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Abstract: A transformer’s acoustic signal contains rich information. The acoustic signal can be
divided into a transient acoustic signal and a steady-state acoustic signal under different operating
conditions. In this paper, the vibration mechanism is analyzed, and the acoustic feature is mined
based on the transformer end pad falling defect to realize defect identification. Firstly, a quality–
spring–damping model is established to analyze the vibration modes and development patterns
of the defect. Secondly, short-time Fourier transform is applied to the voiceprint signals, and the
time–frequency spectrum is compressed and perceived using Mel filter banks. Thirdly, the time-
series spectrum entropy feature extraction algorithm is introduced into the stability calculation, and
the algorithm is verified by comparing it with simulated experimental samples. Finally, stability
calculations are performed on the voiceprint signal data collected from 162 transformers operating
in the field, and the stability distribution is statistically analyzed. The time-series spectrum entropy
stability warning threshold is given, and the application value of the threshold is demonstrated by
comparing it with actual fault cases.

Keywords: the end pad falling defect; Mel time–frequency spectrum; time-series spectral entropy;
stability; defect identification

1. Introduction

A power transformer is one of the most important pieces of equipment in a power grid.
As the current flows through the winding coil during its operation, an electromagnetic
force is generated in the leakage magnetic field, resulting in winding vibration. Several
factors, such as a reduction in the insulation layer, the short-circuit impact current and pad
falling, can lead to winding looseness, causing equipment vibration and changes in the
corresponding acoustic time–frequency characteristics, known as the acoustic signature.
Analyzing the acoustic feature information of the equipment under different conditions
can serve as a crucial basis for determining the transformer’s condition [1,2].

The occurrence and transmission mechanisms of the internal vibration of a trans-
former are complex [3]. In order to extract vibration characteristic information effectively,
researchers usually start from the mathematical model of transformer vibration to mine and
analyze winding vibration acoustic signals. The spring–mass pad equivalent model [4] has
a wide range of applications and is gradually optimized [5]. A mathematical model of the
axial vibration of windings was established based on this equivalent model in Reference [6],
and the mechanical characteristics of the spacers were analyzed. It was found that the max-
imum axial displacement of the end winding under different winding pre-tightening forces
increases with an increase in the peak short-circuit current, while the force acting on the
end plate of the winding decreases. Reference [7] treated the end pad as an elastic element
and constructed a transformer winding coil model. It was found that, when the end pad
falling fault occurs, the vibration amplitude of the transformer continues to develop until
the end of the winding collides with the iron yoke in a non-elastic manner. The average
duration of this process is about 0.680 s.
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Based on an analysis of the physical theoretical model, it is necessary to use appropriate
mathematical methods to extract the characteristics of the defect [8,9]. Reference [10]
constructed models for the radial vibration and oil propagation of windings. The radial
and axial vibration characteristics of the winding and pressure plate were experimentally
studied using a laser vibrometer and vibration acceleration sensors. The conditions for
the generation of multiple-frequency vibration of the winding were derived, providing a
reference basis for the diagnosis of faults in transformer windings [11]. Ma Hongzhong
et al. investigated the effects of different tightening forces on the vibration signals of
transformers using a finite element analysis, focusing on the characteristics of the 100 Hz
fundamental frequency vibration signal [12]. They concluded that the inherent frequency
of the transformer decreases as the pre-tightening force decreases, which can be used
to assess the degree of winding looseness [13]. Hong K proposed a winding condition
evaluation model using vibration signals, which separates winding vibration signals from
mixed signals using a fundamental frequency vibration analysis [14]. In addition, they
used a gated recurrent unit (GRU) neural network to explore the relationship between the
current sequence and the vibration sequence for operating transformers, suggesting that
the electromagnetic force induced by the load current affects the vibration response of the
winding structure, especially when the tightening force is significantly loose [15]. Wang
et al. obtained the vibration characteristics of winding under normal and loose conditions
from the perspective of pad nonlinearity, and they found a correlation between the degree
of winding looseness and the 100 Hz octave component in the vibration signal [16].

