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Abstract: NV centers are among the most promising platforms in the field of quantum sensing.
Magnetometry based on NV centers, especially, has achieved concrete development in areas of
biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide
inhomogeneous broadening and fieldamplitude drift is a crucial issue of continuous concern that
relies on the coherent control of NV centers with high average fidelity. Quantum optimal control
(QOC) methods provide access to this target; nevertheless, the high time consumption of current
methods due to the large number of needful sample points as well as the complexity of the parameter
space has hindered their usability. In this paper, we propose the Bayesian estimation phase-modulated
(B-PM) method to tackle this problem. In the case of the state transforming of an NV center ensemble,
the B-PM method reduced the time consumption by more than 90% compared with the conventional
standard Fourier basis (SFB) method while increasing the average fidelity from 0.894 to 0.905. In the
AC magnetometry scenario, the optimized control pulse obtained with the B-PM method achieved an
eight-fold extension of coherence time T2 compared with the rectangular π pulse. Similar application
can be made in other sensing situations. As a general algorithm, the B-PM method can be further
extended to the open- and closed-loop optimization of complex systems based on a variety of
quantum platforms.

Keywords: optimal control; NV center; quantum sensing; magnetometry

1. Introduction

The nitrogen-vacancy (NV) center in diamond shows bright prospects in the quantum
sensing of magnetic fields [1–3], electric fields [4], temperature [5] and strain [6]. In these
areas, research on NV center-based ultrasensitive magnetometry has achieved fast devel-
opment [7,8] and is on the road to practical and commercial applications in biomedicine
and diagnostics [9–12]. Inhomogeneous broadening due to ambient nuclear spins and
external bias fields is one of the main obstacles to further improving the sensitivity of
sensors. To alleviate the problem, dynamical decoupling (DD) is widely applied in sensing
strategies based on NV centers [13–15], and various optimal methods are used to increase
the performance of DD sequences [16–18], since inhomogeneous broadening also damages
the fidelity of the control pulses with finite pulse length that construct DD series. Adiabatic
strategies can significantly prolong decoherence time T2 and sensitivity compared with
conventional flat π pulses [17], while smoothly shaped pulse designs based on numerical
optimization [18] can adapt to a wider pulse length range where the adiabatic condition
is not satisfied. One major drawback of numerical optimal designs is their time efficiency.
On one hand, multiple sample points need to be measured to obtain an accurate value of
the objective function denoting the average fidelity over frequency and field amplitude
broadening, so the processing time for calling the objective function once is prolonged.
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On the other hand, the total objective function calling times increase along with the number
of parameters, while in most cases, a larger number of parameters (over 10) are needed to
guarantee fair fidelity. A rapid but well-performed optimization method is anticipated to
improve the usability of such control strategies.

In this work, we propose the Bayesian estimation phase-modulated (B-PM) method to
overcome the time consumption problem. Unlike the developed Bayesian methods [19,20],
the B-PM method grafts the Bayesian estimation model onto the direct search method,
thus circumventing the complex process to calculate the acquisition functions [21]. Further
taking advantage of the phase-modulated method, the B-PM method makes itself an effi-
cient hybrid optimization method for robust quantum control against noise. The objective
function of the optimization process under consideration is the average value of multiple
functions with different detuning and amplitude values of the control field. The values of
these multiple functions can specifically refer to the fidelity between the final and target
states, gate operators and so on. Using the Bayesian-based estimation model, we make an
accurate prediction of the average fidelity based on a small number of sample points, so the
computation time for calling the objective function once is reduced. In addition, adopting a
phase-modulated basisallows the control field to comprise multiple frequency components
with fewer parameters, which leads to a significant decrease in the necessary total number
of objective function calling times to find the local optimal results. We further verify that
the computation time of the estimation process is negligible compared with the sample
measuring process. Overall, the B-PM method decreases the total time consumed during
the entire optimization process. We firstly applied the B-PM method to the state flipping
of an NV center ensemble. Compared with the conventional standard Fourier basis(SFB)
method without estimation, the B-PM method increased the average fidelity from 0.894 to
0.905 with only 9.3% of total time consumption. When applied to the sensing strategy of
AC magnetic signals, the B-PM-shaped pulse prolonged decoherence time T2 by 8 times
compared with the conventional rectangular π pulse. The B-PM method could be extended
to DC sensing strategies [22], and open- and closed-loop optimization processes for open
systems [23,24] and many-body systems [25–27].

