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Abstract: The purpose of the panchromatic sharpening of remote sensing images is to generate
high-resolution multispectral images through software technology without increasing economic
expenditure. The specific method is to fuse the spatial information of a high-resolution panchromatic
image and the spectral information of a low-resolution multispectral image. This work proposes a
novel model for generating high-quality multispectral images. This model uses the feature domain
of the convolution neural network to fuse multispectral and panchromatic images so that the fused
images can generate new features so that the final fused features can restore clear images. Because
of the unique feature extraction ability of convolution neural networks, we use the core idea of
convolution neural networks to extract global features. To extract the complementary features of the
input image at a deeper level, we first designed two subnetworks with the same structure but different
weights, and then used single-channel attention to optimize the fused features to improve the final
fusion performance. We select the public data set widely used in this field to verify the validity of
the model. The experimental results on the GaoFen-2 and SPOT6 data sets show that this method
has a better effect in fusing multi-spectral and panchromatic images. Compared with the classical
and the latest methods in this field, our model fusion obtained panchromatic sharpened images
from both quantitative and qualitative analysis has achieved better results. In addition, to verify the
transferability and generalization of our proposed model, we directly apply it to multispectral image
sharpening, such as hyperspectral image sharpening. Experiments and tests have been carried out on
Pavia Center and Botswana public hyperspectral data sets, and the results show that the model has
also achieved good performance in hyperspectral data sets.

Keywords: panchromatic sharpening; attention mechanism; convolutional neural network; hyperspectral
image sharpening

1. Introduction

In recent years, with the emergence of many high-resolution Earth observation satel-
lites, such as “GeoEye1”, “SPOT6”, and “GaoFen-2”, remote sensing applications have been
widely used in research fields such as geography and land surveying. In these research
fields, remote sensing images are often required to have high spectral resolution and high
spatial resolution. However, as far as the design of the current remote sensing system is
concerned, the spectral and spatial resolution often cannot be maintained at a high level
at the same time. The images acquired by different sensors are different in terms of geo-
metric features, spectral resolution, and spatial resolution. Some sensors acquire rich scene
spectral information but lack sufficient spatial information, such as multi-spectral images
(MS). On the other hand, some sensors are good at capturing spatial information, but
cannot capture reliable spectral information, such as panchromatic images (PAN). Images
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with high spatial resolution provide subtle geometric features, while images with high
spectral resolution provide rich spectral information, which can be used to identify and
analyze targets. To make full use of the information provided by multi-spectral images and
panchromatic images, the usual method is to fuse low-resolution multi-spectral images
with high-resolution panchromatic images of the same scene to generate images with more
detailed spatial and spectral structures, that is, pansharpening.

Remote sensing images need to be preprocessed. One of the most basic preprocessing
methods is the panchromatic sharpening of remote sensing images, which plays a vital role
in subsequent tasks such as target detection, classification, and the semantic segmentation of
remote sensing images [1–4]. In early research and development, panchromatic sharpening
can be broadly classified into the following four categories: (1) multiresolution analysis
(MRA) [5–11]; (2) component substitution (CS) [12–19]; (3 ) mixed methods (combining
CS and MRA) [20–22]; and (4) model-based methods [23–27]. Among the above four
algorithms, the component substitution method has the characteristics of high space and
high fidelity, and this method is straightforward to implement. However, the component
replacement method also has some disadvantages, such as ignoring the local differences
between MS and PAN images, resulting in obvious spectral distortions in the final image
fusion stage. Secondly, in terms of preserving spectral information, although the MRA
method has achieved good results, the effect of image fusion is significantly affected by
the number of image decomposition and filter types. There are also strict requirements for
image registration. Based on the hybrid method, although the high spatial fidelity of CS and
the ability of MRA to preserve spectral information are combined, this is not enough, and
the fused image still has the problems of spectral distortion and spatial structure distortion.
The model-based method does an excellent job of solving the spectral distortion problem,
but the solution process of the inversion model is time-consuming and complicated.

In recent years, in the field of computer vision, convolutional neural networks (CNNs)
have been widely used and have achieved excellent results. Therefore, for the problem of
panchromatic sharpening, many remote sensing researchers have attempted to use deep
learning methods to solve it. For example, Masi et al. [28] applied a convolution neural
network to panchromatic sharpening and made a major research breakthrough. Based on
the single-image super-resolution reconstruction algorithm [29], a three-layer convolutional
neural network (PNN) was proposed, which regards panchromatic sharpening as image
super-resolution reconstruction. A panchromatic sharpening network based on domain
knowledge was designed by Yang et al. [30]. In order to deal with the panchromatic
sharpening problem, Liu et al. [31] designed a two-branch fusion network.

