission rate from the application server to the MEC server r0,m(t) and the

transmission rate from the application server to the mobile device r0,n(t) can be similarly
calculated with (1).

2.3. Caching Model

For the purpose of alleviating the transmission traffic, the MEC servers and mobile
devices have to cache the DNN service in their caching storage if they have no corre-
sponding cache. Let dlib

j be the library size and dpar
j be the parameter size of service type j,

respectively.
Therefore, the fetching time for the DNN service of type j to the MEC server m can be

calculated as

Tcac
0,m,j = Tlib

0,m,j + Tpar
0,m,j = (1− xcac

m,j(t))(
dlib

j

r0,m(t)
+

dpar
j

r0,m(t)
), (3)

where Tlib
0,m,j and Tpar

0,m,j are the fetching times of the service libraries and parameters at the
MEC servers, respectively, and xcac

m,j(t) is the service caching placement decision at the MEC
server m, defined as xcac

m,j(t) = 1 if j is cached in m; otherwise, xcac
m,j(t) = 0. Similarly, the

fetching time for the DNN service of type j to mobile device n can be represented as Tcac
0,n,j.

Due to the limited caching capacity of the MEC server, there is a constraint on the
storage cache:

∑
j∈J

xcac
m,j(t)(d

lib
j + dpar

j) ≤ dmax
m , (4)

where the total DNN service size of all types cannot exceed the storage upper bound dmax
m .

The total DNN service size in mobile devices has a similar constraint.
Fresh parameters can effectively infer the DNN task with the satisfied performance.

To measure the freshness of the DNN service parameters, we introduce the concept of AoI
to quantify the age in the MEC server m:

∆m,j(t) = t− tj, (5)

where tj is the timeslot of the latest periodical training of service type j. The same calculation
of ∆n,j(t) is in mobile devices. The updating mechanism at the MEC server m can be defined

as ∆m,j(t) =
dpar

j
r0,m(t) if fetching ends at timeslot t; otherwise, ∆m,j(t) = ∆m,j(t− 1) + 1, and

at mobile device n: ∆n,j(t) =
dpar

j
r0,n(t)

if fetching ends at timeslot t; otherwise, ∆n,j(t) =

∆n,j(t− 1) + 1. Since the DNN is trained periodically in the application server, the DNN
training round of type j can be denoted as Tint

j . If the AoI of the parameters is less than

the training round, the parameters can be regarded as fresh parameters. Let xfre
m,j(t) be

the service parameter freshness status, defined as follows: xfre
m,j(t) = 1 if ∆m,j(t) < Tint

j ;

otherwise, xfre
m,j(t) = 0, and xfre

n,j(t) = 1 if ∆n,j(t) < Tint
j ; otherwise, xfre

n,j(t) = 0. If xfre
m,j(t) = 0

Sensors 2023, 23, 3306 7 of 26

or xfre
n,j(t) = 0, the MEC server or the mobile device is required to fetch an up-to-date

version of the service parameters from the application server; the fetching times are Tpar
0,m,j

and Tpar
0,n,j, respectively.

2.4. Execution Model

In terms of execution, the inference task is executed under the existence of the corre-
sponding service. If there is no DNN service caching at the MEC server or mobile device,
they are required to fetch a DNN service cache and then further carry out the execution.
After fetching the service caching, the execution delay of inference task kn(t) at the MEC
server m is calculated as

Texe
m,kn(t) = xexe

m,kn(t)(t)
ckn(t)

fm(t)
, (6)

where fm(t) is the computation capability of the MEC server m. Likewise, the execution
delay at the mobile device n is calculated as

Texe
n,kn(t) = (1− ∑

m∈M
xexe

m,kn(t)(t))
ckn(t)

fn(t)
, (7)

where fn(t) is the constant computation capability of the mobile device n. Here, the
computation capability of a mobile server is less than a MEC server, and fm(t) has an upper
bound: fn(t) < fm(t) ≤ f max, where f max is the maximum of the computation capability.

2.5. Energy Model

From the perspective of energy consumption, we focus on the energy of mobile devices
since they usually have batteries of limited capacity while the MEC server is connected to
the power grid. Hence, the energy consumed for the local execution of the mobile device n
can be calculated as

Eexe
n,kn(t) = (1− ∑

m∈M
xexe

m,kn(t)(t))µckn(t) f 2
n(t), (8)

where µ refers to the effective switched capacitance.
In the case of offloading, the energy consumption of the mobile device only includes

the uploading energy, calculated as

Eupl
n,m,kn(t)

= xexe
m,kn(t)(t)pn,m(t)

dkn(t)

rn,m(t)
. (9)

Energy consumption is another crucial metric of mobile devices. The cost of the mobile
device consists of the time delay and energy consumption with distinct emphasis.

2.6. Cost Model

At timeslot t, the mobile device n with the generated DNN inference task kn(t) can
make an offloading decision to process the task. According to the service caching placement
decision and service parameter freshness status, the cost of the mobile device can be divided
into the following cases, as seen in Figure 1.

2.6.1. Case 1: Offloading with Fresh Cache

First, in case 1, the mobile device offloads the inference task to the MEC server with
caching service libraries and fresh parameters. The combination of the decision and status
satisfies: xkn(t),1(t) = xexe

m,kn(t)
(t)xtyp

kn(t),j
xcac

m,j(t)xfre
m,j(t) = 1. The total time delay, in this case,

can be calculated as Tkn(t),1 = Tupl
n,m,kn(t)

+ Texe
m,kn(t)

. In addition, the total energy consumption

of the mobile device is represented as Ekn(t),1 = Eupl
n,m,kn(t)

.

Sensors 2023, 23, 3306 8 of 26

2.6.2. Case 2: Offloading with Stale Cache

In Case 2, the mobile device offloads the inference task to the MEC server with caching
service libraries and stale parameters. The combination of the decision and status satisfies:
xkn(t),2(t) = xexe

m,kn(t)
(t)xtyp

kn(t),j
xcac

m,j(t)(1 − xfre
m,j(t)) = 1. The total time delay, in this case,

can be calculated as Tkn(t),2 = Tupl
n,m,kn(t)

+ Tpar
0,m,j + Texe

m,kn(t)
. Moreover, the total energy

consumption of the mobile device is denoted as Ekn(t),2 = Eupl
n,m,kn(t)

.

2.6.3. Case 3: Offloading without Cache

Then, in case 3, the mobile device offloads the inference task to the MEC server
without any DNN service cache. The combination of the decision and status satisfies
xkn(t),3(t) = xexe

m,kn(t)
(t)xtyp

kn(t),j
(1− xcac

m,j(t)) = 1. The total time delay, in this case, can be

calculated as follows: Tkn(t),3 = Tupl
n,m,kn(t)

+ Tlib
0,m,j + Tpar

0,m,j + Texe
m,kn(t)

. Likewise, the total

energy consumption of the mobile device is also represented as Ekn(t),3 = Eupl
n,m,kn(t)

.

2.6.4. Case 4: Local Execution with Fresh Cache

For local execution, in case 4, the mobile device locally executes the inference task with
caching service libraries and fresh parameters. The combination of the decision and status
satisfies xkn(t),4(t) = (1−∑m∈M xexe

m,kn(t)
(t))xtyp

kn(t),j
xcac

n,j (t)xfre
n,j(t) = 1. The total time delay,

in this case, can be calculated as follows: Tkn(t),4 = Texe
n,kn(t)

. In addition, the total energy
consumption of the mobile device is denoted as Ekn(t),4 = Eexe

n,kn(t)
.

2.6.5. Case 5: Local Execution with Stale Cache

In case 5, the mobile device locally executes the inference task with caching ser-
vice libraries and stale parameters. The combination of the decision and status satisfies
xkn(t),5(t) = (1−∑m∈M xexe

m,kn(t)
(t))xtyp

kn(t),j
xcac

n,j (t)(1− xfre
n,j(t)) = 1. The total time delay, in

this case, can be calculated as Tkn(t),5 = Tpar
0,n,j + Texe

n,kn(t)
. Then, the total energy consumption

of the mobile device is calculated as Ekn(t),5 = Eexe
n,kn(t)

.

2.6.6. Case 6: Local Execution without Cache

Finally, in case 6, the mobile device locally executes the inference task without any
DNN service cache. The combination of the decision and status satisfies xkn(t),6(t) =

(1− ∑m∈M xexe
m,kn(t)

(t))xtyp
kn(t),j

(1− xcac
n,j (t)) = 1. The total time delay, in this case, can be

calculated as Tkn(t),6 = Tlib
0,n,j + Tpar

0,n,j + Texe
n,kn(t)

. Similarly, the total energy consumption of
the mobile device is also denoted as Ekn(t),6 = Eexe

n,kn(t)
.