The main reason for the exacerbation of winding looseness caused by cumulative
stress, such as short-circuit shock in transformers, is the falling of the end pad, which
shows quasi-steady-state vibration characteristics and has significant changes in frequency
spectrum distribution and amplitude with the time series [17]. Existing research on the
mechanical characteristics and spectrum of windings is mostly based on steady-state
vibration signals. However, vibration sensors in transformers are often difficult to install
in substations, and the acoustic signals transmitted through the oil tank from the internal
vibrations of transformers are easier to monitor and can contain more comprehensive
information than vibration signals [18,19].

To address the aforementioned problem, a new method is designed in this paper to
discriminate the stability level of the acoustic signals of winding vibrations. Firstly, based
on the “mass–spring–damping” model, the quasi-steady-state development process of
the vibration mode of winding under the condition of end pad falling is analyzed, and a
time-series spectral entropy algorithm for signal stability is constructed accordingly. The
chaos degree of the acoustic fingerprint time–frequency spectrum during the dynamic
change in the vibration signal is described, and the stability of the acoustic fingerprints of a
dataset of 162 transformers from 24 substations of the State Grid is calculated. The stability
threshold ranges of the two operating states are determined, and the effective identification
of end pad falling defects of transformer windings is achieved.

2. The Vibration Characteristics Analysis of Winding End Pad Falling
2.1. The Analysis of Winding Vibration

In the case of the deformation, displacement or collapse of transformer windings, the
compression force between wire cakes is insufficient, thus aggravating the unbalance of
winding ampere-turns, and the magnetic leakage generated increases the axial force, which
aggravates the winding vibration [20].

According to the structural characteristics of winding, the single-layer coil can be
equivalent to a concentrated mass pad, and the insulation gasket can be equivalent to an
elastic element. The forced vibration of winding can be equivalent to a dynamic equivalent
model of mass–spring–damping, which can better represent the natural vibration charac-
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teristics of winding. This is shown in Figure 1a. According to the D. Alembert principle,
the dynamic equation of coil elements can be expressed as follows:

m
..
xn + c

.
xn + kxn = Fy + mg (1)

where m is the mass of the coil element, c is the damping coefficient, k is the elastic coefficient
of the spring, xn is the displacement of the nth unit coil relative to its original position, and
Fy is the axial electric force.
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Figure 1. Mass–spring–damping equivalent model. (a) Normal model. (b) Pad falling model. 

In order to further explore the winding vibration response under the condition that 
the end pad falls off, the top coil is simplified as a single degree of freedom system [21]. 
In addition, the spring is regarded as a linear system, which balances with the coil mass 
under working conditions. For an easy calculation, the electrodynamic force is simplified 
to the form of multiplying the external excitation 𝐹  and the cosine function of twice the 
grid frequency. The dynamic equation of the top coil is expressed as follows: 𝑚𝑥(𝑡) + 𝑐 𝑥(𝑡) + 𝑘 𝑥(𝑡) = 𝐹 𝑐𝑜𝑠( 2𝜔𝑡+2𝜑) (2) 

Among them, 𝑐  and 𝑘  are the damping and elastic coefficients between the 
pressing plate and the iron yoke, respectively. Using the general solution characteristic 
equation of its homogeneous equation, the characteristic root of the winding damped vi-
bration can be obtained. Without considering the effect of the electrodynamic force, the 
winding presents an under-damped vibration. The vibration amplitude is written as fol-
lows: 𝑥(𝑡) = 𝑒 (𝑐 𝑐𝑜𝑠 𝜔 𝑡 + 𝑐 𝑠𝑖𝑛 𝜔 𝑡) (3) 

Among them, 𝑐  and 𝑐  are determined by the initial conditions of the winding. The 
winding has a damped natural frequency, which is shown as  𝜔 =  𝜔 1 − 𝜁 . The nat-
ural frequency of the winding under undamped vibration 𝜔  and the relative damping 
coefficient 𝜁 can respectively be expressed as follows [22]: 

⎩⎪⎨
⎪⎧𝜔 = 𝑘𝑚𝜁 = 𝑐2 𝑘 𝑚  (4) 

The general solution describes the transient process of the system. Equation (7) shows 
that the winding is subject to damped vibration with the amplitude attenuated gradually. 
Considering the special solution of the non-homogeneous equation, the variable s is in-
troduced: 𝑠 = 𝜔𝜔  (5) 

Figure 1. Mass–spring–damping equivalent model. (a) Normal model. (b) Pad falling model.

