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Abstract: In the distributed information fusion of wireless sensor networks (WSNs), the filtering ac-
curacy is commonly negatively correlated with energy consumption. Therefore, a class of distributed
consensus Kalman filters was designed to balance the contradiction between them in this paper.
Firstly, an event-triggered schedule was designed based on historical data within a timeliness win-
dow. Furthermore, considering the relationship between energy consumption and communication
distance, a topological transformation schedule with energy-saving is proposed. The energy-saving
distributed consensus Kalman filter with a dual event-driven (or event-triggered) strategy is proposed
by combining the above two schedules. The sufficient condition of stability for the filter is given by
the second Lyapunov stability theory. Finally, the effectiveness of the proposed filter was verified by
a simulation.

Keywords: event-triggered schedule; topological transformation; timeliness window; distributed
Kalman filter

1. Introduction

In recent decades, wireless sensor networks (WSNs) have been widely researched and
applied in many fields, such as self-calibration, surveillance, and target tracking [1,2],
owing to their small size, high flexibility, multiple functions, low costs, and simple
installation [3–6]. WSNs are part of a fully distributed network consisting of many wireless
sensors [7]. One of the core issues of their application is how to design a distributed filter
to precisely estimate the system state [8]. Considering the Kalman filter is one of the most
classical linear filters and is successfully applied in many fields, many researchers have
combined the filter with WSNs to extend their applications [9–14].

In contrast with wired sensor networks, although WSNs have many advantages (as
mentioned above) there are still some limitations, including limited energy, poor bandwidth,
short communication distance, weak computing, storage capabilities, etc. [15,16]. The
research predicted that the CO2 emission would be over 1400% (1900 baseline at 100%)
and that the primary energy consumption would be over 300% (1970 baseline at 100%)
by 2022 [17]. Thus, from the view of energy conservation and emission reduction, as well
as the extended lifetime of WSNs, it is necessary to design energy-saving strategies for
WSNs. It is well known that an event-driven strategy is one of the most representative
solutions to the problem of limited energy [18,19], it can effectively save energy by avoiding
unnecessary information transmission [20]. As a result, many scholars have studied it from
a communication perspective. The distributed estimation problem of a network sensing
system with an event-driven schedule has been analyzed in [21]; the authors proposed the
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event-triggered Kalman consensus filter by minimizing the mean square error based on
event-driven protocols. Moreover, data transferring and scheduling were studied [22], and
the lifetime of the network has been extended by reducing the communication bandwidth
and improving energy efficiency.

In addition to the perspective of communication, some scholars have also considered
the event-driven strategy from a data features perspective. The literature [23] demonstrates
a data packet processor based on an event-driven approach. To save energy effectively,
only necessary packets are selected for transmission after ensuring the performance of the
H∞ filter. The problem of event-triggered state estimation in a linear Gaussian system with
an energy harvesting sensor is studied in [24]. Moreover, the event-triggered condition is
designed based on the importance of data and available energy, and then the frequency of
data transmission is adjusted accordingly. In [25], a new event-driven strategy is proposed
where the upper and lower bounds of the event-triggered threshold are time-varying and
automatically adjusted. Although these works can effectively save energy through event-
triggered scheduling, the influence of WSN topology on energy consumption is ignored.

In WSNs, the communication distance between sensors is the most important factor
for energy consumption [26]. Because these connections determine the WSN topologies,
topology control is reviewed in [27,28], including its control method, evaluation standard,
and some common issues. In [29], the authors proposed a distributed topology control
algorithm, which optimizes the topology based on the real-time residual energy of nodes.
Similar works can be found in [30–35].

However, a large number of research studies have ignored the fact that sensor nodes
have limited data storage capacity. According to [26], transferring data consumes more
energy than collecting it. To balance estimated accuracy and energy savings, this paper
proposes a fully distributed state estimator with a dual energy-saving strategy (e.g., an
event-triggered schedule and topological transformation).