3. Problem Formulation

In the AoI-aware caching-assisted asymmetric offloading scenario, the average cost
of the mobile device and the total bandwidth between the application server and MEC
servers or mobile devices should be considered due to their crucial effectiveness. On the
one hand, minimizing the average cost of the mobile device can ensure that the real-time
requirements of the generated inference tasks are met and the battery energy is conserved.
As the consumed bandwidth of the application server is limited, while it bears other real-
time inference tasks, it is required to minimize the total bandwidth consumption between
the application server and MEC servers or mobile devices. Accordingly, the average cost of
time completion delay is as follows:

Tave =
1

|T ||N | ∑
t∈T

∑
n∈N

(∑
m∈M

3

∑
i=1

xkn(t),i(t)Tkn(t),i +
6

∑
i=4

xkn(t),i(t)Tkn(t),i), (10)

Sensors 2023, 23, 3306 9 of 26

where xkn(t),i(t) is defined as xkn(t),i(t) = 1 if kn(t) is executed via case i; otherwise,
xkn(t),i(t) = 0, and satisfies that each inference task must be executed via one of the
cases at one MEC server or local mobile device: ∑m∈M ∑3

i=1 xkn(t),i(t) + ∑6
i=4 xkn(t),i(t) = 1.

Then, the average cost of energy consumption can be denoted as

Eave =
1

|T ||N | ∑
t∈T

∑
n∈N

(∑
m∈M

3

∑
i=1

xkn(t),i(t)Ekn(t),i +
6

∑
i=4

xkn(t),i(t)Ekn(t),i), (11)

the time average global allocation bandwidth between the application server and MEC
servers or mobile devices is denoted as b0.

Therefore, we formally formulate the original problem to minimize the time aver-
age global allocation bandwidth and the average cost of the mobile device consisting of
inference task completion delay and energy consumption:

min
xkn(t),i(t), fm(t),pn,m(t)

Z = ξtimTave + ξeneEave + ξbanb0 (12)

s.t. Tkn(t),i ≤ Tmax
kn(t), ∀n ∈ N , t ∈ T , i ∈ {1, · · · , 6}, (13)

Ekn(t),i ≤ Emax
kn(t), ∀n ∈ N , t ∈ T , i ∈ {1, · · · , 6}, (14)

∑
m∈M

3

∑
i=1

xkn(t),i(t) +
6

∑
i=4

xkn(t),i(t) = 1, (15)

xexe
m,kn(t)(t) ∈ {0, 1}, ∀m ∈ M, n ∈ N , t ∈ T , (16)

xcac
m,j(t) ∈ {0, 1}, ∀m ∈ M, j ∈ J , t ∈ T , (17)

xfre
m,j(t) ∈ {0, 1}, ∀m ∈ M, j ∈ J , t ∈ T , (18)

∑
j∈J

xcac
m,j(t)(d

lib
j + dpar

j) ≤ dmax
m , ∀m ∈ M, j ∈ J , t ∈ T , (19)

∑
j∈J

xcac
n,j (t)(d

lib
j + dpar

j) ≤ dmax
n , ∀n ∈ N , j ∈ J , t ∈ T , (20)

fn(t) < fm(t) ≤ f max, ∀m ∈ M, n ∈ N , t ∈ T , (21)

pn,m(t) ≤ pmax, ∀m ∈ M, n ∈ N , t ∈ T , (22)

where xkn(t),i(t), fm(t), and pn,m(t) are optimization variables. ξban, ξtim, and ξene are
the given weights of the average global AoI, average time cost, and average energy cost,
respectively. (13) and (14) indicate that the inference task completion time delay and
consumed energy have upper bounds. According to (15), each inference task has to be
executed via (at most) one case at one MEC server or local mobile device. (16)–(18) show
that the optimization variables are binary. (19) and (20) constrain the caching capacity
limit of heterogeneous services at the MEC server or the mobile device. (21) shows that
the computation capability of the MEC server is higher than the mobile device and has
a maximum. (22) restricts the upper bound of the uplink transmission power of the
mobile device.

xexe
m,kn(t)

(t), xcac
m,j(t), and xfre

m,j(t) are discrete binary integer variables; pn,m(t) and fm(t)
are continuous variables. The objective functions are not linear to the variables, which
are coupled mutually. Therefore, problem (12) is an MINLP problem known as NP-hard.
It is difficult to solve the problem within the polynomial time. Combining the practical
asymmetric environment, it is more challenging to analyze and propose a solution.

Sensors 2023, 23, 3306 10 of 26

3.1. Average Cost Minimization Problem

From the perspective of mobile devices, we first decompose problem (12) into a
problem to minimize the average cost of mobile devices:

min
xkn(t),i(t), fm(t),pn,m(t)

ξtimTave + ξeneEave (23)

s.t. (C1)–(C10),

where mobile devices make their decisions based on the weighted sum of time delay and
energy consumption.

3.2. Bandwidth Consumption Minimization Problem

From the perspective of the application server, the total bandwidth allocated to the
requested MEC server or mobile device is constrained when it transmits the requested ser-
vice data. We secondly decompose problem (12) into a problem minimizing the consumed
bandwidth of the application server:

min ξbanb0 (24)

s.t. b0 ≤
1
|T | ∑

t∈T
bmax

0 , (25)

where bmax
0 is the total allocated bandwidth upper bound of the application server at

one timeslot.

3.3. Service Fetching Time Minimization Problem

When the application server transmits the service data to the MEC servers or mobile
devices, the total transmission time of the responding service data can be minimized based
on the total allocated bandwidth. We further formulate problem (26):

min Tfet(t) (26)

s.t. b0,m(t) + ∑
n∈N (t)

b0,n(t) ≤ b0(t), (27)

xkn(t),2(t) + xkn(t),3(t) + xkn(t),5(t) + xkn(t),6(t) = 1, (28)

xkn(t),i(t) ∈ {0, 1}, i = {2, 3, 5, 6}, (29)

where Tfet(t) is the total transmission time of the responding service data. (27) indicates
that the total allocated bandwidth has an upper bound, (28) and (29) limit the combina-
tion decisions.

Here, we clarify the connections among these three subproblems and how they can
work together to reach the optimal solution for problem (12). Problem (12) jointly minimizes
the cost of mobile devices and the global allocation bandwidth. Firstly, problem (23)
minimizes the mobile device cost, including the time delay and energy consumption.
Secondly, problem (24) minimizes the time average allocation bandwidth from a global
perspective. Thirdly, problem (26) further minimizes the responding service transmission
time after making the offloading decision based on the solution of the problem (23).

4. Solution

In this section, we propose three modules to, respectively, solve the subproblems in
the last section. In particular, the LMKO module can minimize the average cost of mobile
devices. To minimize the consumed bandwidth of the application server, we devise the
LLUC module. Moreover, the KCDF module minimizes the total transmission time of the
responding service data.

Sensors 2023, 23, 3306 11 of 26

4.1. Method of Lagrange Multipliers with the KKT Condition-Based Offloading Module (LMKO)

To minimize the average cost of mobile devices, we transform problem (23) into a prob-
lem of tractable form and further leverage convex optimization to solve it. According to
constraint (13), the time delay of each case cannot exceed the inference task completion tol-
erance deadline. Hence, we set the time delay of the case with most of the procedures to the
maximum tolerance time to reduce the number of optimization variables: Tkn(t),3 = Tmax

kn(t)
.

For succinct expression, we define notations A and B as

A = Tmax
kn(t) − Tlib

0,m,j − Tpar
0,m,j, (30)

B =
σ2 + In,m(t)

hn,m(t)
. (31)

Then, fm(t) and pn,m(t) can be transform into the function values of g1(Texe
m,kn(t)

(t))
and g2(Texe

m,kn(t)
(t)), respectively:

fm(t) = g1(Texe
m,kn(t)(t)) =

ckn(t)

Texe
m,kn(t)

(t)
, (32)

pn,m(t) = g2(Texe
m,kn(t)(t)) = (2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
) − 1)B. (33)

Moreover, the cost of the objective function in problem (23) can be calculated as

Z1 = ξtim 1
|T ||N | ∑

t∈T
∑

n∈N
(∑

m∈M
(xkn(t),1(t)A

+xkn(t),2(t)(T
max
kn(t)
− Tlib

0,m,j)

+xkn(t),3(t)T
max
kn(t)

) +
6
∑

i=4
xkn(t),i(t)Tkn(t),i)

+ξene 1
|T ||N | ∑

t∈T
∑

n∈N
(∑

m∈M

3
∑

i=1
xkn(t),i(t)

×g2(Texe
m,kn(t)

(t))(A− Texe
m,kn(t)

(t))

+
6
∑

i=4
xkn(t),i(t)Ekn(t),i).