2. Methods
2.1. Optimal Control Model of NV Center Ensemble

The nitrogen-vacancy center (NV center) in diamond [28] has a triplet ground state
with electron spin S = 1 and zero-field splitting D = 2π × 2.88 GHz. The energy gap
between the ground and excited states is 1.945 ev (637 nm), and due to uneven radiation
probability from excited states |ms = ±1〉 and |ms = 0〉 to the radiationless metastable
intermediate state, the NV center can be optically initialized and read out. The structure of
the NV center and energy level scheme are shown in Figure 1a,b. The Hamiltonian of the
triplet ground state of the NV center can be expressed as

H = D
(

S2
Z −

2
3

)
+ γB · S + Hele + Hhf, (1)

where D is the zero-field splitting, B is the magnetic vector, γNV = 2π × 2.8 MHz/G is
the gyromagnetic ratio of the NV center, Hele is the electric interaction term with coupling
coefficient ∼ Hz/(V/m) and Hhf is the hyperfine coupling term expressing the interactions
between the NV center and ambient nuclear spins. Under the magnetic field along the
z-direction, B = Bz, and by neglecting the electric coupling term, the Hamiltonian of the
two-level subspace formed by ms = 0 ground state |ψ0〉 and ms = −1 (or ms = 1) ground
state |ψ1〉 can be written as

H =
D + γBz

2
σz. (2)
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Figure 1. (a) Schematic of NV center in diamond lattice. (b) Schematic diagram of energy level
of NV center. (c) Fidelity of state flip of NV center using rectangular control field g(t) = 10 MHz.
(d) Probability density of frequency detuning δ. (e) Probability density of amplitude drift factor δ.
(f) Sampling range of numerical simulation when computing the value of average fidelity F .

One simple but requisite control target is to flip all spins in the NV ensemble from one
state to another with high average fidelity. Let us consider an ensemble of the two-level
system described by Equation (2), which is controlled by a time-dependent field g(t);
the Hamiltonian of each spin in the ensemble can be represented as

H(t) =
ω0 + δ

2
σz + κg(t)σx, (3)

where ω0 = D+γBz is the unperturbed energy gap between |ψ0〉 and |ψ1〉, δ is the normally
distributed detuning term as a result of inhomogeneous local ambient among the ensemble
and κ is the amplitude drift factor varying with different control trials. The probability
density of δ and κ can be noted as

p(δ) =
1√

2πσδ

e
− δ2

2σ2
δ (4)

and

p(κ) =
1√

2πσκ

e
− κ2

2σ2
κ (5)

respectively, where we take the full width at half maximum (FWHM) of p(δ) as 2π ×
26.5 MHz, corresponding to a dephasing time of T∗2 ≈ 20 ns [17], and the FWHM of p(κ) as
0.5. Figure 1c–e depict fidelity

f (δ, κ) =
∣∣〈ψg | ψ(δ, κ, T)

〉∣∣2 (6)

as a function of detuning δ and amplitude drift κ of rectangular control field g(t) = π/T =
2π × 10 MHz, where T is the evolution time, ψ(δ, κ, T) is the final state, and the initial
state and the target state are taken as ψ(δ, κ, 0) = ψ0 and ψg = ψ1, respectively. Based on
Figure 1c, we took the sample ranges as δ ∈ 2π × [−10, 10] MHz and κ ∈ [0.5, 1.5], as is
shown in Figure 1f, and the optimization target was to improve the average fidelity in
these ranges.

Taking into account inhomogeneous detuning as well as amplitude drift, the explicit
form of the average fidelity can be represented as

F =
∫∫

dδdκp(δ)p(κ) f (δ, κ). (7)
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For fixed δ, κ and T, ψ(δ, κ, T) is the function of control field g(t); therefore, it is the function
of parameters λ that construct g(t). For example, g(t) can be constructed based on the
standard Fourier basis as

gSFB(t) =
ND

∑
j=1

aj cos
(
ωjt + φj

)
cos(ω0t) (8)

where λ = {a, ω, φ}, or on the phase-modulated Fourier basis [29] as

gPM(t) =
ND

∑
j=1

aj cos

[
ω0t +

bj

νj
sin
(
νjt
)]

(9)

where λ = {a, b, ν}. The optimization target, therefore, is to find parameters λ that give the
highest value of F , while the maximum amplitude of g(t) is limited to gmax. We concisely
describe this optimization model as

min 1−F
s.t. g(λ)− gmax ≤ 0.