In order to obtain a better fusion effect, methods based on deep learning can take
advantage of the slight spectral distortion and the feature extraction ability of the robust
convolutional neural network. In existing methods, either neural networks are used to
extract spatial details, or the panchromatic sharpening problem is treated as a super-
resolution reconstruction problem. However, artifacts or spectral distortion still exist in the
fusion results produced by these methods. This is because previous methods often assume
that panchromatic and multispectral images contain different information. There needs to
be a better solution for defining spatial and spectral information and how to extract these
two types of information separately. In addition, the defining characteristic of a PAN image
is that it contains less spectral information but more spatial information. The defining
characteristic of an MS image is that it contains more spectral information but has a lower
spatial resolution. Therefore, how to design a model that can combine the advantages of
the two types of images to generate an applicable hyperspectral panchromatic image is an
urgent problem to be solved. However, the existing deep learning methods usually only
consist of the linear stitching of simple feature maps in feature fusion, and not all feature
maps play a positive role in the final fusion process.

To overcome these problems, this article proposes a dual-branch fusion net-work
based on the attention mechanism to optimize feature fusion and solve the problem of
pansharpening. In addition, we applied the proposed model to hyperspectral image sharp-
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ening (HSI sharpening), and the experimental results show that the model also achieved
better results on hyperspectral datasets. This study makes the following contributions:

1. We provide an end-to-end deep learning model for remote sensing image panchro-
matic sharpening and realize the reconstruction in the CNN feature domain to gener-
ate higher quality panchromatic sharpened images;

2. In the feature fusion module, a channel attention mechanism is introduced to optimize
feature fusion, allowing the network to focus on crucial information;

3. Our network is a general model that can be directly applied to the hyperspectral image
(HSI) sharpening and panchromatic image sharpening. For example, our experiments
show that our method can achieve state-of-the-art performance both qualitatively and
quantitatively.

The organization of the rest of this paper is as follows: In the second part, related
works and the materials needed for this article are introduced. The third part elaborates on
the pansharpening model of remote sensing images based on the attention optimization
feature fusion proposed in this paper. The fourth part provides the experimental details,
including the experimental settings, comparison experiments, and ablation experiments. In
the fifth part, the proposed model is applied to HSI sharpening to prove the universality of
the proposed model. Finally, this article is summarized.

2. Related Work
2.1. Pansharpening Based on Deep Learning

In recent years, the application of convolution neural networks to remote sensing
images has attracted increasing attention from researchers. For example, the design of a
high-performance panchromatic sharpening algorithm represents one such study, using the
characteristics of remote sensing images to perform spatiotemporal fusion and spatial spec-
trum fusion without increasing the costs relating to equipment and manpower. Yuan [32]
and others improved PNN by adding a multi-scale feature extraction module, which could
make full use of the spatial features in high-resolution images and achieve an improved
fusion effect. Ma et al. [33] proposed an unsupervised generation countermeasure network
(GAN), which could better preserve the spatial features in PAN images. Liu et al. [34]
proposed a GAN network for the panchromatic sharpening of remote sensing images and
the effective fusion of MS and PAN images. On the basis of the literature [30], Fu et al. [35]
proposed a grouping multi-scale gap network structure to expand the perception domain
of each network layer, effectively obtain fine-grained multi-scale context features, and
improve the quality of fused images. Zhou et al. [36] proposed an unsupervised pansharp-
ening network based on perceptual loss and an automatic encoder. Liu et al. [37] based
on the fusion results of different adaptive ground averaging methods, combined with the
complementary properties of CS and MRA methods, proposed a generalized sharpening
weighted network. Li et al. [38] proposed a multi-scale perceptual dense coding convolu-
tional neural network to generate high-quality pansharpened images. The authors in [39]
proposed a model-based deep sharpening method called the gradient projection-based
pansharpening neural network (GPPNN). This model regards panchromatic images and
low-resolution multispectral images as two optimization problems related to depth prior to
regularization and uses a gradient projection algorithm to solve these two problems. The
edge information part-guided convolutional sparse coding network, SCSC-PNN, proposed
by Xu et al. [40] is applied to panchromatic sharpening in the field of remote sensing. This
model mainly uses edge information regularization to segment low-resolution multispec-
tral images and obtain a panchromatic image correlation feature map and a panchromatic
image non-correlation feature map. HARNN [41] is a residual neural network based on
the mixed attention mechanism. The encoder attention module is developed in the feature
extraction part to solve the accuracy calculation of ground object recognition caused by
spectral distortion and a lack of spatial detail in the pansharpening method. Yan et al. [42]
proposed a model-driven and data-driven network, which combines model-driven and
data-driven methods, and introduces a depth prior as its implicit regularization, thus im-
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proving its data adaptability and representative ability to be applied to multimodal fusion
tasks. Guan et al. [43] proposed a hyperspectral pansharpening method of a multi-level
double-attention guided fusion network (MDA-Net). This method uses a three-stream
structure to enable the network to solve the hyperspectral pansharpening problem by
combining the inherent characteristics of each input and their correlation at the same time.