(34)

Therefore, problem (23) can be further transformed into:

min
Texe

m,kn(t)
(t),xkn(t),i(t)

Z1 (35)

s.t. g1(Texe
m,kn(t)(t)) ≤ f max, (36)

g2(Texe
m,kn(t)(t)) ≤ pmax, (37)

xkn(t),i(t) ∈ [0, 1], (38)

where Texe
m,kn(t)

(t) and xkn(t),i(t) are optimization variables. Constraint (36) reflects the
computation capability limit and Texe

m,kn(t)
(t). (37) constrains the relationship between the

maximum power and Texe
m,kn(t)

(t). (38) indicates that the decision combination is relaxed to
be continuous.

Subsequently, we leverage the method using Lagrange multipliers with KKT condi-
tions [25] to solve problem (35). Before this, we prove that the problem (35) is convex.

Now, we define another function of Texe
m,kn(t)

(t) as follows:

g3(Texe
m,kn(t)(t)) = g2(Texe

m,kn(t)(t))(A− Texe
m,kn(t)(t)), (39)

Sensors 2023, 23, 3306 12 of 26

and take the second partial derivative of g3(Texe
m,kn(t)

(t)) with respect to Texe
m,kn(t)

(t):

∂2g3

∂Texe
m,kn(t)

2 =
ln 22dkn(t)

2B2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
(t))

bn,m(t)
2(A− Texe

m,kn(t)
(t))3 . (40)

All of the terms in (40) are positive, ∂2g3

∂Texe
m,kn(t)

2 > 0, and g3(Texe
m,kn(t)

(t)) is a convex

function. Similarly, g3(xkn(t),i(t)T
exe
m,kn(t)

(t)) is a convex function. Furthermore, we define a
perspective function of g3(xkn(t),i(t)T

exe
m,kn(t)

(t)) as

g4(xkn(t),i(t)T
exe
m,kn(t)

(t), xkn(t),i(t))

= xkn(t),i(t)g3(
xkn(t),i(t)T

exe
m,kn(t)

(t)

xkn(t),i(t)
)

= xkn(t),i(t)g2(Texe
m,kn(t)

(t))(A− Texe
m,kn(t)

(t)).

(41)

According to (41), g4(xkn(t),i(t)T
exe
m,kn(t)

(t), xkn(t),i(t)) is convex so that the objective
function of the problem (35) is a convex function. Then, the second partial derivatives
of g1(Texe

m,kn(t)
(t)) and g2(Texe

m,kn(t)
(t)) with respect to Texe

m,kn(t)
(t) are, respectively, calculated

as (42) and (43):
∂2g1

∂Texe
m,kn(t)

2 =
2Ckn(t)

Texe
m,kn(t)

(t)3 , (42)

∂2g2

∂Texe
m,kn(t)

2 =
ln 2dkn(t)B2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
(t))

bn,m(t)(A−Texe
m,kn(t)

(t))3

×(ln 2dkn(t)
bn,m(t)(A−Texe

m,kn(t)
(t)) + 2).

(43)

All terms in (42) and (43) are positive, ∂2g1
∂Texe

m,kn(t)
2 > 0, and ∂2g2

∂Texe
m,kn(t)

2 > 0. Thus,

constraint (36) and (37) are convex with Texe
m,kn(t)

(t). The feasible region of the Problem (35)
is a convex set. We can derive that the problem (35) is convex. In addition, if pmax and
f max are high enough, we can find a feasible solution to making all of the constraints slack,
hence satisfying the Slater condition. A convex problem that satisfies the Slater condition is
sufficient for the problem and its dual problem to be strong. In other words, they have zero
dual gap and their optimal solutions are equal.

Next, we define the Lagrangian relaxation function of the problem (35) as

L(Texe
m,kn(t)

(t), xkn(t),i(t), λm,kn(t),1, λm,kn(t),2)

=C+ ∑
t∈T

∑
n∈N

∑
m∈M

(λm,kn(t),1(g1(Texe
m,kn(t)

(t))− f max)

+λm,kn(t),2(g2(Texe
m,kn(t)

(t))− pmax)),

(44)

where λm,kn(t),1 and λm,kn(t),2 are the Lagrangian multipliers. The Lagrangian relaxation
function relaxes the constraints of the Problem (35). Here, we formally transform Problem (35)
into its dual problem:

max
λm,kn(t),1,λm,kn(t),2

min
Texe

m,kn(t)
(t),xkn(t),i(t)

L (45)

s.t. λm,kn(t),1 ≥ 0, λm,kn(t),2 ≥ 0, (46)

where we first fix λm,kn(t),1, λm,kn(t),2 and minimize L to obtain the infimum, then fix
Texe

m,kn(t)
(t), xkn(t),i(t) and maximize the infimum. (46) indicates that the Lagrangian multi-

pliers are positive.

Sensors 2023, 23, 3306 13 of 26

We further detail the KKT condition of the problem (45):

∂L
∂Texe

m,kn(t)
= ξene

|T ||N | ∑
t∈T

∑
n∈N

∑
m∈M

xkn(t),i(t)
∂g3

∂Texe
m,kn(t)

+ ∑
t∈T

∑
n∈N

∑
m∈M

(λm,kn(t),1
∂g1

∂Texe
m,kn(t)

+λm,kn(t),2
∂g2

∂Texe
m,kn(t)

) = 0,

(47)

λm,kn(t),1(g1(Texe
m,kn(t)(t))− f max) = 0, (48)

λm,kn(t),2(g2(Texe
m,kn(t)(t))− pmax) = 0, (49)

g1(Texe
m,kn(t)(t)) ≤ f max, (50)

g2(Texe
m,kn(t)(t)) ≤ pmax, (51)

λm,kn(t),1 ≥ 0, λm,kn(t),2 ≥ 0, (52)

where

∂g3

∂Texe
m,kn(t)

= B(
ln 2dkn(t)2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
)

bn,m(t)(A− Texe
m,kn(t)

)
− 2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
)
+ 1), (53)

∂g1

∂Texe
m,kn(t)

= −
ckn(t)

Texe
m,kn(t)

2 , (54)

and

∂g2

∂Texe
m,kn(t)

=
B ln 2dkn(t)2

dkn(t)
bn,m(t)(A−Texe

m,kn(t)
)

bn,m(t)(A− Texe
m,kn(t)

)2 . (55)

In KKT conditions, (47) is the dual stationarity condition. (48) and (49) are the comple-
mentary slackness conditions. (50) and (51) are the primal feasibility conditions while (52)
is the dual feasibility condition.

Since (47) is a transcendental equation, we derive the solution by the Newton iteration
method:

Texe
m,kn(t)

′ = Texe
m,kn(t) −

∂L
∂Texe

m,kn(t)

∂2L
∂Texe

m,kn(t)
2

, (56)

where

∂2L
∂Texe

m,kn(t)
2 = ξene

|T ||N | ∑
t∈T

∑
n∈N

∑
m∈M

xkn(t),i(t)
∂2g3

∂Texe
m,kn(t)

2

+ ∑
t∈T

∑
n∈N

∑
m∈M

(λm,kn(t),1
∂2g1

∂Texe
m,kn(t)

2 + λm,kn(t),2
∂2g2

∂Texe
m,kn(t)

2) = 0.
(57)

After iterations of the Newton method, we obtain the optimal solution Texe
m,kn(t)

∗. Then,

the optimal resource allocation fm(t)
∗ and pn,m(t)

∗ can be calculated according to (32) and
(33), respectively.

Moreover, we leverage the subgradient method to update the Lagrangian multipliers:

λm,kn(t),1
′ = max{λm,kn(t),1

+αm,kn(t),1(g1(Texe
m,kn(t)

(t))− f max), 0}, (58)

λm,kn(t),2
′ = max{λm,kn(t),2

+αm,kn(t),2(g2(Texe
m,kn(t)

(t))− pmax), 0}, (59)

where αm,kn(t),1 and αm,kn(t),2 are the diminishing step size, respectively.

Sensors 2023, 23, 3306 14 of 26

Since problem (45) is convex with respect to the optimization variable, the update itera-
tion can converge to the optimal solution, satisfying the following conditions:

∑∞
τsub=1 αm,kn(t),1(τ

sub) = ∞, ∑∞
τsub=1 αm,kn(t),2(τ

sub) = ∞, ∑∞
τsub=1 αm,kn(t),1(τ

sub)
2
< ∞,

and ∑∞
τsub=1 αm,kn(t),2(τ

sub)
2
< ∞, where τsub is the iteration index. There is proof in [26].