(10)

Plenty of optimization methods can be used to solve this problem, with λ being the
optimization parameters and F being the objective function. Ideally, the value of F should
be calculated by averaging the fidelities of a large number of samples taken from the whole
ensemble with several repeated control processes. In practice, this time-consuming process
is usually replaced by taking the weighted average of several equidistant samples in a
certain range, which can be represented as

Fobj = N
M

∑
k=1

N

∑
j=1

p(δk)p
(
κj
)

f
(
δk, κj

)
(11)

where the distribution of δ and κ is assumed to be known; M and N are the numbers

of different values of δ and κ, respectively; and N =
[
∑M

k=1 ∑N
j=1 p(δk)p

(
κj
)]−1

is the
normalization constant. Even so, this process still consumes a substantial amount of
time. Below, we will show how the Bayesian-based estimation method can be used in the
optimization process and combined with the PM method to efficiently reduce the total
execution time.

2.2. The Estimation Model

One essential task of the optimal process is to build a computationally cheap estimation
model, also known as metamodel [30–32], of the expensive function. Bayesian statics and
analysis methods provide powerful tools to complete this task. From the viewpoint of
Bayesian statistics, any event can be endowed with a probabilistic property, whether or
not it is a stochastic event. So, undetermined parameter θ in a static model can be taken as
a realization of stochastic process θ subject to a prior distribution p(θ), which represents
the available knowledge or simple beliefs about θ before any observation of the samples.
This prior knowledge needs to be updated with the information in observed sample data
s to give the final description of θ, represented by posterior distribution p(θ|s). This
relationship is explicitly formulated by the Bayesian theorem as follows:

p(θ|s) = L(θ|s)p(θ)
p(s)

, (12)

where likelihood function L(θ|s) = p(s|θ) is defined as the conditional probability distri-
bution of the given parameters of the data [33].
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We limit the considered target true functions to be deterministic, which means that
all trials with the same input parameters give identical function values. Following the
principle of Bayesian statistics, the deterministic response function y(x) of a k-dimension
variable x = {x1, x2, . . . , xk}′ can be treated as a realization of stochastic process Y(x) [34].

Y(x) = ∑
h

βh fh(x) + ε(x), (13)

where fh(x) is a function of x; βh are unknown coefficients to be estimated; and ε(x) is the
error term, which is a random process with zero mean and covariance

Cov
[
xi, xj

]
= σ2 Corr

[
xi, xj

]
, (14)

where xi and xj are two sets of variables, σ is the process variance and Corr
[
xi, xj

]
represents

the correlation. Equation (13) can be regarded as the Bayesian prior of the true response
function, in which the right-hand side resembles the form of the linear regression model,
except that the errors of different x are correlated rather than independent from each other.
We consider the common and simple case where the stochastic process is stationary, and the
correlation takes the specific form of [34]

Corr
[
xi, xj

]
= exp

[
−d
(

xi, xj
)]

, (15)

where

d
(

xi, xj
)
=

k

∑
h=1

αh

∣∣∣xi,h − xj,h

∣∣∣ph
(αh ≥ 0, ph ∈ [1, 2]), (16)

where αh and ph are parameters that need to be determined. This specific form corresponds
to a product of the Ornstein–Uhlenbeck process at ph = 1, which is widely used in
physical science models. Furthermore, with the correlation form of Equations (15) and
(16), regression parts ∑h βh fh(x) in the stochastic process model can be simply replaced
with a constant, µ, without undermining the predictive performance [35]. Hereafter, we
use the following simplified stochastic process model:

Y(x) = µ + ε(x). (17)

A typical method for analyzing such stationary Gaussian process model is the Kriging
method [36], which is flexible and robust for global estimation [37] and is widely applied
in fields of spatial statistics [36,38], the design of computer experiments [34] and Bayesian
optimization [35]. Besides the ordinary Kriging method, various analysis methods based
on the Kriging method as well as the Bayesian approach are also well studied for Gaussian
processes with non-stationary correlation and other kinds of stochastic processes [37,39–42].
Here, we adopt the best linear unbiased predictor (BLUP) of Equation (17) obtained with
the Kriging method to form the estimation model. Supposing that the response function
has been evaluated at n samples s = {s1; s2; . . . ; . . . sn} and that the corresponding function
values are y(s) = {y(s1), y(s2), . . . y(sn)}′, the BLUP of y(x) can be represented as [35]

ŷ(x) = µ̂ + r′(x)R−1(y(s)− 1µ̂), (18)

where R is an n× n correlation matrix with entries Ri,j = Corr
[
si, sj

]
; r(x) = [R(s1, x), . . . ,

R(sn, x)]′ is the n× 1 vector of correlation between the errors of the sample and untried
input x, with R(s1, x) = Corr[s1, x]; µ̂ = (1′R−1