In addition, the packet loss factor is essential when designing a WSN with good
performance [36]. It is widely known that excessive packet loss can significantly impact
the quality of information fusion. As sensors can only store a small amount of data in
finite steps, the event-driven strategy designed in this paper effectively mitigates the
effects of packet loss by utilizing historical data. In practice, these two strategies are
interdependent and both impact the estimation performance of WSNs. Thus, the filter with
dual energy-saving strategies can not only save energy but also promote more uniform
energy consumption. Moreover, it can improve the robustness and extend the lifetime of
WSNs by making full use of the node’s storage ability. The main contributions of the paper
are summarized as follows:

1. We propose a unique data fusion strategy (see Equation (9)), according to five com-
munication situations between nodes i and j. It can effectively decline the effect of
packet loss in the network in full using historical data.

2. We propose a new topological transformation rule (see Equation (7)) based on the en-
ergy consumption model of nodes in WSNs. It avoids the single node from consuming
energy too fast. Thus, the WSN lifetime is extended.

3. We designed a novel distributed consensus Kalman filter based on an event-triggered
schedule and topological transformation. Unlike the generally distributed Kalman
filter, the proposed filter with a dual energy-saving strategy is able to offer more
possibilities for energy savings in WSNs.

The remainder of this paper is organized as follows. In Section 2, we present some
mathematical preliminaries required in this paper. In Section 3, we introduce the distributed
estimation framework and design the energy-saving strategy. In Section 4, we formulate a
type of distributed state estimator algorithm with dual driving and state the conditions for
stability. Finally, we provide simulation verification of the proposed algorithm in Section 5;
the conclusions are drawn in Section 6.
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2. Mathematical Preliminaries

Rn×m denotes the set of real matrices with n rows and m columns. I is the n-dimensional
identity matrix. Z+ represents the set of positive integers. diag(A1, . . . , An) represents a
block-diagonal matrix. In addition, E(·) represents the mathematical expectation.

Let G = (V , E ;A) is an m-order undirected graph. V = {v1, . . . , vm} is a nonempty
finite set of nodes and E ⊆ V × V is a set of edges. In addition, (vi, vj), i, j = 1, 2, . . . , m
represents an edge of G. The weight adjacency matrix is denoted by A = [ai,j]. ai,j ≥
0 denotes the weight for the edge (vi, vj) ∈ E , which represents the closeness of the
connection between any two sensor nodes. Meanwhile, we assume that ai,i = 0. The set of
real-time neighbors of node i is denoted by N i

RN .
In addition, to clarify the mathematical symbols used, we list them in Table 1, and the

abbreviations used throughout the paper are listed in Table 2.

Table 1. List of important notations.

Symbol Definition

xk ∈ Rn×1 The state of the monitored object at the k instance

x̂−k,i The prior estimate of the system state for node i at the k instance

x̂+k,i The posterior estimate of the system state for node i at the k instance

P−k,i The covariance matrix of the prior estimate error for node i at the k instance

P+
k,i The covariance matrix of the posterior estimate for node i at the k instance

wk The system noise at the k instance

yk,i The output of the i-th sensor node at the k instance

vk,i The measurement noise of the i-th sensor at the k instance

Q The covariance matrix of the system noise

Rk,i The covariance matrix measurement noise of the i-th sensor at the k instance

Kk,i The Kalman gain of the i-th sensor at the k instance

Ck,i The consensus gain of the i-th sensor at the k instance

∆ ∈ Z+ The timeliness period

N i
TW The set of timeliness neighbors of node i

N i
RN The set of real-time neighbors of node i

N i
EN The set of effective neighbors of node i

δ The event-triggered threshold

τi
k ∈ {0, 1, 2, . . . , ∆} The difference between the last event-triggered time of node i and the current

Ese The energy consumed by the sender

Ere The energy consumed by the receiver

Eto
i The total energy consumption of node i in a data fusion process

Eav
k,i The local average energy of node i at the k instance

dk,i The communication radius of node i at the k instance

α The packet loss rate in WSNs
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Table 2. List of abbreviations.

Acronym Definition

WSNs Wireless sensor networks

TW Timeliness window

RN Real-time neighbor

EN Effective neighbor

RMSE Root mean square error

TEF Total event-triggered frequency

3. Problem Statement and Strategic Design
3.1. Problem Statement

To simplify the description, several assumptions are given (as follows).

Assumption 1. Each sensor node is able to collect information from the monitored object, and it
also receives the information from the neighbor nodes until the packet dropout happens.

Assumption 2. For all sensors, the state xk of the monitored object is the same at the k instance.
This means xk,i = xk, i = 1, 2, . . . , m at the k instance, where m represents the total number of
sensors in WSNs.