Based on the given service caching placement decision and service parameter freshness
status, we can calculate the cost of local execution as follows:

Cloc
kn(t) = xkn(t),i(t)(ξ

timT∗kn(t) + ξeneE∗kn(t)), i ∈ {1, 2, 3}, (60)

the offloading cost of the MEC server m is calculated as

Coff
m,kn(t)= xkn(t),i(t)(ξ

timT∗kn(t)+ξeneE∗kn(t)), i ∈ {4, 5, 6}, (61)

and the minimum offloading cost among all the MEC servers is calculated as

Coff
m∗ ,kn(t) = min

m∈M
Coff

m,kn(t) (62)

where T∗kn(t)
and E∗kn(t)

are calculated according to fm(t)
∗ and pn,m(t)

∗. The offloading deci-

sion can be further derived. If Cloc
kn(t)

< Coff
m∗ ,kn(t)

, xexe
m∗ ,kn(t)

(t) = 1, and xexe
m,kn(t)

(t) = 0, ∀m ∈
M\m∗, the inference task is offloaded to the MEC server m∗; otherwise,
xexe

m,kn(t)
(t) = 0, ∀m ∈ M, and the inference task is executed locally.

The pseudo-code of the LMKO is shown in Algorithm 1. The complexity of LMKO
is O(|M|(τnew + τsub)) + |M|), where τnew and τsub are the iteration numbers of the
Newton method and the subgradient method, respectively.

4.2. Lyapunov Optimization-Based Learning and Update Control Module (LLUC)

Since the application server also bears other applications, its bandwidth resources are
limited and need to be economized. In this subsection, we minimize the bandwidth con-
sumption of the application server from the perspective of a global view while minimizing
the service fetching time to accelerate the inference task processing.

The inference tasks are generated randomly, and the execution request in the offloading
style or local style is a random event for the MEC server and mobile device. If there is no
caching service or fresh service parameters, they call for the application server to fetch the
service. Therefore, the fetching request is also random in terms of the application server,
which has no a priori distribution. We regard the total requested service data size waiting
for transmission as a queue, and leverage the Lyapunov optimization to solve the problem
of stabilizing a randomly arriving queue system.

The application server transmits the requested service data as soon as possible to
decrease the fetching time. At timeslot t, the total requested service data size can be defined
as the enqueued rate:

denq(t) = ∑
n∈N

(∑
m∈M

(xkn(t),2(t)d
par
j

+xkn(t),3(t)(d
lib
j + dpar

j)) + xkn(t),5(t)d
par
j + xkn(t),6(t)(d

lib
j + dpar

j)).
(63)

Moreover, let ddeq be the dequeued rate, which is the total size of the service trans-
mitted from the application server to the requesting MEC servers or mobile devices. Fur-
thermore, the backlog of the queue can be defined as Q(t + 1) = max{Q(t) + denq(t)−
ddeq(t), 0}, where the enqueued rate and dequeued rate can affect the queue backlog of

the next timeslot. Then, we define the quadratic Lyapunov function as Y(t) = Q(t)2

2 , and
the Lyapunov drift can be denoted as ∆Y(t) = Y(t + 1)−Y(t). In addition, we define the
penalty function of the Lyapunov optimization, which equals the total allocated bandwidth
consumption for transmitting the requested service data at timeslot t: b0(t) = βddeq(t),
where β is the simplified transformation coefficient.

Sensors 2023, 23, 3306 15 of 26

We formally transform problem (24) into the Lyapunov optimization problem:

min
ddeq(t)

Z2 = ∆Y(t) + V(t)b0(t) (64)

s.t. lim
t→∞

Q(t)
t

= 0, (65)

b0(t) ≤ bmax
0 , (66)

where V(t) is the adaptive weight of the penalty, and (65) is the stable condition of the
queue system, and bmax

0 in (66) is the maximum of the total available bandwidth between
the application server and all requesting MEC servers or mobile devices.

Algorithm 1 Method of Lagrange multipliers with the KKT condition-based offloading
module (LMKO).

Require: time cost Tkn(t),i, energy cost Ekn(t),i, time weight ξtim, delay weight ξene, maxi-
mum tolerance time Tmax

kn(t)
, maximum computation capability f max, maximum power

pmax, maximum Newton iteration τnew, subgradient threshold εsub

Ensure: offloading decision xexe
m,kn(t)

(t)
1: for t = 1 to |T | do
2: for t = 1 to |N | do
3: for t = 1 to |M| do
4: for t = 1 to τnew do
5: Calculate Texe

m,kn(t)
′ based on the Newton iteration method according to (56).

6: end for
7: Obtain Texe

m,kn(t)
∗.

8: repeat
9: Update λm,kn(t),1

′ and λm,kn(t),2
′ based on the subgradient method according

to (58) and (59), respectively.
10: until λm,kn(t),1

′ − λm,kn(t),1 ≤ εsub and λm,kn(t),2
′ − λm,kn(t),2 ≤ εsub

11: Calculate fm(t)
∗, pn,m(t)

∗, and Coff
m,kn(t)

according to (32), (33), and (61), respec-
tively.

12: end for
13: Calculate Cloc

kn(t)
and Coff

m∗ ,kn(t)
according to (60) and (62), respectively.

14: if Coff
m∗ ,kn(t)

> Cloc
kn(t)

then
15: xexe

m∗ ,kn(t)
(t) = 1.

16: xexe
m,kn(t)

(t) = 0, ∀m ∈ M\m∗.
17: else
18: xexe

m,kn(t)
(t) = 0, ∀m ∈ M.

19: end if
20: end for
21: end for
22: return xexe

m,kn(t)
(t)

Theorem 1 ([27]). Assuming there are constants D ≥ 0, εque > 0, Vmax ≥ 0, bmax
0 > 0, such

that for all t and all possible variables Q(t), the Lyapunov drift-plus-penalty condition holds that:

E[∆Y(t) + V(t)b0(t)|Q(t)] ≤ D− εqueQ(t) + Vmaxbmax
0 , (67)

where E[1
2 (d

enq(t)− ddeq(t))2|Q(t)] ≤ D indicates that the difference between the enqueued rate
and the dequeued rate has an upper bound, E[denq(t)− ddeq(t)|Q(t)] ≤ −εque indicates that the
queue is controlled, Vmax is the maximum of V(t) over time, and bmax

0 is the maximum of b0(t)

Sensors 2023, 23, 3306 16 of 26

mentioned above. For all t > 0, the time average queue backlog and the time average bandwidth
satisfy the following:

1
|T |

|T |

∑
t=1

E[Q(t)] ≤
D + Vmax(bmax

0 − bmin
0)

εque +
E[L(1)]
|T |εque , (68)

1
|T |

|T |

∑
t=1

E[b0(t)] ≤
D

Vmax + bmax
0 +

E[L(1)]
|T |Vmax , (69)

where bmin
0 is the minimum of b0(t).

Theorem 1 explains that when the Lyapunov drift-plus-penalty condition is met, the
average queue backlog is at most O(Vmax) complexity, and the average bandwidth is at
most O(1

Vmax) above the maximum bandwidth. Hence, we find that there is a trade-off
between the queue backlog and the bandwidth penalty, which is tuned by V(t).

In addition, since ∆Y(t) + V(t)b0(t) ≤ (denq(t)−ddeq(t))
2

2 + Q(t)(denq(t) − ddeq(t)) +
V(t)βddeq(t), we can derive the optimal controlled dequeued rate by taking the derivative
with respect to ddeq(t) and further setting it to 0:

ddeq,∗(t) = Q(t)−V(t)β + denq(t). (70)

To improve the Lyapunov optimization, we first design an adaptive learning penalty
weight method to adaptively adjust to V(t):

V(t) =
V(1)
eζφ(t)

, (71)

where ζ is the learning rate of penalty weight, φ(t) = 1
|N | ∑n∈N (t) 1{Tkn(t) > Tmax

kn(t)
}

represents the ratio of the missing tolerance time inference task number, and 1 is an
indicator function. The emphasis on the bandwidth penalty is lowered as the ratio of
the overtime inference tasks increases. When the ratio is alleviated, the weight of the
bandwidth is set to be higher.

Secondly, since the transmission data sizes among all the requested MEC servers or
mobile devices are distinct, e.g., some request the service libraries and parameters while
others only request the parameters, the application server can preferentially respond to
request only to the service parameters to decrease the consumption of the bandwidth when
the weight of the bandwidth penalty is high. Therefore, we devise a dequeued rate update
mechanism. When V(t) > εthr where εthr is a given threshold of the penalty weight, the
enqueued rate can be updated to:

ddeq,′(t)= ∑
m∈M

∑
n∈N

∑
j∈J

(xkn(t),2(t)d
par
j + xkn(t),5(t)d

par
j), (72)

ddeq,′(t + 1)= ddeq,∗(t + 1) + ∑
m∈M

∑
n∈N

∑
j∈J

(xkn(t),3(t)

×(dlib
j + dpar

j)+xkn(t),6(t)(d
lib
j + dpar

j)), (73)

where the request transmission data sizes of cases 3 and 6 are assigned to timeslot t + 1 to
alleviate the bandwidth penalty at the current timeslot t.