1)−1
1
′R−1y(s) is the generalized least-

squares estimation of µ, and 1 is the n× 1 vector with all entries equal to 1.
By properly selecting the parameters in Equation (16), we can expect a predict function

that describes true function y(x) well by only using the limited number of sample points
s. One useful method to determine these parameters is maximum likelihood estimation
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(MLE). According to the Gaussian process we adopt here, the likelihood function of the
samples is [35]

1

(2π)n/2(σ2)
n/2|R| 12

exp
[
− (y(s)− 1µ)′R−1(y(s)− 1µ)

2σ2

]
, (19)

where |R| represents the determinant of R. The analytical solutions of µ and σ maximizing
Equation (19) are

µ̂ =
(
1
′R−1

1

)−1
1
′R−1y(s), (20)

which is exactly the generalized least-squares estimation of µ, and

σ̂2 =
(y(s)− 1µ̂)′R−1(y(s)− 1µ̂)

n
. (21)

Therefore, we only need to find the values of αh and ph that give the maximum value of
Equation (19), which can be completed using any optimization method at hand.

Corresponding to the specific model of the two-level NV electron spin system, once
control field g(t) and control time T are fixed, target function f (δ, κ) is the deterministic
response function of two-dimension variable x = {δ, κ}′ and can be approximately esti-
mated using predict function f̂ (x), which takes the same form of ŷ(x) in Equation (18).
Specifically, we write the Hamiltonian in the interaction picture with respect to ω0

2 σz as

Hδ,κ(t) =
δ

2
σz + κHc(t), (22)

where Hc(t) is the time-depended Hamiltonian. By neglecting counter-rotating terms in
rotating-wave approximation, Hc(t) can be expressed as

Hc(t) = Ωx(t)σx + Ωy(t)σy, (23)

where Ωx(t) and Ωy(t) take the forms of

ΩSFB
x (t) =

ND

∑
j=1

aj

2
cos
(
ωjt + φj

)
cos
(

ϕj
)
, (24)

ΩSFB
y (t) =

ND

∑
j=1

aj

2
cos
(
ωjt + φj

)
sin
(

ϕj
)

(25)

with the SFB method and the forms of

ΩPM
x (t) =

ND

∑
j=1

aj

2
cos

[
bj

vj
sin
(
vjt
)]

, (26)

ΩPM
y (t) =

ND

∑
j=1

aj

2
sin

[
bj

vj
sin
(
vjt
)]

(27)

with the PM method. The target response function can be expressed as

f (δ, κ) =
∣∣〈ψg | Uδ,κψ(0)

〉∣∣2, (28)

where

Uδ,κ = T exp
[
−i
∫ T

0
H(δ, κ, t)dt

]
(29)

is the evolution operator and T is the time-order operator.
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So far, we established the Bayesian-based estimation model of the final-state fidelity
under certain frequency detuning δ and amplitude bias ratio κ. With this usable tool,
we could further construct a high-efficiency optimization method to explore the optimal
control field of an ensemble system.

2.3. The Hybrid Optimization Method

Now, we introduce the hybrid B-PM optimization method for solving the problem
described by Equation (10). As represented in Figure 2, the whole optimization process
can be divided into three parts: initial construction of the available predict function; then,
search for optimal parameter λ using the predict function as the objective function; lastly,
calculation of the true value of the objective function in Equation (11) with M× N = 2500
sample points. The first segment is the essential part of this method, and the following
strategies are adopted to ensure convergence and improve the optimization results.

select sample 
points s

select model 
parameter α, p 

gini(t) build predictor 
�(�) 

cross validation
c>0.6? 

valid predictor 
ℱ���(�) = �(�) 

�ini �opt true function
ℱobj(�)

with 2500 
sample points 

ℱopt 

Nelder-Mead 
method

1. Build predictor function

2. Search for optimal λ 3. Calculate true value of objective function

No

Yes

(random)

(random)

Figure 2. Process schematic of Bayesian-based optimization method.

1. Sample position: In the sample selection step, instead of completely randomly picking
the sample points, we add random bias to evenly distributed coordinate values to
obtain the randomly yet uniformly distributed sample positions. This choice improves
the estimation performance, especially in cases with small sample numbers.

2. Model parameter: Model parameters α and p are selected based on a random initial
field gini(t) and are fixed during one optimization process. This tactic ensures the
monodromy of the objective function and the convergence of the subsequent search
process, reduces the computation time spent building the predict function and does
not damage the estimation accuracy.