In order to further explore the winding vibration response under the condition that
the end pad falls off, the top coil is simplified as a single degree of freedom system [21].
In addition, the spring is regarded as a linear system, which balances with the coil mass
under working conditions. For an easy calculation, the electrodynamic force is simplified
to the form of multiplying the external excitation Fy0 and the cosine function of twice the
grid frequency. The dynamic equation of the top coil is expressed as follows:

m
..
x(t) + cm

.
x(t) + kmx(t) = Fy0cos(2ωt+2ϕ) (2)

Among them, cm and km are the damping and elastic coefficients between the pressing
plate and the iron yoke, respectively. Using the general solution characteristic equation of
its homogeneous equation, the characteristic root of the winding damped vibration can be
obtained. Without considering the effect of the electrodynamic force, the winding presents
an under-damped vibration. The vibration amplitude is written as follows:

x(t) = e−ζω0t(c1cosωdt + c2sinωdt) (3)

Among them, c1 and c2 are determined by the initial conditions of the winding. The
winding has a damped natural frequency, which is shown as ωd = ω0

√
1− ζ2. The

natural frequency of the winding under undamped vibration ω0 and the relative damping
coefficient ζ can respectively be expressed as follows [22]:ω0 =

√
km
m

ζ = cm
2
√

kmm

(4)

The general solution describes the transient process of the system. Equation (7)
shows that the winding is subject to damped vibration with the amplitude attenuated
gradually. Considering the special solution of the non-homogeneous equation, the variable
s is introduced:

s =
ωF
ω0

(5)

Among them, ωF refers to the frequency when the winding is externally excited. Since
the electric force is twice the grid frequency, ωF has a fixed value of 100 Hz.
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According to the mathematical transformation, the amplitude amplification factor β(s)
and the phase difference θ(s) can be expressed as follows: β(s) = 1√

(1−s2)
2
+(2ζs)2

θ(s) = tg−1 2ζs
1−s2

(6)

Finally, the amplitude expression of the winding forced vibration when the top coil is
under the action of an electrodynamic force is obtained as follows:

x(t) =
Fy0

km
β(s)cos(2ωt + 2ϕ− θ) (7)

According to the response analysis of the winding forced vibration under electrody-
namic excitation, it can be seen that the vibration amplitude of the top winding is periodic,
and the vibration frequency is twice the system frequency. Under the condition of constant
external excitation, the amplitude x(t) is affected by the amplitude amplification factor β(s).

2.2. The Vibration Analysis of End Pad Falling

This section analyzes the vibration of the end pad in the state of falling off based on
the obtained mathematical expression and the influence factors of the winding vibration
amplitude under electrodynamic excitation.

When the transformer operates normally, the insulation pressing plate is placed on the
top coil. In order to increase the preload, the insulation pad is added between the pressing
plate and the upper iron yoke. When the pad falls off, a small gap is formed between the
pressing plate and the upper iron yoke. Considering that the insulation pressing plate has
a wooden structure and a low density, the quality of the pressing plate is not considered in
the mathematical analysis. The dynamic equivalent model of the wire cake under this fault
condition is shown in Figure 1b.

The insulating pad between the wire cakes is a nonlinear material, and its stiffness
varies with the change in the preload. In the literature [23–25], on the basis of a large number
of experiments, it is believed that the relationship between the stress on the insulating pad
and the elastic coefficient is expressed as follows:

km =
Sw

h
dσ

dε
, σ = aε + bε3 (8)

where σ and ε represent the stress and strain of the insulation pad, respectively. a = 1.05× 103 kg/cm2,
b = 1.75 × 104 kg/cm2. Sw is the contact area between the insulating pad and the wire cake,
and h is the height of the insulating pad.