Thirdly, from the perspective of the service parameters with few timeslots until the
next training, if the application server directly send the part of data, it can be requested
again soon due to its stale service parameters. We further propose a freshness-aware
transmitting method to reduce the service-requested frequency; the service parameters
that will be trained soon are arranged to be transmitted at the end of their training. If

Sensors 2023, 23, 3306 17 of 26

the time condition satisfies ((t− tj)modTint
j) > ηTint

j , where η is the given proportion of
the training round and mod is an operator of taking the remainder, the dequeued rate is
arranged as follows:

ddeq,′(t) = ddeq,∗(t)− ∑
m∈M

∑
n∈N

∑
j̄∈J \j

(xkn(t),2(t)d
par
j̄

+xkn(t),3(t)(d
lib
j̄ + dpar

j̄) + xkn(t),5(t)d
par
j̄

+xkn(t),6(t)(d
lib
j̄ + dpar

j̄)),

(74)

ddeq,′(t + Tint
j − ((t− tj)modTint

j))

= ddeq,∗(t + Tint
j − ((t− tj)modTint

j))

+ ∑
m∈M

∑
n∈N

∑
j∈J

(xkn(t),2(t)d
par
j

+ xkn(t),3(t)(d
lib
j + dpar

j) + xkn(t),5(t)d
par
j

+ xkn(t),6(t)(d
lib
j + dpar

j)),

(75)

where the service ready to be trained is arranged to be transmitted from timeslot t to
timeslot t + Tint

j − ((t− tj)modTint
j).

The pseudo-code of LLUC is shown in Algorithm 2. The complexity of the adaptive
learning penalty weight method, dequeued rate update mechanism, and freshness-aware
transmitting method are O(|N |), O(|M||N ||J |), and O(|M||N ||J |), respectively.

Algorithm 2 Lyapunov optimization-based learning and update control module (LLUC).

Require: enqueued rate denq(t), initial queue backlog Q(1), transformation coefficient
β, initial bandwidth penalty weight V(1), learning rate of penalty weight ζ, given
threshold of penalty weight εthr, given training round proportion η

Ensure: dequeued rate ddeq,′(t)
1: for t = 1 to T do
2: Update V(t) based on the adaptive learning penalty weight method according to (71).
3: Calculate ddeq,∗(t) based on the Lyapunov optimization according to (70).
4: if V(t) > εthr then
5: Update ddeq,′(t) and ddeq,′(t + 1) based on the dequeued rate update mechanism

according to (72) and (73), respectively.
6: end if
7: if ((t− tj)modTint

j) > ηTint
j then

8: Update ddeq,′(t) and ddeq,′(t + Tint
j − ((t − tj)modTint

j)) based on the freshness-
aware transmitting method according to (74) and (75), respectively.

9: end if
10: end for
11: return ddeq,′(t).

4.3. KM Algorithm-Based Channel Division Fetching Module (KCDF)

Since the application server transmits with the MEC servers or mobile devices under
the cellular network, the cellular channel matching is crucial to reduce the total transmission
time of requested service data ddeq,′(t).

The total transmission time of the dequeued requested service data can be denoted as

Tfet(t) = ∑
n∈N (t)

(∑
m∈M(t)

(xkn(t),2(t)T
par
0,m,j

+xkn(t),3(t)(T
lib
0,m,j + Tpar

0,m,j)) + xkn(t),5(t)T
par
0,n,j + xkn(t),6(t)(T

lib
0,n,j + Tpar

0,n,j)),
(76)

whereM(t) and N (t) are the responding sets of MEC servers and mobile servers based
on the dequeued service data, respectively.

Sensors 2023, 23, 3306 18 of 26

First, we divide the total allocated bandwidth into two parts, one is allocated for
transmitting cases 2 and 5, and another is allocated for cases 3 and 6 with more transmitted
data. The allocated bandwidth divided method is designed as

bpar
0 (t) = b0(t) ∑

n∈N (t)
(∑

m∈M(t)
xkn(t),2(t)d

par
j + xkn(t),5(t)d

par
j)

/ ∑
n∈N (t)

(∑
m∈M(t)

(xkn(t),2(t)d
par
j + xkn(t),3(t)(d

lib
j + dpar

j))

+xkn(t),5(t)d
par
j + xkn(t),6(t)(d

lib
j + dpar

j)),

(77)

and
blib,par

0 (t) = b0(t)− bpar
0 (t), (78)

where bpar
0 (t) and blib,par

0 (t) are the total allocated bandwidths of cases 2 and 5 and cases 3
and 6, based on their total transmitted data sizes, respectively.

Take cases 2 and 5 as an example, we defined the response set as S = Mpar(t) ∪
N par(t), where S is indexed by s and has cardinal number |S|,Mpar(t) and N par(t) are
the responding sets with cases 2 and 5 of the MEC servers and mobile devices, respectively.
Let A = {1, · · · , |A|} be the set of |A| cellular channels indexed by a. The matching
decision of s and a can be defined as xmat

s,a (t) = 1 if a is allocated to s; otherwise, xmat
s,a (t) = 0,

and it is constrained by: ∑s∈S xmat
s,a (t) = 1, ∀a ∈ A, ∑a∈A xmat

s,a (t) = 1, ∀s ∈ S , where each
cellular channel is allocated for, at most, one MEC server or mobile device, and each MEC
server or mobile device is assigned, at most, one cellular channel. Thus, the transmission
latency of the service parameter from the application server to the MEC server or mobile
device s over cellular channel a is:

Tpar
s,a =

dpar
j(s)

bpar
0 (t)
|S| log(1 + ps,a(t)hs,a(t)

σ2+Is,a(t)
)

, (79)

where j(s) is the service type transmitted for s, ps,a(t), hs,a(t), and Is,a(t) are the transmission
power, channel gain, and co-channel interference under channel a to s, respectively.

Here, we formally formulate the problem to minimize the total transmission time of
the service parameters:

min
xmat

s,a (t)
Z3 =

1
|S| ∑

s∈S
∑

a∈A
xmat

s,a (t)Tpar
s,a (80)

s.t. ∑
s∈S

xmat
s,a (t) = 1, ∀a ∈ A, (81)

∑
a∈A

xmat
s,a (t) = 1, ∀s ∈ S , (82)

xmat
s,a (t) ∈ {0, 1}, ∀s ∈ S , a ∈ A, (83)

where xmat
s,a (t) is the optimization variable. (81)–(83) are the constraints of the matching

decision.
We leverage the KM algorithm [28] to solve the problem. The complete weighted link

bipartite graph is defined as G = (S ,A,< S ,A >), where S and A are vertex sets of two
sides, < S ,A > is the link set, and the weight of its element is derived from our devised
link-initialized method:

ws,a =

{
Tpar

s,a , if Tpar
s,a < θ mina∈A Tpar

s,a ,
0, otherwise,

(84)

where θ is a coefficient of the minimum service data transmission time to remove the
unacceptable transmission time. The feasible vertex label is satisfied: ws + wa ≤ ws,a,
where ws = mina∈A ws,a and wa = 0 are the vertex label of s and a in the KM algo-

Sensors 2023, 23, 3306 19 of 26

rithm. Let Gmat = (S ,A,< Smat,Amat >) be the equalling matching subgraph, satisfying
ws + wa = ws,a, where the link set < Smat,Amat > is initialized to an empty set.

The perfect matching of the equalling matching subgraph Gmat can be denoted as M∗,
and we have the following theorem.

Theorem 2. Assuming ws and wa are the feasible vertex labels, if the equalling match subgraph
Gmat has a perfect matching, M∗, M∗ is also a perfect match with a minimum total weight of G.

Proof. The proof is analyzed in Appendix A.

The steps of the KM algorithm can be elaborated as follows:

1. Initialize ws, wa, and ws,a.
2. Enumerate s ∈ S , find a ∈ A satisfies ws + wa = ws,a based on the Hungarian

algorithm.
3. If a ∈ (A−Amat) ∩Area, add < s, a > into Gmat; otherwise, calculate the matching

distance z = mina{ws,a − ws − wa, s ∈ Srea, a ∈ (A−Amat)}, set ws = ws + z, s ∈
Srea and wa = wa − z, a ∈ Area. Then, change the reachable path into links, e.g.,
s,< a1s∗ >, a∗ to < sa1 >,< s∗a∗ >.