If a WSN is deployed in the monitored area, the general frame of the event-driven
distributed filter is shown in Figure 1.
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Figure 1. Frame of the event-driven distributed filter in the monitored area.

Suppose m wireless sensors are randomly arranged in the monitored area. One of the
main objectives is to obtain the required state estimate value by the distributed consensus
Kalman filter with as less energy consumption as possible by means of the proposed
event-triggered schedule and time-varying switching communication radius.

In general, the monitored object shown in Figure 1 can be described as a discrete linear
time-invariant system as follows: {

xk+1 = Fxk + Gwk

yk,i = Hxk + vk,i
(1)

where k ∈ Z+ is the sampling instance, xk ∈ Rn×1 is the state of the monitored object
at the k instance, yk,i is the output of the i-th sensor node at the k instance. F, G, and
H are constant matrices with compatible dimensions. wk and vk,i represent the system
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noise and measurement noise of the i-th sensor, respectively, at the k instance, which are
assumed as unrelated Gaussian noises with zero means. Their covariance matrices are Q
and Rk,i, respectively.

3.2. Energy-Saving Strategic Design
3.2.1. Event-Triggered Schedule

Three new conceptions are defined below.

• Timeliness window (TW): In WSNs, node i can store the information received from
neighbor j(j ∈ N i

RN) within a period of time and the information can be used by node
i in this period. This period is defined as a timeliness window, also known as the
timeliness period denoted by ∆(∆ ∈ Z+). As a result, the neighbor node j in TW is
called the timeliness neighbor of node i denoted by j ∈ N i

TW .
• Real-time neighbor (RN): If node j sends information to node i at the k instance, then j

is a real-time neighbor of node i at this sampling time. It is denoted by j ∈ N i
RN .

• Effective neighbor (EN): If node j is the timeliness neighbor of node i or its real-time
neighbor, then it is called an effective neighbor of node i. It is denoted by j ∈ N i

EN . It
is clear that N i

EN = N i
RN +N i

TW .

The proposed event-driven principle is shown in Figure 2.
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Figure 2. Diagram of the event-triggered principle.

In Figure 2, node i receives the estimation x̂k,j from its neighbor j and detects the output
yk,i at the k instance. Then, the latest estimation x̂τ,j in the buffer of node i is transformed
to the local Kalman filter to obtain the estimation x̂k,i at the k instance and send it to the
event observer part and its real-time neighbor j. Finally, the event observer checks the
even-driven condition (shown in Equation (2)) and determines whether to receive the next
estimations from its neighbors or not.

δk,i = (x̂−k,i − Fτi
k x̂−

k−τi
k
)T(x̂−k,i − Fτi

k x̂−
k−τi

k
) > δ (2)

where x̂−k,i represents the prior estimation of node i at the k instance. τi
k ∈ {0, 1, 2, . . . , ∆}

is the difference between the last event-triggered time of node i and the current. x̂−
k−τi

k
represents the prior estimation of node i at the latest event-triggered instance. In addition,
δ is the event-triggered threshold.

If Equation (2) is satisfied, the event will be triggered. That means node i sends the
command to node j (j ∈ N i

RN), and node j will broadcast x̂−k,j to node i. Then node i will
conduct consensus fusion based on the new information. Otherwise, node i will do it based
on the latest information stored in its effective neighbor.
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In WSNs, packet loss is a common phenomenon due to some unreliable factors,
such as the time-varying bandwidth limitation, limited power, or uncertain environment.
Considering the above event-triggered strategy, there are five communication situations
between node i and j.

1. When the event is triggered (δk,i > δ), node i may receive the information coming
from neighbor j.

2. When the event is triggered (δk,i > δ), node i does not receive the information of
neighbor j because the packet dropout occurred, but it stores the effective information
of neighbor j.

3. When the event is triggered (δk,i > δ), the information of neighbor j is continuously lost
from the k−∆ instance to the k instance during the transmission, then the information
of node j stored in node i is invalid.

4. When the event is not triggered (δk,i ≤ δ), the latest information of node j stored in
node i is valid.

5. When the event is not triggered (δk,i ≤ δ), the information of j stored in i is invalid.

3.2.2. Topology Transformation Schedule

To achieve energy savings by adjusting the topology structure of WSNs, an energy
consumption model needs to be established. Figure 3 shows the well-known energy
consumption model [26] of nodes in WSNs.