Due to the end pad falling off of the transformer, the contact area Sw between the
pad and the wire cake is zero, which results in a reduction in the pad elastic coefficient
km. The natural vibration frequency in Equation (4) decreases. When the grid frequency
is constant, the variable s in Equation (5) increases. According to the response curve in
Figure 2, it can be judged that β(s) increases continuously; the vibration of the top coil in
Equation (7) shows an over-damped vibration mode, and the amplitude increases. The
winding pressure plate is made of a nonlinear material and has an inelastic collision with
the iron yoke. So, the vibration amplitude of the winding will be reduced, the energy will
be accumulated again, and the cycle will be repeated.
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In order to describe the mathematical model intuitively, this paper calculates the
natural frequency range and the amplitude amplification factor of the winding vibration
by using the parameters of the two-dimensional transformer model in Reference [24].
Assuming that the gap between the on-site pressure plate and the iron yoke is 0.01 m, the
amplitude variation rule of the top winding with time is shown in Figure 3. According
to the amplitude change, the winding state will alternate in two cases: (1) no collision
with the iron yoke and (2) collision with the iron yoke. When there is no collision with
the iron yoke, the falling of the end pad causes the wire cake to be over-damped, and
the vibration amplitude increases steadily in a short time. When colliding with the iron
yoke, the winding will generate a broadband mechanical wave, which forms a broadband
acoustic signal. According to the above dynamic change, it can provide a theoretical basis
for the acoustic features described below.
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3. The Time-Series Spectral Entropy Stability Algorithm

According to the analysis of the vibration characteristics, when the pad at the end of
the winding falls off, the vibration will appear in a quasi-steady state, with the amplitude
increasing steadily and the collision alternating. Therefore, this paper constructs an algo-
rithm to calculate the stability of the acoustic signal using time-series spectrum entropy,
which can describe the dynamic characteristics of the vibration spectrum quantitatively,
and then the defect diagnosis can be realized.

3.1. Calculation Process

First of all, spectrum transformation and feature extraction are carried out for the
acoustic signal collected at the site of the end pad falling off fault, and then the time-domain
signal is converted into the acoustic time–frequency spectrum.
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Secondly, a Mel filter is constructed to convert the acoustic time–frequency spec-
trum into the Mel time–frequency spectrum to realize the compression perception of the
acoustic signal.

Then, by extracting each frame vector of the Mel time–frequency spectrum matrix,
obtaining the spectrum difference for the adjacent frame vector and calculating the time-
series spectral entropy of the spectrum difference vector, a new time-series spectrum
entropy transverse vector is arranged by time.

Finally, the root-mean-square value of the time-series spectrum entropy is calculated to
obtain the stability of the entire acoustic time–frequency spectrum. The calculation method
is shown in Figure 4. The darker color in the time–frequency spectrum represents stronger
vibration energy in the corresponding time-frequency region.
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3.2. Acoustic Signal Processing

The transformer acoustic signal under the condition of pad falling is intercepted for
four seconds. Taking into account the stable characteristics of the acoustic signal in a
short time interval, the signal is divided into frames, and windows are added; then, the
short-time Fourier transform (STFT) of each frame signal is calculated [25]. The sampling
frequency of the signal fs is 48,000 Hz; the frame length and the frame shift are set to be 0.1
times and 0.02 times of the sampling frequency, respectively; and the spectral resolution
f0 is 10 Hz. In order to reduce signal spectrum leakage and signal distortion effectively,
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the Blackman–Harris window function is used to process the frame length signal. The
Blackman–Harris window formula is

WN(n) =


a0 − a1cos( 2πn

N−1 ) + a2cos( 4πn
N−1 )

−a3cos( 6πn
N−1 ), 0 ≤ n ≤ N − 1
0, otherwise

(9)

where a0 is 0.35875, a1 is 0.48829, a2 is 0.1428, and a3 is 0.01168, which are the intrinsic
parameters of the window, and N is the signal length.

The time-domain signal is converted into an acoustic time–frequency spectrum sig-
nal, and the acoustic time–frequency spectrum image is stacked according to the time
dimension. The image contains three kinds of signal information: time, frequency and
signal strength. From this, it can be seen that the acoustic time–frequency spectrum image
is a special data representation that combines the time-domain, frequency-domain and
image characteristics.