4. Repeat 2 and 3 until obtaining M∗ of Gmat.

Therein, Smat and Amat are the vertex sets of two sides, whose elements have links
in Gmat, respectively. Srea and Area are the searching reachable path sets of two sides by
the breadth-first search in the Hungarian algorithm [29], respectively. s∗ and a∗ are the
corresponding variables of z. The matching decision can be derived from:

xmat
s,a (t) =

{
1, if < s, a >∈ M∗,
0, otherwise,

(85)

After obtaining the result of the KM algorithm, a few individual MEC servers or
mobile devices are allocated an unsatisfied cellular channel, which significantly delays the
transmission time. We further design a worst-case arranging mechanism to deal with it:

xmat
s,a (t) =

{
0, if ws,a| < s, a>∈ M∗=maxa∈A ws,a,
1, otherwise,

(86)

if xmat
s,a (t) = 0, s is scheduled to be allocated, a cellular channel in the next timeslot, which

consumes less time when it is allocated a satisfied channel in the next timeslot.
The pseudo-code is shown in Algorithm 3. The complexity of the naive KM algorithm

is O(|S|4), and the KM algorithm with the slack array is O(|S|3). The complexities of the
allocated bandwidth divided method, link-initialized method, and worst-case arranging
mechanism are O(|M(t)||N (t)|), O(1), and O(1), respectively. Parts of cases 3 and 6 can
be similarly solved in Algorithm 3.

Algorithm 3 KM algorithm-based channel-division fetching module (KCDF).

Require: total allocated bandwidth bpar
0 (t), responding set S , cellular channel set A, link

threshold T̄par
s,a , transmission power ps,a(t), channel gain hs,a(t), co-channel interference

Is,a(t)
Ensure: matching decision xmat

s,a (t)
1: Calculate Tpar

s,a based on the allocated bandwidth divided method according to (79).
2: Initialize G based on the link-initialized method according to (84).
3: Obtain the perfect matching M∗ based on the KM algorithm.
4: Derive the matching decision xmat

s,a (t) according to (85).
5: Rearrange the matching decision xmat

s,a (t) based on the worst-case arranging mechanism
according to (86).

6: return xmat
s,a (t).

Sensors 2023, 23, 3306 20 of 26

5. Evaluation
5.1. System Implementation

For system implementation, we implement the framework in a real-world collaborative
edge system testbed that consists of a Raspberry Pi4 Model B board (with 1.5 GHz CPU,
4 GB memory) and a desktop (with an Intel 8 Cores i7-10700F 2.90 GHz CPU and 16 GB
memory). Raspberry Pi serves as the application server. The desktop serves as the MEC
servers and mobile devices. All devices are connected under a local wireless router. We
use the transmission control protocol (TCP) socket programming for guaranteeing reliable
communication over all devices in the environment.

5.2. Case Study

We present a simulation of the proposed framework on the edge system testbed
through a real-world image analysis case study: automatic license plate recognition. In
particular, we leverage the convolutional neural network (CNN) framework as a service
developed in [30]: an ImageNet model VGG-16. The VGG-16 model is a deep CNN with
16 layers for image recognition tasks and is trained in a distributed machine learning
style. We use the open-source automatic license plate recognition dataset (available online:
https://platerecognizer.com (accessed on 6 May 2022)) to emulate the tasks generated by
mobile devices.

5.3. Experiment Setup

We use simulations to compare the performance of the framework. The hyperpa-
rameters of the simulation are as follows: the input size of the task is in [2, 10] MB, the
computation amount in [1000, 50,000] cycles, the MEC servers and mobile device number
are in {10, 20, 30, 40}, the learning rate of the penalty function is in {0.1, 0.2, 0.3, 0.4}, the
proportion of the training round is in {0.8, 0.85, 0.9, 0.95}, and the link-initialized coefficient
is in {1.5, 1.8, 2.1, 2.4}.

Hence, we first choose some representative baselines compared with the LMKO
module.

• Fresh cache offloading priority (FCOP): An algorithm where the mobile device
searches a MEC server with a fresh parameter cache and immediately offloads the task.

• Cache offloading priority (COP): An algorithm where the mobile device searches a
MEC server with cache and immediately offloads the task.

• Offloading priority (OP): An algorithm where the mobile device searches a MEC
server and immediately offloads the task.

• Local execution with fresh cache priority (LEFC): An algorithm where the mobile
device executes the task locally if it maintains a fresh parameter cache; otherwise, it
offloads the task to a MEC server.

Moreover, we further pick competitive baselines compared with the LLUC module.

• Queue backlog priority (QBP): An algorithm constrains the penalty weight in a
relatively low range of the Lyapunov optimization.

• Total bandwidth priority (TBP): An algorithm constrains the penalty weight in a
relatively high range.

• Queue backlog empty (QBE): An algorithm fixes the penalty weight to 0 of the
Lyapunov optimization.

• Fixed total bandwidth (FTB): An algorithm fixes the penalty weight in an extremely
high value.

We also select a few representative strategies compared with the KCDF module.

• Hungary algorithm (HA) [29]: An algorithm is leveraged to solve the maximal match-
ing problem of a non-weight bipartite graph.

• Channel bandwidth allocated-based size (CBAS): An algorithm where the total
bandwidth is allocated based on the responding service data size.

https://platerecognizer.com

Sensors 2023, 23, 3306 21 of 26

• Channel bandwidth allocated-based case (CBAC): An algorithm where the total
bandwidth is allocated based on the requesting offloading case.

• Uniform allocation of channel bandwidth (UACB): An algorithm where the total
bandwidth is allocated uniformly.

5.4. LLUC Evaluation

We first investigate the LLUC module to compare the performance of the time average–
total bandwidth under different learning rates of the penalty weight. From Figure 2a, it can
be shown that our proposed LLUC module with ζ = 0.1 achieves the best result over the
change of the requesting number. As ζ increases from 0.1 to 0.4, the performance degrades
over all of the requesting numbers. A lower learning rate results in a relatively high penalty
weight and the Lyapunov optimization minimizes the penalty. In the meantime, selecting a
lower learning rate may lead to a higher backlog and further delay the response fetching
time. Therefore, it is advisable to make a moderate selection to balance the bandwidth
consumption and time overhead. Since using ζ = 0.2 only increases bandwidth by 24.0%
and decreases the queue backlog by 53.3% compared to using ζ = 0.1 for 10 requests, we
take ζ = 0.2 as the learning rate, considering the bandwidth and time.

Then, we studied the LLUC module to compare the performance of the average AoI
of each response service data under distinct round proportions of request rearrangements.
In Figure 2b, the simulation results show that when η = 0.8, i.e., when a 20% interval is
left until the next training, the algorithm consistently achieves the lowest AoI regardless of
the number of requests. As η increases from 0.8 to 0.95, the average AoI becomes higher.
More requests are rearranged to another timeslot for service data with lower AoI. However,
the time latency can deteriorate while the response timeslots are delayed. Therefore,
considering the responding transmission time and AoI service data, which decrease the
service fetching frequencies, we selected a medium proportion η = 0.9 to balance the
trade-off, whose average AoI only increases by 23.8% and the time latency decreases by
36.2%, when comparing η = 0.8 under 10 requests.

(a) (b)
Figure 2. LLUC evaluation under different learning rates and training round proportions.
(a) Learning rate. (b) Proportion of training round.

5.5. KCDF Evaluation

From the perspective of the module KCDF, we first evaluate the performance of the
average fetching time under different link-initialized coefficients. Figure 3a plots that
the KCDF with θ = 1.8 outperforms other link-initialized coefficients as the responding
number increases. It is concluded that a lower link-initialized coefficient can remove more
unsatisfied links in the KM algorithms. As θ increases from 1.8 to 2.4, the average fetching
time becomes higher. However, selecting a link-initialized coefficient that is too low such
as θ = 1.5 can increase the probability that the MEC server or mobile device fails to find a
link in the equalling matching subgraph, which can significantly decline the performance.
To make a feasible balance trade-off, we select θ = 1.8 to guarantee the transmission time
latency with at least a 2.3% performance improvement over the second-best result from
θ = 1.5 in 10 responses.

Sensors 2023, 23, 3306 22 of 26

(a) (b)
Figure 3. KCDF evaluation under different link-initialized coefficients and rearrange conditions.
(a) Link-initialized coefficient. (b) Rearrange condition.