Although the above methods have made some achievements, their spectral and spatial
information have not been fully used for MS and PAN image fusion, respectively; that is to
say, the lack of valuable information fusion leads to a certain spectral distortion and blur
in the final fusion image. In addition, when performing feature fusion, only simple linear
stitching is performed on the feature map, which usually does not meet the requirements of
the pansharpening task. Therefore, in order to overcome the existing problems, this paper
proposes an attention-based two-branch fusion network to optimize feature fusion.

2.2. Attention Mechanism

Attention mechanisms have been widely used in several research areas, such as natural
language processing and computer vision. They enable the network to focus on relevant
information and filter unnecessary information like a human. The attention mechanism
is divided into the channel, spatial, and hybrid domains. The purpose of the attention
mechanism is to better adjust the feature learning process by assigning different weights to
different positions.

SENet [44] is an early visual model used to explore the channel attention mechanism.
Through the “squeeze-incentive” process, different weights are obtained for each feature
channel, different weights are assigned to different channels, and the channels are added
to the attention mechanism. Zhang et al. [45] introduced SENet into the field of super-
resolution reconstruction and constructed very deep residual channel attention networks
(RCAN), which achieved better super resolution (SR) performance. The convolutional block
attention module (CBAM) [46] is used to focus the two latitudes of the network space and
the channel at the same time through the series space and channel attention modules, in
order to help the network to understand the “what” and the “where” aspects of the attention.
The attention mechanism improves the feature representation ability of neural networks
by focusing more on critical features while reducing the attention paid to other features.
Li et al. [47] proposed a new way of using the attention mechanism, using channel attention
to merge the characteristics of the two branches. Furthermore, Dai et al. [48] proposed
a multi-scale attention feature fusion module to replace the traditional summation and
splicing methods for completing feature fusion.

3. Methods

The structure of the converged network proposed in this paper is shown in Figure 1.
It consists of three modules: feature extraction, optimized feature fusion, and image
reconstruction. This section first introduces the specific content of these three modules, and
then introduces the loss function used.

3.1. Feature Extraction Module

The feature extraction module in this paper uses two sub-networks with the same structure
but different weights. As shown, the upper subnetwork takes a single-band panchromatic
(PAN) image as input, and the lower subnetwork takes a four-band multispectral (MS) image as
input. Both feature extraction subnetworks consist of three consecutive convolution kernels as a
3 × 3 convolutional layer, followed by a parametric rectified linear unit (PReLU). Most CNN
architectures use the average or max pooling to obtain rotation- and scale-invariant features,
but the pooling operation is not used in the fusion network described in this article because in
pansharpening, detailed information is more critical.
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Figure 1. The overall framework diagram of the dual-branch remote sensing image fusion network
based on the attention mechanism to optimize feature fusion. The inputs are MS and PAN images,
and the output is HRMS. The network architecture is mainly composed of the following three sub-
modules: (1) feature extraction module; (2) optimized feature fusion module (OFFM); and (3) image
reconstruction module.

3.2. Optimized Feature Fusion Module

The complementary information of the panchromatic image and the multispectral
image is extracted using two feature maps obtained by the feature extraction module. For
panchromatic sharpening, we fuse the extracted feature maps to obtain a multispectral
image with high spatial and spectral resolution.