Taking the real fault of the end pad falling off a 35 kV transformer as an example,
the situation of a transformer without a cover is shown in Figure 5, with the red circle
indicating the appearance after falling of the end pad. After preprocessing the time-domain
signal and short-time Fourier transform, the acoustic time–frequency spectrum of the fault
case signal is shown in Figure 6a. Additionally, fast Fourier transform is performed on the
time-domain signal to obtain 50 Hz and its frequency doubling, the spectrum distribution
of which is shown in Figure 6b.
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Figure 6 shows that the spectrum distribution range under the condition of pad falling
is wide, and more than 94% of energy is concentrated in the range of 0 Hz~2000 Hz, with
the main frequency component being 1300 Hz. Based on the above frequency distribution
range, the calculation range of the acoustic signals can be set to 0~2000 Hz. In addition, the
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acoustic features show the distribution characteristics of steady state and collision transient
alternating, which is consistent with the conclusion of the theoretical analysis in Section 2.2.

3.3. Acoustic Compression Perception

Considering that the human ear’s perception of the scale within the audible range
is nonlinear, in order to facilitate the on-site inspection personnel’s manual auscultation,
the signal spectrum is compressed to facilitate acoustic online monitoring [26]. In this
paper, a Mel filter group is introduced to reduce the dimension of the acoustic time–
frequency spectrum signal and to reduce the weight of the interference frequency band. The
corresponding relationship between the actual frequency and Mel’s perceived frequency is
described as follows [27]:

Mel( fmel) = 2595lg(1 + f /700) (10)

Mel−1( f ) = 700×
(

10(1+k/2595) − 1
)

(11)

where f is the frequency of normal scale, which is in the range of 0~2000. fmel is Mel’s
perceived frequency. Their units are both Hz.

Traditional Mel filter banks often use the triangle filtering method. To move closer
to the frequency characteristics of the transformer vibration signals, this paper selects the
Blackman–Harris window to design filter banks. A total of 24 band-pass filters are set in
the spectrum range of 2000 Hz. Each Mel filter has the Blackman–Harris window filtering
characteristics, and their central frequency is f (m). In order to ensure that each band-pass
filter is of equal width in the Mel spectrum range, the transfer function of each band-pass
filter in combination Equation (9) is set as follows:

Hm(k) =


0

Wp(k− f (m− 1))
Wq(k + f (m + 1)
−2 f (m))

0

, fmel < f (m− 1)
, f (m− 1) ≤ fmel ≤ f (m)

, f (m) < fmel ≤ f (m + 1)
, fmel > f (m + 1)

(12)

Among them, p is 2 × {f (m) − f (m − 1)}; q is 2 × {f (m + 1) − f (m)}; and m represents
each filter, which is in the range of 0~24. f (m) represents the center frequency of the filter
bank. Its expression is

f (m) =
1
f0

Mel−1(Mel( fmin) + m
Mel( fmax)−Mel( fmin)

M + 1
) (13)

where fmax and fmin represent the maximum and minimum values of the filter range,
respectively. In this paper, fmax is 2000 Hz, and fmin is 0 Hz.

The transfer function in Equation (12) is normalized to obtain the relative amplitude
of Hm, which is shown in Figure 7.

The transfer function matrix size of the Mel filter bank designed in Figure 7 within the
frequency range of 2000 Hz is [24 × 2001], and the Mel filter transfer function matrix and
the acoustic signal time–frequency spectrum matrix are multiplied. We can finally obtain
the time–frequency spectrum matrix under the Mel scale. Figure 8 describes the specific
process of converting the acoustic time–frequency spectrum matrix when the pad falls to
the Mel time–frequency spectrum matrix.
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The acoustic time–frequency spectrum matrix is converted into the Mel time–frequency
spectrum matrix, which eliminates the influence of the noise signal while retaining the
original signal characteristics. The matrix size is changed from the original [2001 × 196]
and compressed into [24 × 196], which is reduced by an order of magnitude. This can
reduce the computational complexity of subsequent stability calculations and allow for
data samples to be processed more efficiently.

3.4. Stability Calculation

This section introduces the calculation expression of the time-series spectral entropy stability.