Secondly, we compare the average fetching time under distinct rearrange conditions
in Figure 2b. It is illustrated that rearranging based on the link weight is not less than
the maximum, i.e., ws,a| < s, a>∈ M∗=maxa∈A ws,a has the minimum average fetching
time when the responding number varies. The fetching time increases from the maximum,
the second maximum, and the third maximum. When the application server rearranges
based on the weight of the link is not less than the third, its result is even worse than the
non-rearrangement. If the link is not the worst choice of the MEC server or mobile device,
it is better to respond at this timeslot; otherwise, it suffers a higher fetching time. We
choose the rearranging condition if the link weight is not less than the maximum to the
LLUC module, which results in a time reduction of at least 3.7% compared to the second
maximum case for under 10 responses.

5.6. Performance Comparison
5.6.1. Average Cost Comparison

From Figure 4a, we investigate the average cost of the distinct baselines of the LMKO
modules. Our LMKO module achieves the minimum of Z1 under different requesting
numbers. The LMKO module is capable of obtaining the minimum cost by offloading the
task to the best MEC server or local execution. The second-best result belongs to the FCOP
algorithm since the mobile device chooses a MEC server with a fresh cache to offload. The
performances of the COP and OP are poor owing to their extra service fetching times. The
worst result is brought by the LEFC since it does not take advantage of offloading in the
edge system. The LMKO module is efficient in terms of the cost of the time delay and
energy consumption with at least a 4.1% performance gain compared to the second-best
result from FCOP (for under 10 requests).

5.6.2. Average Total Bandwidth Comparison

Figure 4b illustrates the performance of the time-averaged total allocated bandwidth
of the baselines of the LLUC baselines. The proposed LLUC module has a superior result
comparing other baselines while the requesting number increases. The efficiency of the
LLUC module maintains a controlled queue backlog while minimizing the total allocated
bandwidth. In the meanwhile, the TBP algorithm obtains the second minimum result since
it takes a higher penalty weight but causes a longer queue backlog. The QBP algorithm
preferentially considers the queue backlog, leading to a medium result. The FTB algorithm
delivers a high performance despite a fixed total bandwidth, due to its large backlog. The
worst result belongs to the QBE algorithm, which keeps the 0 queue backlog, even as
the bandwidth significantly increases. The LLUC module outperforms other baselines
in regard to queue backlog stability and total allocation bandwidth with at least a 19.7%
performance gain compared to the second-best result from TBP under 10 requests.

Sensors 2023, 23, 3306 23 of 26

(a) (b)

(c)
Figure 4. Performances under different module baselines. (a) LMKO baselines. (b) LLUC baselines.
(c) KCDF baselines.

5.6.3. Average Fetching Time Comparison

Figure 4c displays the results of comparing the average fetching times of the baseline
methods of the KCDF module. Our KCDF module exhibits superior performance across
varying response numbers. The KCDF module finds a perfect match in the equalling
matching subgraph, where each MEC server or mobile device matches its best-allocated
cellular channel. The second lowest number belongs to the CBAS algorithm, which allocates
the bandwidth according to the service data size. Each MEC server or mobile device can
obtain the satisfied channel. The CBAC algorithm allocating the bandwidth with the
offloading case suffers a similar situation with the CBAS and attains a medium result. The
UACB has a poor result since it uniformly allocates the bandwidth leading to the response
with service libraries and parameters having unsatisfied transmission latency. The HA
algorithm suffers the worst result since it never updates the vertex label while it cannot find
a link in the equalling matching subgraph, which results in a few vertices being matched,
i.e., a few channels are allocated. Thus, our KCDF module has efficient performance in
terms of average fetching time with at least a 2.2% performance gain compared to the
second-best result from CBAS under 10 responses.

5.6.4. Average Time Cost of Baselines Combination

In Figure 5a, we investigated the performance of the average time cost of the baseline
combinations, which includes our proposed ASCO framework (LMKO, LLUC, and KCDF
modules) and other baselines achieving the competitive result consisting of FCOP, TBP, and
CBAS algorithms. We can see that our ASCO framework always outperforms other baseline
combinations while the time weight parameter changes, and the weights of energy and
bandwidth remain. We minimize the average time cost by finding the most suitable offload-
ing decision and allocating the best cellular channel. Other baseline combinations have
declined results comparing our framework. LMKO+TBP+KCDF, LMKO+LLUC+CBAS,
and LMKO+TBP+CBAS achieved moderate performance, as there was not a significant im-
provement in the modules. On the other hand, FCOP+LLUC+KCDF, FCOP+LLUC+CBAS,
and FCOP+TBP+KCDF incurred higher costs, as their modules placed less emphasis on
time concerns. Take FCOP+TBP+CBAS as an example, it had the worst performance due to
the absence of the proposed modules. As ξtim increased, the performance gap between our
framework and another baseline combination enlarged, which explains why the proposed
framework has a significant gain in terms of time delay with at least a 9.6% improvement
compared to the second-best result from LMKO+TBP+KCDF under ξtim = 0.1.

Sensors 2023, 23, 3306 24 of 26

(a) (b)

(c)
Figure 5. Performances under different baseline combinations. (a) Average time cost. (b) Average
energy cost. (c) Average bandwidth consumption.

5.6.5. Average Energy Cost of Baselines Combination

Figure 5b shows the performance of the average energy cost of the combinations. Our
ASCO framework keeps the best result while the energy weight varies and the weights
of the time and bandwidth are fixed. The LMKO module makes an economized energy
offloading decision to save the energy consumption of mobile devices. At the same time,
other baseline combinations with the LMKO module outperform other combinations
without the LMKO module due to the consideration of energy in the LMKO module.
LMKO+TBP+KCDF, LMKO+LLUC+CBAS, and LMKO+TBP+CBAS obtain middle perfor-
mances due to the lack of energy concerns. FCOP+LLUC+KCDF, FCOP+LLUC+CBAS,
and FCOP+TBP+KCDF have higher costs since their modules are not efficient in terms of
costs. Similarly, FCOP+TBP+CBAS had the worst performance. Hence, the average energy
result verifies that our proposed framework achieves superior performance with respect to
energy consumption with at least a 2.8% improvement compared to the second-best result
from LMKO+TBP+KCDF under ξene = 0.05.

5.6.6. Average Bandwidth Consumption of Baselines Combination

Figure 5c illustrates the comparison of the average bandwidth consumption allocated
from the application server under the baseline combinations. The proposed ASCO frame-
work attains minimum results except in an extreme case with ξban = 40, while the weights
of the time and energy are fixed. In this case, the emphasis on bandwidth allocation is ex-
tremely significant so that our framework only obtains the second-best performance while
LMKO+TBP+KCDF has the best result. LMKO+LLUC+CBAS and LMKO+TBP+CBAS
obtain middle performances because they do not well balance the total bandwidth and
mobile device cost. FCOP+LLUC+KCDF, FCOP+LLUC+CBAS, FCOP+TBP+KCDF, and
FCOP+TBP+CBAS always obtain the worse results due to the algorithm’s inefficiency.
However, the value of the bandwidth is impractical since it leads to relatively less consid-
eration of the time delay and energy consumption. In most moderate-weight cases, our
framework dominates other baseline combinations in regard to the average bandwidth
consumption with at least a 6.2% improvement compared to the second-best result from
LMKO+TBP+KCDF under ξban = 10.

6. Conclusions

In our work, we consider a scenario of AoI-aware service caching-assisted offloading.
The proposed ASCO framework consists of three modules: (1) the LMKO module based

Sensors 2023, 23, 3306 25 of 26

on the method of Lagrange multipliers with KKT conditions. (2) The LLUC module based
on the Lyapunov optimization. (3) The KCDF module based on the KM algorithm. The
simulation results verify that the proposed ASCO framework outperforms other baseline
combinations with respect to time overhead, energy consumption, and allocated bandwidth.
The ASCO framework is efficient in the individual inference task and global bandwidth
allocation and is viable to be practically deployed.

This work can be extended in several future directions. First, considering the proac-
tive service caching, the MEC server can predict the offloading request and call for the
application server for advanced fetching. Second, considering the task partition, if the
tasks are partitioned before execution, the subtasks can be executed in distinct MEC servers
or locally.

Author Contributions: Conceptualization, J.F.; Methodology, J.F.; Software, J.F.; Validation, J.F.;
Formal analysis, J.F.; Investigation, J.F.; Resources, J.F.; Data curation, J.F.; Writing—original draft,
J.F.; Writing—review & editing, J.G.; Visualization, J.F.; Supervision, J.G.; Project administration, J.F.;
Funding acquisition, J.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
62171481, National Key Research and Development Program of China grant number 2019YFE0114000,
Special Support Program of Guangdong grant number 2019TQ05X150, Natural Science Foundation
of Guangdong Province grant number 2021A1515011124 and the Science and Technology Program of
Guangzhou under Grant 202201011577.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here is the proof of Theorem 2 from Section 4.3.