Sender

Circuits

Sender

Amplifier

Receiver

Circuits

bit Datal -

d

( )seE l,d ( )reE l

elecl Eelecelec ( , )ampE l d ( )reE l

Figure 3. The energy consumption model of nodes in WSNs.

It is assumed that the sensor node does not consume energy during the measurement
process. A sensor node transmits l bit of data with d m distance, the energy consumed by
the sender and receiver are Ese and Ere, respectively. They are calculated as follows [26].

Ere(l) = l · Eelec (3)

Ese(l, d) =

{
l · Eelec + l · ε f s · d2 , d < d0

l · Eelec + l · εmp · d4 , d ≥ d0
(4)

where Eelec (nJ/bit) is the needed energy to send a 1-bit packet. d0 (m) is the critical distance.
ε f s (nJ/(bit·m2)) and εmp (nJ/(bit·m4)) denote the energy consumption factors.

Including the computing energy consumption, the total energy consumption of node i
in a data fusion process is Eto

i :

Eto
i = Ese(l, d) + Ere(l) + Ece (5)

where Ece (nJ/(bit · signal)) represents the energy for data aggregation in one period.

Remark 1. It can be seen that Ese(.) is proportional to d2 or d4 from the energy consumption
model (4). Therefore, it is a good method to save energy by reducing the communication distance
between nodes. However, to improve filtering accuracy, it is necessary to increase the communi-
cation distance of node i by increasing the number of its neighbors. Therefore, the selection of the
communication distance between nodes is crucial to balance these two requirements.
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Remark 2. The lifetime of WSNs is a critical factor to consider. Given that the node death can
significantly reduce network connectivity, the lifetime of WSNs ultimately depends on the node that
first runs out of energy.

The communication radius di of node i is defined as the maximum distance that it can
transmit information. TO determine the communication radius switching rule, the local
average energy of nodes i at the k instance is defined as Eav

k,i :

Eav
k,i =

1
Ni + 1

(Ek,i +
Ni

∑
j=1

Ek,j) (6)

where Ni represents the number of elements in N i
RN ; Ek,i and Ek,j denote the remaining

energy of node i and j, respectively. So the switching rule for the communication radius of
node i is given as follows.

dk+1,i =

{
dmin, Ek,i > Eav

k,i
dmax, others

(7)

where dk+1,i represents the communication radius of node i at the k + 1 instance, dmin is
the minimum communication radius, and dmax is the maximum. Ek,i and Eav

k,i represent the
residual energy and the average residual energy of node i at the time k instance, respectively.

Remark 3. In contrast to the fixed topology, Equation (7) can change the communication radius of
node i according to the value of Eav

k,i . It avoids the single node from consuming energy too fast. Thus,
the WSN lifetime is extended.

4. Distributed State Estimator Design

Firstly, x−k,i x+k,i ∈ Rn×1 represent the prior estimate and posterior estimate of the
system state for node i at the k instance, respectively. They are defined as follows.

x̂−k,i = E(xk|y1,i, y2,i, . . . , yk−1,i), x̂+k,i = E(xk|y1,i, y2,i, . . . , yk,i) (8)

If the ϕk,i = 0 represents packet loss and the ϕk,i = 1 otherwise at the k instance, its
value is controlled by the packet loss rate α. Suppose that the x̂k,j is the latest neighbor
information used by node i for consensus fusion. Then, the rules are given as follows.

x̂−k,j =



x−k,j, δk,j > δ and ϕk,i = 1

x−TW,j, δk,j > δ , ϕk,i = 0 and τk,j ≤ ∆

x−k,i, δk,j > δ, ϕk,i = 0 and τk,j > ∆

x−TW,j, δk,j ≤ δ and τk,j ≤ ∆

x−k,i, δk,j ≤ δ and τk,j > ∆

(9)

where x−TW,j is the information of the timeliness neighbor of node i.

Remark 4. After node i broadcasts its local information, the neighboring nodes may either receive
the information or experience packet loss, which can be caused by unknown factors. Assuming
packet loss is a uniformly random process, it can be considered a probabilistic event. Thus, the packet
loss rate α (0 ≤ α ≤ 1) can be used to describe this phenomenon.