3.4.1. The Spectrum Difference in Mel Time–Frequency Spectrum Adjacent Frame Vector

The spectrum difference in adjacent frame vectors under the Mel scale is calculated,
and it is arranged into a new spectrum difference vector over time:

Xi = xi+1 − xi, (1 ≤ i ≤ T − 1) (14)

where T represents the number of time–frequency spectrum frame vectors, which is 196 in
this example.

3.4.2. Time-Series Spectral Entropy Algorithm

The Mel time–frequency spectrum entropy feature vector is calculated [28]:

Hi =
1
M

sgn(Xi)
M−1

∑
i=1

log2|Xi| (15)

where M represents the number of Mel time–frequency spectral lines. In this example, M is
taken as 24. The sgn function formula is as follows:

sgn(∆x) =


1 ∆x>0

0 ∆x = 0
−1 ∆x<0

(16)

where Xi is the ith frame vector of the signal.
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Then, the feature vector is normalized:

Zi =
1

T − 1

T−1

∑
i=1

Hi (17)

3.4.3. Calculate the Stability

The mean square root of spectrum entropy sequence Z is calculated to obtain the
stability V:

V = rms(Z) =

√
∑T−1

i=1 Zi
2

T − 1
(18)

The algorithm characterizes the change in the spectral energy concentration of the
acoustic signal. When the signal is distributed instantaneously, the larger the difference
between the eigenvectors formed by the spectral entropy of adjacent spectral sequences,
the weaker its autocorrelation and the smaller the calculated value of V. On the contrary,
the closer the V value is to 1, the stronger the signal correlation and the higher the stability.
Therefore, the signal stability can be judged according to the value of V, and the fault of
pad falling can be diagnosed.

4. The End Pad Falling and the Acoustic Sample of the Control Group

In order to obtain sound samples of the end pad falling to verify the validity of the
algorithm, this paper conducts an acoustic acquisition experiment of an oil-immersed
transformer with the end pad falling off. In addition, the winding is usually in the loose
state before the end pad of the transformer falls off, so this paper also sets the corresponding
loose state of the winding test samples in addition to the normal state test samples.

The technical parameters of the transformer used for the simulation test are shown
in Table 1. The transformer is pressurized to the rated value via the voltage regulator
connected to the console so that the transformer can operate without load. This experiment
only simulates the looseness fault of phase C of the winding.

Table 1. Technical parameters of oil-immersed transformer.

Parameter Value

Model SY-400/10
Rated capacity 400 KVA
Rated voltage 10,000/400 V
Rated current 23.1/577 A

Connection group Yy0
Rated frequency 50 Hz three-phase
Cooling mode ONAN

To obtain sound samples of the transformer when there is no winding looseness or
pad falling off as a control, 30~110% of the rated voltage is applied to the transformer in
the experiment, and the applied voltage interval of each group of experiments is 5%. Thus,
17 sets of transformer sample data were obtained.

4.1. Simulation Experiment of Winding Looseness Fault

The axial direction of the transformer wire cake is fixed by pressing the upper and
lower clamps. The upper and lower clamps are connected and fixed by screws, which limit
the axial vibration intensity of the transformer winding from to being too large, and the
tightening degree of the pressing nails directly affects the clamping force of the winding.
Therefore, this experiment mainly controls the winding clamping force by adjusting the
pressing nails. There are eight compression pins on both sides of the iron yoke in the test
transformer, which are evenly arranged on both sides of the iron core. Only the looseness
of the single-phase winding of the transformer is considered when setting the fault.
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In order to fully simulate various loosening conditions and avoid the homogenization
of the test samples, simulation experiments with different degrees of loosening are carried
out on different pressure nails. Phase C is selected as the loosening object for the test. The
schematic diagram of loose arrangement of transformer windings and the corresponding
locations and numbers of the pressing nails are shown in Figure 9. The winding loosening
test scheme is shown in Table 2, and the transformer is in the rated operation state. The
process of winding from normal compaction to complete loosening is divided into 13 stages.
The transformation process of the transformer vibration state and the vibration mode is
recorded and analyzed. After the test is completed, four compression pins are tightened to
make the winding return to the compaction state.
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Table 2. Looseness test scheme of winding.