The importance of the feature map to be fused with the fusion result varies, as does
the amount of information carried. Therefore, valuable information needs to be enhanced,
and useless information needs to be suppressed, meaning each channel must be weighted.
Therefore, we first linearly concatenate the characteristic graphs of the two sets of comple-
mentary information, and then, through a channel attention mechanism SENet [44], we
obtain a one-dimensional vector containing the number of channels of the characteristic
graph, which represents the importance weight of each channel, and then apply the weight
to the corresponding channels, so as to enhance the useful information and suppress the
role of useless information. The network structure diagram of the optimized feature fusion
module (OFFM) is shown in Figure 2.

Figure 2. Network structure of the optimized feature fusion module.

3.3. Image Reconstruction Module

After feature fusion, we must recover high-resolution multispectral images from the
fused features. Here, we use the convolution of the three-layer 3 × 3 convolution kernels to
reconstruct the fused feature images and recover the HRMS images of the four bands. At
the same time, we also use a long jump connection to directly transfer the input MS image,
which has been upsampled to the same size as the PAN image by spectral mapping, to
the output, which complements the spectral information of the reconstructed image. This
point will also be proved in the ablation experiment, demonstrating the influence of this
long jump connection on the fusion result.
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3.4. Loss Function

The loss function is another key factor affecting the image quality of super-resolution
reconstruction, besides the network structure. The `2 loss function is often used in image
reconstruction tasks [28–30]. `2 loss can smooth the image and punish larger outliers
while being less sensitive to smaller outliers. For further improvement, because the `1 loss
function can handle other small outliers and preserve the edge information of the image,
we use the `1 loss function to train the network. The `1 loss function can be expressed as
Equation (1). In the ablation experiment, we also prove through experiments that the `1
paradigm can obtain better fusion results than the `2 paradigm.

`1 =
1
N

N

∑
i=1
| h
(

X(i)
p , X(i)

M , θ
)
−Y(i) |1, (1)

where N is the number of small batch training samples, X(i)
p and X(i)

M are PAN images and
low-resolution MS images, Y(i) is the corresponding high-resolution MS image, and θ is
the parameter of the fusion network.

3.5. Evaluation Indicators

In order to compare the proposed method with some previous methods, we used
six widely used metrics to evaluate them quantitatively.

(1) The peak signal-to-noise ratio (PSNR) [49] is defined as

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
(2)

where MAXI is the maximum value that represents the color of the image point. The
higher the PSNR value between two images, the less distorted the reconstructed image
relative to the high-resolution image. MSE is defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖ I(i, j)− K(i, j) ‖2 (3)

where I and K are two images of size m × n, one of which is the noise approximation
of the other.

(2) The structural similarity (SSIM) index
SSIM [50] measures the overall fusion quality by calculating the mean, variance, and
covariance of the fused image and the reference image. The SSIM measurement
consists of three contrast modules, namely, brightness, contrast, and structure. Given
two images, X and Y, of size M × N, the means and variances of X and Y and the
covariance are represented by ux, uy, δ2

x, δ2
y, and δxy, respectively. The comparison

functions that define the brightness, contrast, and structure are

ι(X, Y) =
2µxµy + c1

µ2
x + µ2

y + c1
(4)

c(X, Y) =
2δxδy + c2

δ2
x + δ2

y + c2
(5)

s(X, Y) =
δxy + c3

µxµy + c3
(6)

The combination of these three component factors is the SSIM indicator, which is
defined as

SSIM(X, Y) = [l(X, Y)]α[c(X, Y)]β[s(X, Y)]γ (7)
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The closer the SSIM value is to 1, the higher the similarity between the two images.
(3) Spectral angle mapper (SAM)

SAM [51]calculates the angle between the HRMS image and the fusion result to
evaluate the spectral quality of the fusion result. The smaller the value, the better the
spectral quality, with an ideal value of 0.

SAM = arccos
(

(Iα Jα)

‖ Iα ‖‖ Jα ‖

)
(8)

where Ia and Ja are the pixel vectors of the fused image and the reference image,
respectively, at the distance point α.

(4) Relative dimensionless global error in synthesis (ERGAS)
ERGAS [52] can more comprehensively reflect the quality of the fusion result. The
smaller the value of ERGAS, the better the result, with an ideal value of 0.

ERGAS = 100
h
l

√
∑N

i=1(RMSE2(Bi)/M2
i )

N
(9)

where h is the resolution of the high-resolution image, l is the resolution of the low-
resolution image, N is the number of bands, Bi is the MS image, and Mi is the average
of the emissivity value of the MS image.