Then, the current estimation x̂+k,i is given by

x̂+k,i = x̂−k,i + Kk,i(yk,i − Hx̂−k,i) + Ck,i ∑
j∈N i

EN

(x̂−k,j − x̂−k,i) (10)
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where Kk,i and Ck,i represent the Kalman gain and consensus gain of node i at the k instance,
respectively.

Next, the stability properties of the proposed algorithm are analyzed. For the reader’s
convenience, all of the proofs are given in Appendix A.

Theorem 1. Setting the consensus gain Ck,i = 0 yields the sub-optimal Kalman gain, i.e., Kk,i =
P−k,i H

T(HP−k,i H
T + Rk,i)

−1.

Theorem 2. The consensus Kalman filter is asymptotical stability if Equation (10) and Ck,i =
cP+

k,i(F− Kk,i HF)−1 are used with the gain c satisfying the following condition.

cI ≤
√
[(P+

k−1)
−1 − LT

k (P+
k )−1Lk][ΨT

k L−1
k P+

k (L−1
k )TΨk]−1 (11)

where Lk = diag(Lk,1, Lk,2, . . . , Lk,m), Ψk = [ΨT
k,1, ΨT

k,2, . . . , ΨT
k,m].

5. Simulations

In this section, the performance of the proposed filter is illustrated by a state estimation
in the linear system. Matlab 2018b was used in the simulation on the computer with Intel(R)
Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz. The dynamical equation of the system is
given by

xk+1 =

[
0.9996 −0.0300
0.0300 0.9996

]
xk +

[
0.015 0

0 0.015

]
wk (12)

where xk is the state of the stem at the k instance, wk is a discrete random process with zero
means, and its covariance matrix is Q = diag([2, 2]). The initial value of the system state is
x0 = [7.5,−5]T .

Here, we consider a WSN composed of m = 100 sensor nodes located in a square
region with a 1000 m side length. The topologies of WSNs under two fixed communi-
cation radii are shown in Figure 4, where the communication radius of the left figure is
dmin = 160 m and another is dmax = 260 m. If two nodes are connected, it means that they
are able to receive local information from each other, otherwise, they are not. It is easy to
see from Figure 4 that the complexity degree of WSNs is completely determined by the
communication radius.

0 200 400 600 800 1000

0

200

400

600

800

1000

0 200 400 600 800 1000

0

200

400

600

800

1000

Figure 4. The topologies of WSNs under two fixed communication radii.
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The detection value provided by each sensor node can be defined as

yk,i =

[
1 0
0 1

]
xk + vk,i (13)

where vk,i is the measurement noise with zero means and its covariance matrix is Ri =
diag([rand, rand]). The rand denotes uniformly distributed random numbers in (0, 1). In
addition, let c = 0.001, as well as the initial energy of each node be 2 J. Other parameters in
the simulation are set in Table 3.

Table 3. The values of other parameters in the simulation.

Parameters δ ∆ α l d0

Value 0.8 5 0.3 40,000 bit 200 m

x−0,i P−0,i Eelec Ece ε f s εmp

[0, 0]T diag([5, 5]) 50 nJ/bit 5 nJ/(bit·signal) 10 pJ/(bit·m2) 0.0013 pJ/(bit·m4)

In order to show the performance of the filter, it is expressed in terms of the root mean
square error (RMSE):

RMSEk =

√
1
m

m

∑
i=1

(xk − x+k,i)
T(xk − x+k,i) (14)

For showing the filter performance proposed in this paper, the different communica-
tion patterns are compared. Pattern 1: our algorithm (using the event-triggered schedule
and topology transformation schedule, i.e., d = dmax or d = dmin). Pattern 2: distributed
Kalman filter (using the fixed large communication radius, i.e., d = dmax). Pattern 3: dis-
tributed Kalman filter (using the fixed small communication radius, i.e., d = dmin). The
RMSEs of three patterns are depicted in Figure 5.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

40 50 60 70 80 90 100 110 120 130 140
0.1

0.2

0.3
Local enlarged figure

Figure 5. The RMSEs of three patterns.