Group 1# Press Nail
Tightness

2# Press Nail
Tightness

3# Press Nail
Tightness

4# Press Nail
Tightness

1 100% 100% 100% 100%
2 75% 100% 100% 100%
3 50% 100% 100% 100%
4 0% 100% 100% 100%
5 0% 75% 100% 100%
6 0% 50% 100% 100%
7 0% 0% 100% 100%
8 0% 0% 75% 100%
9 0% 0% 50% 100%
10 0% 0% 0% 100%
11 0% 0% 0% 75%
12 0% 0% 0% 50%
13 0% 0% 0% 0%

4.2. Simulation Experiment of Winding End Pad Falling Fault

In this simulation test, the winding end pad is taken out, and a gap of about 1 cm is
artificially created. The method of the winding looseness test is followed, and a simulation
of the winding looseness fault when the pad falls off is also conducted, which is close to
the state of a real transformer when the winding end pad falls off.

To avoid the homogenization of the test samples, the falling simulation experiment
is carried out on different positions and different numbers of pads. The corresponding
relationship between the number of end pads falling off and the loosening range is shown
in Figure 10. The site layout of pad falling is shown in Figure 11. The defect layout object is
still in phase C. The test method shown in Table 3 is the same as that in Section 3.2, and
the cumulative loosening test method is adopted to collect the acoustic data under each
loosening degree.
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Table 3. Test scheme for winding end pad falling and combined winding loosening.

Group
Looseness
Range of
Winding

1# Press Nail 2# Press Nail 3# Press Nail 4# Press Nail

1 0◦ 100% 100% 100% 100%
2 90◦ 100% 100% 100% 100%
3 90◦ 0% 100% 100% 100%
4 90◦ 0% 100% 0% 100%
5 135◦ 0% 100% 0% 100%
6 135◦ 0% 0% 0% 100%
7 180◦ 0% 0% 0% 100%
8 180◦ 0% 0% 0% 0%

5. Verification of Time-Series Spectral Entropy Stability Algorithm

In this section, stability V-value calculations are performed on acoustic signature
datasets of rated states under experimental conditions, two different fault categories and
one real case of the end pad falling fault. To demonstrate the effectiveness of the algorithm,
traditional distance measures are used for comparisons and verification. In addition, a set
of real samples from transformers in operation is used to provide a normal reference range
for time-series spectral entropy stability.

5.1. Dataset Stability Calculation

Stability calculations are performed using simulated acoustic signature datasets of
transformers with faults under three different conditions and one real case of the end pad
falling fault. In addition to time-series spectral entropy, Euclidean distance and cosine
distance are used for comparisons. Comparisons of the acoustic spectrograms and the Mel
spectrograms under different conditions are shown in Figure 12.
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Figure 12. Time–frequency spectrum distribution of three operating states. (a) Acoustic time–fre-
quency spectrum of rated compression (b) Mel time–frequency spectrum of rated compaction (c) 
Acoustic time–frequency spectrum when winding loosens (d) Mel time–frequency spectrum when 
winding loosens (e) Acoustic time–frequency spectrum when pad falls off (f) Mel time–frequency 
spectrum when pad falls off. 

5.2. A Comparison of Algorithms 
In order to compare the effectiveness of the three stability algorithms in the identifi-
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Figure 12. Time–frequency spectrum distribution of three operating states. (a) Acoustic time–
frequency spectrum of rated compression (b) Mel time–frequency spectrum of rated compaction (c)
Acoustic time–frequency spectrum when winding loosens (d) Mel time–frequency spectrum when
winding loosens (e) Acoustic time–frequency spectrum when pad falls off (f) Mel time–frequency
spectrum when pad falls off.