(5) Spatial correlation coefficient (SCC)
SCC [53] is used to evaluate the similarity of the spatial details of the fused image and
the reference image, using a high-pass filter to extract the high-frequency information
of the reference image, and to calculate the correlation coefficient (CC) [54]. This
article uses a high Laplacian filter to obtain a high frequency, as follows:

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (10)

A higher SCC means that most of the spatial information of the PAN image is injected
during the fusion process. The SCC is calculated between the fused image and the
reference image. The final SCC is averaged over all bands of the MS image. The CC is
calculated as

CC =
∑w

i=1 ∑h
j=1(Xi,j − µX)(Yi,j − µY)√

∑w
i=1 ∑h

j=1(Xi,j − µX)2(Yi,j − µY)2
(11)

where X is the fused image, Y is the reference image, w and h are the width and height
of the image, respectively, and µ represents the average value of the image.

(6) Quality index (Q)
Q [55] combines three factors to calculate image distortion: correlation loss, brightness
distortion, and contrast distortion. It is defined as

Q =
| σZ1,Z2 |
σZ1 · σZ2

·
2σZ1 · σZ2

σ2
Z1

+ σ2
Z2

· 2 | Z1 | · | Z2 |
| Z1 |2 · | Z2 |2

(12)

where Z1 and Z2 represent the b-th band of the fused image and the reference image,
respectively. When Q is 1, this represents the best fidelity for reference.

4. Experiment
4.1. Dataset Introduction

We trained and tested our network on two datasets collected by GaoFen-2 and SPOT6,
and compared it with a variety of advanced methods. Gaofen-2 is the first civilian optical
remote sensing satellite independently developed by China, with a spatial resolution better
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than 1 m. It was launched on 19 August 2014. It has two cameras with high resolution (1 m
panchromatic and 4 m multispectral). Launched on 9 September 2012, the SPOT6 satellite
collects multispectral images with a spatial resolution of 6 m and full-color images with
a spatial resolution of 1.5 m, including red, green, blue, and near-infrared. The relevant
information on the GaoFen-2 and SPOT6 satellites is shown in Table 1.

Table 1. Spectral and spatial features of multispectral and panchromatic images from the SPOT6 and
GF-2 satellites.

Satellite
Spectral Wavelength (nm) Spatial Resolution (m)

PAN Blue Green Red Nir PAN MS

GaoFen-2 450–900 450–520 520–590 630–690 770–890 0.8 3.2

SPOT6 455–745 455–525 530–590 625–695 760–890 1.5 6

4.2. Experimental Setup

We trained and tested our network on the GaoFen-2 and SPOT6 datasets, respectively.
We cropped the sub-regions of 32 × 32 and 128 × 128 in the center from the MS and PAN
image pairs as test images and used the remaining regions for training. Specifically, in each
iteration of training, we randomly cut out 32 × 32 and 128 × 128 image pairs with the
same spatial resolution from the training area for use as training images. Our training area
and test area did not overlap, which was achieved by filling the test area with zeros in the
training phase. Figure 3 shows the MS image of GaoFen-2 as an example to introduce the
division of the training area and test area.

Figure 3. Examples of MS image training and testing regions for the GaoFen-2 dataset.

Our goal was to generate a multispectral image with the same size and spatial reso-
lution as the PAN image. We evaluated the proposed model by comparing the obtained
results with nonexistent reference images. According to the Wald, protocol [55], we first pre-
processed the image with a 5 × 5 Gaussian filter with a standard deviation of 2. Using the
raw MS image (HRMS) as a reference, four downsampled PAN and blurred low-resolution
MS images were used as input. In the network, in order to make the input MS image
match the resolution of the PAN image, the MS image was upsampled using the bicubic
interpolation method. Additionally, our network was implemented using PyTorch, using
the Adam optimizer to minimize the loss. The training was performed on an Nvidia
3090 GPU, and the learning rate was set to 0.0004. A total of 30,000 epochs were trained.

4.3. Ablation Experiment

To further verify the effect of the attention mechanism, spectral mapping, and the
selection of the loss function on the impact of our proposed model, taking the Gaofen-2
dataset as an example, we first conducted ablation experiments on the following four
models (as shown in Figure 4) with `2 as the loss function, and then replaced the loss
function with our proposed `1 loss function, verifying that this loss function can improve
the obtained results.