Overall, their filtering accuracy is comparable. The performance of pattern 1 is better
after the 140th step. This trend is much more obvious as time goes by. Compared with
pattern 1, the node that first runs out of energy (i.e., dead node) appears earlier in other
patterns (see Figure 6), which leads to the deterioration of the topology connectivity. Thus,
there is a decrease in the filtering accuracy of patterns 2 and 3 between k = 140 and k = 200.
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Figure 6 shows the energy consumption change of the node that first runs out of
energy in the three patterns. It is evident that the dead node in pattern 1 appears later
(around the 200th step), indicating that it can significantly extend the lifetime of WSNs.
Specifically, compared to pattern 3, it prolongs the lifetime by about 40%, let alone pattern 2.
This shows that the proposed topology transformation strategy is highly effective in energy
conservation.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

E
n
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g

y
:n
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10

9

Figure 6. The energy consumption change of the node that first runs out of energy in the three
patterns when δ = 0.8.

However, if the parameters are not selected suitably, the above result cannot be
obtained. For example, let δ = 0.25, the lifetimes of WSNs in pattern 1 and pattern 3 will be
changed (see Figure 7).

0 20 40 60 80 100 120 140 160 180 200
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1
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n
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g
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9

Figure 7. The energy consumption change of the node that first runs out of energy in three patterns
when δ = 0.25.

To further illustrate the effectiveness of the method, the event-triggered frequency and
communication distance of the nodes in WSNs at every time k are shown in Figure 8 and
Figure 9, respectively (in order to clearly display the figure, the event-triggered numbers at
time k = 0 of the three patterns are deleted).
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Figure 8. The event-triggered frequency of the node at every time k.

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

100

N
u
m

b
e
r 

o
f 

n
o
d
e

Figure 9. The number of nodes used at different communication distances at every time k.

In Figure 8, the total event-triggered frequency (TEF) in three patterns is 529 freq,
377 freq, and 882 freq, respectively, which means that the event-triggered frequency of
our algorithm is medium. Compared to pattern 1 (our algorithm), the event-triggered
frequency in pattern 2 is reduced by 36.30% and increased by 66.73%, respectively. Thus,
our algorithm is more effective in reducing the event-triggered frequency. This suggests
that the event-triggered condition proposed in this paper is helpful for energy saving.

In addition, in Figure 9, the communication radius of the nodes is switched by our
algorithm, which evidences the effectiveness of the proposed topology transformation
schedule. According to the proposed topology transformation schedule (see Equation (7),
if the energy consumption of node i is lower than the local average energy consumption,
the communication radius switches to the dmin at the next time. Otherwise, it switches to
the dmax. Therefore, it can make more uniform energy consumption (see Figures 6 and 7;
the absolute value of the slope of the curve in pattern 1 is the smallest in the three patterns).
These results further prove the effectiveness of the proposed algorithm.
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In order to show the effectiveness of different parameters on the performance of WSNs,
we conducted the experiment using the statistics method. The results are shown in Tables 4–6.

Table 4. The effects of different α values on the performance of WSNs, when δ = 0.8 and ∆ = 5.

Performance
Parameter

α = 0.2 α = 0.4 α = 0.6

RMSE 0.2003 0.1982 0.1968
Lifetime 198 190 185

TEF 522 581 604

Table 5. The effect of different δ values on the performance of WSNs, when α = 0.3 and ∆ = 5.

Performance
Parameter

δ = 0.4 δ = 0.6 δ = 0.8

RMSE 0.1861 0.2034 0.2133
Lifetime 182 193 200

TEF 746 654 514

Table 6. The effect of different δ values on the performance of WSNs, when α = 0.3 and δ = 0.8.

Performance
Parameter

∆ = 1 ∆ = 5 ∆ = 10

RMSE 0.1925 0.1836 0.2365
Lifetime 186 200 167

TEF 584 521 659

From Table 4, it can be observed that the total frequency increases as the packet
loss rate α increases, resulting in an increase in filtering accuracy but a decrease in the
lifetime of WSNs. Additionally, Table 5 indicates that the total frequency decreases as the
event-triggered threshold δ increases, resulting in a decrease in filtering accuracy but an
increase in the lifetime of WSNs. Table 6 shows that the timeliness window ∆ contributes
to improved filtering accuracy and the lifetime of WSNs, but larger values of ∆ have a
negative impact on them. Thus, we need to adjust the parameters to obtain the desired
filtering accuracy and the expected lifetime WSNs.