5.2. A Comparison of Algorithms

In order to compare the effectiveness of the three stability algorithms in the identifica-
tion of the pad falling fault, this paper compares the stability calculation results horizontally,
and the results are shown in Figure 13.
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(1) Euclidean distance stability: the stability distribution range of the rated com-
pression force dataset is 1–99%, and the quantile value is 2.15 × 10−2–4.48 × 10−2. In
comparison, the overall trend of the stability distribution of the winding looseness fault is
not obvious, and the 1–99% of quantile value is 2.13 × 10−2–5.45 × 10−2; the stability of
the end pad falling samples is 1–99%, and the quantile value is 3.61 × 10−2–6.05 × 10−2;
and the stability of the actual pad falling fault case is 5.25 × 10−2. Therefore, the numerical
distribution interval of the stability calculated by using this algorithm is relatively large,
and it is unable to distinguish the end pad falling fault.

(2) Cosine distance stability: the difference between the rated compression force
dataset and the winding looseness dataset under the algorithm is not significant. The
stability distribution ranges are 4.43–8.82 and 4.59–12.27 in the range of 1–99%, respectively.
The stability of the end pad falling samples is 10.18–16.22 in the range of 1–99%, and the
stability of the actual pad falling fault case is 16.7773. Similar to the Euclidean distance
stability, the cosine distance stability cannot distinguish the end pad falling fault.

(3) Time-series spectrum entropy stability: the algorithm calculates the stability from
the distribution uniformity of the spectrum signal energy. The stability value of the end
pad falling samples is 0.41–1.11, which is lower than the 1% quantile line of the other two
types of datasets. The stability calculation results of the rated compression force dataset
and the winding looseness dataset are 2.38–2.89 and 1.22–2.53, respectively. It can be seen
that this method is effective in distinguishing the end pad falling fault.

To sum up, compared with the Euclidean distance and the cosine distance, the time-
series spectrum entropy stability algorithm can ensure that the value of V of the end
pad falling fault is outside of the 1–99% quantile line of the two datasets, achieving the
identification of this fault.

5.3. Samples Data Distribution of 500 kV Transformer in Operation

The time-series spectrum entropy stability algorithm can effectively distinguish wind-
ing looseness and pad falling. However, the distribution range of the stability values of
large transformers in operation is different from that of the small transformers used for
fault simulation in this paper. Therefore, this section further adds a group of acoustic data
of 500 kV transformers in operation of the power grid under normal operating conditions
to delimit the normal range of stability for the site sample set. This dataset comprises
324 groups of acoustic data of 162 transformers in 24 substations of 500 kV in China in two
periods, and the stability statistics of the 324 groups of acoustic data are determined using
statistical methods.

As is shown in Figure 14, the time-series spectral entropy of this group of data presents
a log-normal distribution with a mean value of 2.293 and a variance of 9.457 × 10−2.
The sample distribution range is mainly between 1.5321 and 3.1130. So, 1.5321 can be
determined to be the warning threshold. The value of the real case of pad falling in this
paper is also less than the threshold value, which shows that the threshold value has a
certain application value.
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6. Conclusions

Starting with the transformer pad falling fault, this paper analyzes the vibration
process of the fault from the perspectives of mechanisms and acoustics. In view of the high
degree of confusion in the acoustic time–frequency spectrum signal of the fault, a stability
calculation formula is introduced, which provides a reference value for the determination
of the steady-state operation and the non-steady operation of transformers. The main
conclusions of this paper are as follows:

(1) According to the electromagnetic vibration analysis theoretical model, when the
distance between the winding and the yoke is 10 mm, the winding and the yoke collide
every 0.83 s, causing the acoustic signals of the winding to alternate between stable signals
and collision signals. This is consistent with the spectral pattern of the acoustic signal
sample from the real fault case, which verifies the rationality of the theoretical model
proposed in this paper.

(2) The acoustic signal in the matrix form is compressed approximately 83 times using
Mel filter banks for data compression perception while retaining the original signal charac-
teristics, which provides support for subsequent feature extraction and stability calculation.

(3) Using the time-scale spectral entropy algorithm for the stability calculation, it is
possible to distinguish the samples of pad falling faults in the simulated experimental
dataset with 100% accuracy. Furthermore, by conducting voiceprint testing on 162 500 kV
transformers, the warning threshold for time-series spectral entropy stability is determined
to be 1.5321, which can provide a reference for the diagnosis of pad falling faults in
real transformers.
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