Proof. On the one hand, as Gmat is a generated equalling matching subgraph of G, the
perfect matching M∗ of Gmat is also a perfect matching of G, and ∑<s,a>∈M∗ ws,a =

∑s∈S ws + ∑a∈A wa. On the other hand, any non-perfect matching M has ∑<s,a>∈M ws,a ≤
∑s∈S ws + ∑a∈A wa. Therefore, the perfect matching M∗ has a minimum total weight
equaling its upper bound.

References
1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
2. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
3. Feng, J.; Gong, J. Joint Detection and Computation Offloading With Age of Information in Mobile Edge Networks. IEEE Trans.

Netw. Sci. Eng. 2022, 1–14 . [CrossRef]
4. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
5. Parvez, I.; Rahmati, A.; Guvenc, I.; Sarwat, A.I.; Dai, H. A survey on low latency towards 5G: RAN, core network and caching

solutions. IEEE Commun. Surv. Tutor. 2018, 20, 3098–3130. [CrossRef]
6. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A survey on mobile edge networks: Convergence of computing,

caching and communications. IEEE Access 2017, 5, 6757–6779. [CrossRef]
7. Waqas, M.; Tu, S.; Halim, Z.; Rehman, S.U.; Abbas, G.; Abbas, Z.H. The role of artificial intelligence and machine learning in

wireless networks security: Principle, practice and challenges. Artif. Intell. Rev. 2022, 55, 5215–5261. [CrossRef]
8. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.

ACM Comput. Surv. 2020, 53, 1–33. [CrossRef]
9. Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the 2012 Proceedings IEEE

INFOCOM, Orlando, FL, USA, 25–30 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2731–2735.

http://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TNSE.2022.3208857
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2018.2841349
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.1007/s10462-022-10143-2
http://dx.doi.org/10.1145/3377454

Sensors 2023, 23, 3306 26 of 26

10. Sun, Y.; Chen, Z.; Tao, M.; Liu, H. Bandwidth gain from mobile edge computing and caching in wireless multicast systems. IEEE
Trans. Wirel. Commun. 2020, 19, 3992–4007. [CrossRef]

11. Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y. Intelligent edge computing in internet of vehicles: A
joint computation offloading and caching solution. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2212–2225. [CrossRef]

12. Yang, X.; Fei, Z.; Zheng, J.; Zhang, N.; Anpalagan, A. Joint multi-user computation offloading and data caching for hybrid mobile
cloud/edge computing. IEEE Trans. Veh. Technol. 2019, 68, 11018–11030. [CrossRef]

13. Guo, H.; Liu, J. Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans.
Veh. Technol. 2018, 67, 4514–4526. [CrossRef]

14. Wu, H.; Lyu, F.; Zhou, C.; Chen, J.; Wang, L.; Shen, X. Optimal UAV caching and trajectory in aerial-assisted vehicular networks:
A learning-based approach. IEEE J. Sel. Areas Commun. 2020, 38, 2783–2797. [CrossRef]

15. Ko, S.W.; Huang, K.; Kim, S.L.; Chae, H. Live prefetching for mobile computation offloading. IEEE Trans. Wirel. Commun. 2017,
16, 3057–3071. [CrossRef]

16. Lyu, F.; Ren, J.; Cheng, N.; Yang, P.; Li, M.; Zhang, Y.; Shen, X.S. LEAD: Large-scale edge cache deployment based on spatio-
temporal WiFi traffic statistics. IEEE Trans. Mob. Comput. 2020, 20, 2607–2623. [CrossRef]

17. Gu, Z.; Lu, H.; Zhu, Z. On throughput optimization and bound analysis in cache-enabled fiber-wireless networks. IEEE Trans.
Veh. Technol. 2020, 69, 9068–9082. [CrossRef]

18. Chen, L.; Xu, J.; Ren, S.; Zhou, P. Spatio–temporal edge service placement: A bandit learning approach. IEEE Trans. Wirel.
Commun. 2018, 17, 8388–8401. [CrossRef]

19. Xu, J.; Chen, L.; Zhou, P. Joint service caching and task offloading for mobile edge computing in dense networks. In Proceedings
of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 207–215.

20. Zhao, T.; Hou, I.H.; Wang, S.; Chan, K. Red/led: An asymptotically optimal and scalable online algorithm for service caching at
the edge. IEEE J. Sel. Areas Commun. 2018, 36, 1857–1870. [CrossRef]

21. He, T.; Khamfroush, H.; Wang, S.; La Porta, T.; Stein, S. It’s hard to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources. In Proceedings of the 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 365–375.

22. Ma, M.; Wong, V.W. Age of information driven cache content update scheduling for dynamic contents in heterogeneous networks.
IEEE Trans. Wirel. Commun. 2020, 19, 8427–8441. [CrossRef]

23. Xu, C.; Xie, Y.; Wang, X.; Yang, H.H.; Niyato, D.; Quek, T.Q. Optimal status update for caching enabled IoT networks: A dueling
deep R-network approach. IEEE Trans. Wirel. Commun. 2021, 20, 8438–8454. [CrossRef]

24. Zhang, S.; Li, J.; Luo, H.; Gao, J.; Zhao, L.; Shen, X.S. Low-latency and fresh content provision in information-centric vehicular
networks. IEEE Trans. Mob. Comput. 2020, 21, 1723–1738. [CrossRef]

25. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
26. Davis, D.; Drusvyatskiy, D.; Kakade, S.; Lee, J.D. Stochastic subgradient method converges on tame functions. Found. Comput.

Math. 2020, 20, 119–154. [CrossRef]
27. Neely, M.J. Stochastic network optimization with application to communication and queueing systems. Synth. Lect. Commun.

Netw. 2010, 3, 1–211.
28. Kuhn, H.W. Variants of the Hungarian method for assignment problems. Nav. Res. Logist. Q. 1956, 3, 253–258.[CrossRef]
29. Mills-Tettey, G.A.; Stentz, A.; Dias, M.B. The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs; Tech.

Rep. CMU-RI-TR-07-27; Robotics Institute: Pittsburgh, PA, USA, 2007.
30. Li, H.; Wang, P.; Shen, C. Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans.

Intell. Transp. Syst. 2018, 20, 1126–1136. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2020.2979147
http://dx.doi.org/10.1109/TITS.2020.2997832
http://dx.doi.org/10.1109/TVT.2019.2942334
http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1109/JSAC.2020.3005469
http://dx.doi.org/10.1109/TWC.2017.2674665
http://dx.doi.org/10.1109/TMC.2020.2984261
http://dx.doi.org/10.1109/TVT.2020.3000487
http://dx.doi.org/10.1109/TWC.2018.2876823
http://dx.doi.org/10.1109/JSAC.2018.2844919
http://dx.doi.org/10.1109/TWC.2020.3022895
http://dx.doi.org/10.1109/TWC.2021.3093352
http://dx.doi.org/10.1109/TMC.2020.3025201
http://dx.doi.org/10.1007/s10208-018-09409-5
http://dx.doi.org/10.1002/nav.3800030404
http://dx.doi.org/10.1109/TITS.2018.2847291

	Introduction
	Challenges
	Cost of the Task
	Bandwidth Consumption of the Application Server
	Matching between Wireless Channels and IoT Devices

	Related Work
	Offloading with Cache
	Cache of Data
	Cache of Service
	Age of Information

	Contribution

	System Model
	Task Model
	Communication Model
	Caching Model
	Execution Model
	Energy Model
	Cost Model
	Case 1: Offloading with Fresh Cache
	Case 2: Offloading with Stale Cache
	Case 3: Offloading without Cache
	Case 4: Local Execution with Fresh Cache
	Case 5: Local Execution with Stale Cache
	Case 6: Local Execution without Cache

	Problem Formulation
	Average Cost Minimization Problem
	Bandwidth Consumption Minimization Problem
	Service Fetching Time Minimization Problem

	Solution
	Method of Lagrange Multipliers with the KKT Condition-Based Offloading Module (LMKO)
	Lyapunov Optimization-Based Learning and Update Control Module (LLUC)
	KM Algorithm-Based Channel Division Fetching Module (KCDF)

	Evaluation
	System Implementation
	Case Study
	Experiment Setup
	LLUC Evaluation
	KCDF Evaluation
	Performance Comparison
	Average Cost Comparison
	Average Total Bandwidth Comparison
	Average Fetching Time Comparison
	Average Time Cost of Baselines Combination
	Average Energy Cost of Baselines Combination
	Average Bandwidth Consumption of Baselines Combination

	Conclusions
	AppendixA
	References