6. Conclusions

In this paper, based on the timeliness window, an energy-saving distributed consensus
Kalman filter with a dual event-driven strategies was designed for WSNs. It is a com-
prehensive algorithm for saving energy and for uniform energy consumption. On the
one hand, the proposed event-triggered schedule based on the timeliness window saves
energy, satisfying the filtering accuracy. On the other hand, the topological transformation
schedule, which chiefly controls the topology structure, was designed according to the
energy consumption model. To be more specific, it is able to switch the communication
radius according to the proposed topology transformation schedule, which makes the
energy consumption uniform. The following are the highlights of this paper:

1. The unique dual event-driven strategy was designed to balance the filtering accuracy
and the energy consumption. Using the proposed dual event-driven strategy, the
lifetime of WSNs can be extended by about 40%.

2. A novel distributed consensus Kalman filter was designed based on the two schedules;
sufficient conditions for the stability of the filter are given.

Simulation tests have demonstrated the effectiveness of the proposed event-triggered
schedule and topology transformation schedule in achieving a better trade-off between
estimated accuracy and energy-saving by adjusting various parameters, ultimately leading
to a prolonged lifetime of WSNs. However, there is a problem in that the proposed
algorithm depends on the choice of parameters. The different parameters can lead to
significant changes in the performance of the proposed algorithm. It is widely known that
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the intelligent optimization algorithm can be used to adjust the parameters to obtain the
desired performance indicators. Thus, it is natural to expect that it will be solved by the
intelligent optimization algorithm in future works.
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Appendix A

Proof of Theorem 1. Firstly, some estimated error variables and their covariance matrices
are defined as follows [37].

e−k,i = x̂−k,i − xk, e+k,i = x̂+k,i − xk, e−τ,i = x̂−τ,i − xk, e+τ,i = x̂+τ,i − xk (A1)

P−k,i = E[e−k,i(e
−
k,i)

T ], P+
k,i = E[e+k,i(e

+
k,i)

T ], P−k,ij = E[e−k,i(e
−
k,j)

T ], P+
k,ij = E[e+k,i(e

+
k,j)

T ] (A2)

In light of Equations (1) and (8), it is easy to obtain x̂−k,i from Equation (A3).

x̂−k,i = E(xk|y1,i, y2,i, . . . , yk−1,i) = FE(xk−1|y1,i, y2,i, . . . , yk−1,i) = Fx̂+k−1,i (A3)

By using Equation (A1) and after some trivial manipulations, we can obtain

e−k,i = Fe+k−1,i − Gwk−1

e+k,i = (I − Kk,i H)e−k,i + Kk,ivk,i + Ck,i ∑
j∈N i

EN

(e−k,j − e−k,i)
(A4)

Substituting Equation (A4) into Equation (A2) yields

P+
k,i =(I − Kk,i H)P−k,i(I − Kk,i H)T + (I − Kk,i H)E(e−k,iv

T
k,i)K

T
k,i − (I − Kk,i H) ∑

j∈N i
EN

P−k,iC
T
k,i

+ Kk,iE(vk,ie−T
k,i )(I − Kk,i H)T + Kk,iRk,iKT

k,i + Kk,i ∑
j∈N i

EN

E[vk,i(e−T
k,j − e−T

k,i )]C
T
k,i

− Ck,i ∑
j∈N i

EN

P−k,i(I − Kk,i H)T + Ck,i ∑
j∈N i

EN

E[(e−k,j − e−k,i)v
T
k,i]K

T
k,i + Ck,i ∑

j∈N i
EN

(P−k,j + P−k,i)C
T
k,i

(A5)

Because e−k,i and e−τ,j are independent of vk,i, it follows that

P+
k,i =(I − Kk,i H)P−k,i(I − Kk,i H)T − (I − Kk,i H) ∑

j∈N i
EN

P−k,iC
T
k,i + Kk,iRk,iKT

k,i

− Ck,i ∑
j∈N i

EN

P−k,i(I − Kk,i H)T + Ck,i ∑
j∈N i

EN

(P−k,j + P−k,i)C
T
k,i

(A6)
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The cost function of the filter is defined as follows.