1. The original feature extraction and image reconstruction network (Original);
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2. Using our attention-based optimization feature fusion module on the original network
(Attention-original);

3. The addition of spectral mapping to the original network (Skip-original);
4. Using our optimized feature to fuse fuzzy and spectral mapping on the original

network (Our-`2).

MS Image 

Image reconstion Module 

HRMSimage 

(a) 

MS Image 

Image reconstion Module 

HRMSimage 

(b) 

MS Image MS Image 

Image reconstion Module Image reconstion Module 

HRMS Image HRMSimage 

(c) (d) 

Figure 4. Ablation experiment. (a) Original. (b) Attention-original. (c) Skip-original. (d) Our-`2.

The quantitative indicators of the experimental results of these four models on the
GaoFen-2 dataset are shown in Table 2. From Table 2, we can see that when the long-skip
connection of spectral mapping is added separately, both SAM and ERGAS are improved.
This shows that such spectral mapping is beneficial to the maintenance of the fusion result.
At the same time, we can also find that the PSNR, SSIM, SCC, and Q indicators improved
to a certain extent. This is because as the network deepens, the features obtained by
convolution are often more advanced, and these more high-level features map the semantic
and abstract information of the image. Therefore, recovering the detailed texture of an
image is difficult for high-level features. Such a long-hop connection directly transfers the
low-level features of the input to the output, which also solves this problem to a certain
extent. From Table 2, we can also see that when using our optimized feature fusion module
alone, PSNR, SSIM, SCC, and Q are all improved. This shows that optimizing feature fusion
is effective in space preservation and that assigning different weights to fusion features is
more conducive to pansharpening tasks.

In order to combine the advantages of the two, we used spectral mapping and opti-
mized feature fusion, simultaneously, as shown in Figure 4d. It can be seen from Table 2
that the results of Our-`2, both in terms of the spectral index and the spatial index, are
significantly higher than those of the original, demonstrating that our-`2 model can save
spectrum and space.

Table 2. The results of ablation experiments on the GaoFen-2 dataset (bold indicates the best results).

Module OFFM
Long
Skip `2 `1 PSNR SSIM SAM ERGAS SCC Q

Original
√

29.7071 0.8414 0.0715 3.5173 0.9561 0.7686

Attention-original
√ √

29.8053 0.8490 0.0695 3.4657 0.9571 0.7799

Skip-original
√ √

29.8339 0.8530 0.0670 3.4826 0.9572 0.7879

Our-`2
√ √ √

29.9908 0.8566 0.0659 3.4099 0.9587 0.7957

Our
√ √ √

30.1202 0.8659 0.0626 3.3609 0.9601 0.8092
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In order to verify that `1 is conducive to improving the performance of the model, we
use the model with `2 and `1 as the loss function. The change in the loss function during
the training process is shown in Figure 5. We can find that the `1 loss function can reduce
the training error and improve the network convergence. Therefore, we use the `1 loss
function to train our network. From the last row of Table 2, we can also see that when using
`1 as the loss function, all indicators achieved the best results, which indicates that the `1
loss function is more conducive to pansharpening.

Figure 5. Changes in the loss function when using `1 and `2 in the training process.

4.4. Comparison with Other Algorithms

There are currently several widely used techniques, and in this section, we compare the
proposed method with these techniques, including principal component analysis (PCA) [56],
the intensity-based saturation (IHS) transform fusion method [57], MTF-GLP with high-pass
modulation (MGH) [58], deep-learning-based PNN [28], PanNet [30], TFNet [31], ResTFNet [31],
and the multi-scale deep convolutional neural network (MSDCNN) [32].

We conducted a qualitative analysis of the simulated dataset. Figures 6 and 7 show
the pansharpening results of different algorithms on the two datasets. From the fusion
results in Figure 6, we can see that IHS, MGH, and PCA have spectral distortions and
some obvious spatial information loss, with PCA having the most obvious spatial and
spectral distortions. Several other methods based on deep learning can produce visually
satisfactory pansharpened images, but PanNet and TFNet have a certain loss and blurring
of spatial details. Images obtained by our method can preserve both spectral information
and relatively more detailed spatial information. From the fusion results on the GaoFen-2
dataset, it can be seen that PCA, MGH, and HIS also experience a severe loss of spectral
and spatial information, especially PCA. Deep learning methods can achieve better fusion
results, but RestFNet and PanNet have some details missing.

To more accurately evaluate the spatial and spectral distortion, we also highlight the
difference between the fused image and the ground truth, that is, the residual map. The
residual map in the second row shows that our model has relatively fewer details and
textures, indicating that it is the best in terms of space preservation. At the same time,
the overall smooth area of our model is shown in dark blue, indicating that all differences
are close to 0, while other residual maps more or less contain obvious areas. Figures 6d–i
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and 7d–f, in particular, show that the error is large. This shows that our method achieves
better spectral retention.

Figure 6. Pansharpening results on the SPOT6 satellite dataset. The first line is the fusion result
of the SPOT6 image, and the second line is the image obtained by pseudo-coloring the differences
between the fusion result of the first line and the ground truth RGB image (that is, (a)). All images
are displayed in true color (red, green, and blue being the three bands).

At the same time, we also compare the algorithms from a quantitative perspective.
Tables 3 and 4 show the quantitative indicators on the two satellite datasets. The results in
Tables 3 and 4 show that although our model is not dominant in terms of model size, it has
the best results for both spatial and spectral indicators and is also suboptimal in time. The
results show that our model has the best performance in terms of spectrum preservation and
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spatial reconstruction. At the same time, MSDCNN, based on the deep learning method,
also achieved better fusion performance, surpassing traditional methods in both spectral
and spatial indicators. On the GaoFen-2 dataset, TFNet achieved great performance, and
on the SPOT6 dataset, PNN and ResTFNet also achieved great results. The results show
that deep learning is still a very effective method at present, showing great potential in
solving problems related to pansharpening. Then, we added the quantitative analysis of
time and model parameter quantity. From the data in the two data sets in Tables 3 and 4,
we can see that the model we proposed is only inferior to the PNN model and superior to
other traditional models and models based on deep learning. We analyze that the reason
why our model does not reach the optimal value in time and model parameters is that the
double-branch structure increases the computational cost.
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Figure 7. Pansharpening results on the GaoFen-2 satellite dataset. The first line is the fusion result of
the GaoFen-2 image, and the second line is the image obtained by pseudo-coloring the differences
between the fusion result of the first line and the ground truth RGB image (that is, (a)). All images
are displayed in true color (red, green, and blue being the three bands).
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Table 3. Quantitative evaluation on the SPOT6 dataset (bold indicates the best results).

Methods PSNR SSIM SAM ERGAS SCC Q TIME(MS) MODLESIZE(M)

PCA 19.2991 0.5359 0.3617 10.9139 0.7619 0.4612 - -

IHS 23.3756 0.5845 0.1063 7.565 0.7669 0.4933 - -

MGH 22.8081 0.6123 0.0988 8.154 0.798 0.5431 - -

PNN 28.7644 0.848 0.0762 3.0857 0.9159 0.749 21.24 0.31

PanNet 28.2992 0.8289 0.0802 3.361 0.9022 0.7115 34.17 0.08

TFNet 28.7404 0.8461 0.0785 3.1123 0.9146 0.7473 79.19 9.03

ResTFNet 28.627 0.8497 0.0775 3.0764 0.9142 0.7554 103.53 8.56

MSDCNN 28.8715 0.8509 0.0754 3.0556 0.9187 0.7545 98.49 1.01

Our 29.4593 0.8721 0.0702 2.7903 0.9321 0.7892 22.8 8.93

Table 4. Quantitative evaluation on the GaoFen-2 dataset (bold indicates the best results).

Methods PSNR SSIM SAM ERGAS SCC Q TIME(MS) MODLESIZE(M)

PCA 20.4468 0.3736 0.2375 13.305 0.7212 0.3063 - -

IHS 21.1052 0.3786 0.1521 12.3192 0.7242 0.3188 - -

MGH 21.1358 0.436 0.1723 12.2693 0.7892 0.3929 - -

PNN 29.4323 0.8321 0.0721 3.6438 0.9524 0.7609 58.24 0.31

PanNet 29.0734 0.8192 0.0752 3.7975 0.9477 0.7444 23.43 0.08

TFNet 29.4638 0.8382 0.0723 3.6067 0.9527 0.7694 89.97 9.03

ResTFNet 28.6892 0.8162 0.0761 3.9423 0.9437 0.7411 84.92 8.56

MSDCNN 29.7641 0.8534 0.0685 3.5018 0.9562 0.7915 48.39 1.01

Our 30.1202 0.8659 0.0626 3.3609 0.9601 0.8092 33.10 8.93

5. Hyperspectral Image Sharpening

Our model is directly applicable to other types of multispectral image sharpening
models, and the proof is given below. In this section, the proposed model is applied to
hyperspectral image (HSI) sharpening. In remote sensing image processing, HIS sharpening
has attracted more and more attention. It was designed to fuse high-resolution MS images
and low-resolution hyperspectral images in order to obtain images with high spatial and
spectral resolution.