Jk,i = E[(xk1 − x̂k1,i)
2 + (xk2 − x̂k2,i)

2 + . . . + (xkn − x̂kn,i)
2]

= E(e+T
k,i e+k,i) = Tr(P+

k,i)
(A7)

where xkj is the j-th element of xk, j = 1, 2, . . . , n. Similarly, x̂kj,i can be known.
Then, it can be given that

∂Jk,i

∂Kk,i
= −2(I − Kk,i H)P−k,i H

T + 2Kk,iRk,i + 2 ∑
j∈N i

EN

Ck,iP−k,i H
T (A8)

In order to obtain the optimal Kalman gain: K∗k,i, let ∂Jk,i/∂Kk,i = 0. Then, it can be
obtained as follows:

K∗k,i = [P−k,i H
T − ∑

j∈N i
EN

Ck,iP−k,i H
T ](HP−k,i H

T + Rk,i)
−1 (A9)

Let Ck,i = 0, the sub-optimal Kalman gain and P+
k,i can be given as

Kk,i = P−k,i H
T(HP−k,i H

T + Rk,i)
−1 (A10)

P+
k,i = (I − Kk,i H)P−k,i(I − Kk,i H)T + Kk,iRk,iKT

k,i (A11)

Through some mathematical manipulations, it is easy to obtain

P−k,i = FP+
k−1,iF

T + GQGT (A12)

Proof of Theorem 2. It is easily acquired from Equation (A4) that

e+k,i = Lk,ie+k−1,i − (I − Kk,i H)Gwk−1 + Kk,ivk,i + Ck,iuk,i (A13)

where Lk,i = (I − Kk,i H)F, and uk,i = ∑
j∈N i

EN

(e−k,j − e−k,i).

Choosing the following Lyapunov function candidate

Vk =
m

∑
i=1

e+T
k,i (P+

k,i)
−1e+k,i (A14)

then,
E(∆Vk) = E(Vk+1)−E(Vk)

= E{
m

∑
i=1

[e+T
k+1,i(P+

k+1,i)
−1e+k+1,i − e+T

k,i (P+
k,i)
−1e+k,i]}

(A15)

by noting that Equation (A13), it follows that Equation (A15) can be rewritten as

E(∆Vk) =
m

∑
i=1
{e+T

k,i [L
T
k+1,i(P+

k+1,i)
−1Lk+1,i − (P+

k,i)
−1]e+k,i + e+T

k,i LT
k+1,i(P+

k+1,i)
−1Ck+1,iuk+1,i

+ [e+T
k,i LT

k+1,i(P+
k+1)

−1Ck+1,iuk+1,i]
T + uT

k+1,iC
T
k+1,i(P+

k+1,i)
−1Ck+1,iuk+1,i}

(A16)

Assuming Ck,i = cP+
k,i(LT

k,i)
−1, uk,i = −Ψk,ie−k,i, then it can be rewritten as

E(∆Vk) =e+T
k [LT

k+1(P+
k+1)

−1Lk+1 − (P+
k )−1]e+k − ce+T

k Ψk+1e−k+1

− c(e+T
k Ψk+1e−k+1)

T + c2e−T
k+1ΨT

k+1L−1
k+1P+

k+1(L−1
k+1)

TΨk+1e−k+1

(A17)
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where e+k = [e+T
k,1 , e+T

k,2 , . . . , e+T
k,m]

T , e−k = [e−T
k,1 , e−T

k,2 , . . . , e−T
k,m]

T , P+
k = diag(P+

k,1, P+
k,2, . . . , P+

k,m),
Lk = diag(Lk,1, Lk,2, . . . , Lk,m), Ψk = [ΨT

k,1, ΨT
k,2, . . . , ΨT

k,m].
Without loss generality, considering e−k+1 ≤ e+k , it can be simplified that

E(∆Vk) ≤e+T
k [LT

k+1(P+
k+1)

−1Lk+1 − (P+
k )−1 + c2ΨT

k+1L−1
k+1P+

k+1(L−1
k+1)

TΨk+1]e+k (A18)

if the following inequality is satisfied, then the filter is asymptotically stable.

LT
k+1(P+

k+1)
−1Lk+1 − (P+

k )−1 + c2ΨT
k+1L−1

k+1P+
k+1(L−1

k+1)
TΨk+1 ≤ 0 (A19)

therefore, by solving the above inequality and letting k replace k− 1, it can be obtained that
Theorem 2.
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