We compare the proposed model with the seven latest models of TF-Net [31], Res-
TFNet [31], MSD-CNN [32], SSF-CNN [59], Con-SSFCNN [59], and SSR-NET [60] on
the Pavia Center (Pavia) and Botswana hyperspectral datasets. Tables 5 and 6 show the
experimental results on the Pavia dataset and the Botswana dataset. It can be seen that our
model has the best performance in all indicators. From the results, it can be seen that our
network has the best performance in terms of preserving spatial and spectral information
under the effect of HIS sharpening. This also proves that our network can be applied to
different tasks and that it is a general model.

Table 5. Quantitative evaluation on the Pavia dataset (bold indicates the best results).

Methods RMSE PSNR ERGAS SAM TIME(MS)

SSFCNN 7.9904 30.0794 4.9884 10.4791 47.18

ConSSFCNN 4.2634 35.5356 4.7384 4.5413 43.78

SSRNET 3.3973 37.5082 3.8721 3.7956 38.47

MSDCNN 4.2402 35.583 4.7711 5.3778 113.93

TFNET 3.4579 37.3545 3.8706 4.4395 168.31

ResTFNet 3.2405 37.9185 3.6348 4.0871 141.48

Our 2.5813 39.8939 2.9413 3.5523 34.01
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Table 6. Quantitative evaluation on the Botswana dataset (bold indicates the best results).

Methods RMSE PSNR ERGAS SAM TIME(MS)

SSFCNN 1.2083 29.5827 12.1663 5.7059 130.24

ConSSFCNN 1.7316 26.4576 18.0627 8.0279 91.67

SSRNET 0.7067 34.2422 14.4973 3.4285 94.98

MSDCNN 0.5411 36.5612 2.6302 2.5187 197.18

TFNET 0.4170 38.8247 2.1322 1.9714 166.36

ResTFNet 0.3773 39.6921 1.9042 1.7592 178.96

Our 0.3402 40.5929 1.3636 1.5545 32.92

At the same time, in Figures 8 and 9, we also give the sharpening results of our model
and other models on the Pavia and Botswana datasets for visual comparison. We can see
that the images generated by TFNet, ResTFNet, MSDCNN, SSFCNN, ConSSFCNN, and
SSRNet are clearly blurred. On the contrary, our model can maintain space and spectrum
at the same time. We use pseudo colors in the corresponding residual maps to reflect the
sharp differences between the results and the ground truth. We can see that the residual
map of our model is displayed in dark blue as a whole, indicating that all of the differences
are close to 0. Other residual maps contain more or less obvious areas, indicating that the
error is larger, which also indicates that our method achieves better spectral preservation.

Figure 8. Sharpening results on the Botswana dataset. The first row is the fusion result, and the
second row is an image obtained by pseudo-coloring the differences between the fusion result of the
first row and the ground truth RGB image. All images are displayed in true color (red, green, and
blue being the three bands).
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Figure 9. Sharpening results on the Pavia dataset. The first row is the fusion result, and the second
row is an image obtained by pseudo-coloring the differences between the fusion result of the first
row and the ground truth RGB image. All images are displayed in true color (red, green, and blue
being the three bands).

6. Conclusions

In this article, we propose a dual-branch fusion network based on attention-optimized
feature fusion for the panchromatic sharpening of remote sensing images in the feature
domain. This network is an end-to-end model that only requires the input of panchromatic
and multispectral images to generate high-resolution multispectral images. Complementary
information is extracted from the input image through two sub-networks with the same
structure and different weights. The feature fusion is optimized through a channel attention
mechanism to consider the relationship between other channels of the fusion features so
that the network focuses more on critical information to improve the retention performance
of the fused image in terms of spatial and spectral information. Compared with existing
algorithms, this method shows better performance.
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OFFM Optimized feature fusion module
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SAM Spectral angle mapper
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