3. Cross validation: After constructing a predict function, cross validation is applied to
eliminate the low-performing ones. Each function value of the n sample points y(s)
is successively regarded as an unknown quantity and is predicted based on model
parameters α and p, and other n− 1 samples, given a corresponding predict vector
ypred(s). Then, linear fitting is performed on those points located at

(
y(s), ypred(s)

)
,

and we use slope pfit as a criterion. In principle, pfit far away from 1 indicates bad
performance of the predictor, and by examining the fitted slope of bad predict models
occurred in the optimization process, we found that bad models correspond to small
values of pfit. Therefore, we set pfit > 0.6 as the threshold. If this condition is fulfilled,
the predict function can be used as the objective function in the following direct search
process. Otherwise, a new model needs to be built from the very beginning.

After the valid predictor was constructed, it was used as the objective function of the
following direct search process, where we used the phase-modulated method to further
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improve the efficiency. Initial parameter λini was taken in the range of aini
j ∈ [0, Ωmax],

and bini
j , νini

j ∈ [0, 2π/T], where Ωmax is the maximum field amplitude and T is the evo-
lution time. The SFB method was also investigated for comparison, with initial param-
eters aini

j ∈ [0, Ωmax], ωini
j ∈ [0, 2π/T] and φini

j , ϕini
j ∈ [0, 2π]. In both methods, we took

Ωmax = 2π × 10 MHz and T = 100 ns, and the total field amplitude was constrained as√
Ω2

x(t) + Ω2
y(t) ≤ Ωmax; frequency parameters bj, νj and ωj were constrained in range

[0, 5× 2π/T]; and phase parameters φj and ϕj were constrained in range [0, 2π]. An extra
constraint on bj/νj can be added to avoid an infinite value when νj goes close to zero, e.g.,
bj/νj ≥ 1010, but in our simulation, the constraint on bj/νj was not used, and no infinite
value of bj/νj appeared during the optimization process.

In the last step, given optimization parameter λopt, the average fidelity in Equation (11)
was calculated based on 2500 uniformly spaced sample points in regions δ ∈ 2π× [−10, 10]
MHz and κ ∈ [0.5, 1.5], with M = N = 50.

2.4. AC Magnetometry

Magnetometry is one of the most promising fields in which the NV center can play an
important part, with its outstanding characteristics such as fine biological compatibility,
normal pressure and temperature operating conditions, and relatively long spin lifetimes.
Pulsed and continuous dynamical decoupling (DD) has been applied in the coherent control
and magnetic sensing of NV centers. In practice, the large inhomogeneous broadening of
an NV center ensemble decreases the controllability of the DD sequence and ultimately
hinders the sensitivity in magnetometry. Adiabatic strategies have been applied to tackle
such problem and have achieved good results. When the frequency of the signal is not
low enough to fulfill the adiabatic condition, finding the optimal field with limited pulse
length to achieve certain gate operation becomes a key approach to improve the sensitivity.
Here, we used the B-PM method to optimize the control field and obtain robust Pauli-X and
Pauli-Y gates under inhomogeneous broadening, which composes the XY-8 DD sequence
in the AC magnetometry process.

During the pulse period, control Hamiltonian Hc in Equation (22) takes the form of

HX
PM(t) = Ω1(t)σx + Ω2(t)σy (30)

for the Pauli-X gate and
HY

PM(t) = Ω1(t)σy −Ω2(t)σx (31)

for the Pauli-Y gate, where

Ω1(t) =
ND

∑
j=1

aj

2
cos

[
bj

vj
sin
(
vjt
)]

, Ω2(t) =
ND

∑
j=1

aj

2
sin

[
bj

vj
sin
(
vjt
)]

. (32)

For gate optimization, the objective function takes the form of

Fobj = N
M

∑
k=1

N

∑
j=1

p(δk)p
(
κj
)

fg
(
δk, κj

)
, (33)

where
fg(δ, κ) =

1
2
+

1
3 ∑

ε=x,y,z
Tr
(

UTar
σε

2
U†

TarUδ,κ
σε

2
U†

δ,κ

)
, (34)

is the gate fidelity of fixed δ and κ; UTar is the target quantum gate; Uδ,κ is the actual operator,
which takes the same form as in Equation (29); and N , p(δk) and p(κk) take the same forms
and values as in Equation (11). We applied the B-PM method to search for the robust control

field with the amplitude constraint of
√

Ω2
1(t) + Ω2

2(t) 6 Ωmax and obtained an optimized
shaped pulse, which constructs the XY-8 DD sequence in the AC magnetometry strategy.
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The AC magnetic signal to be measured oscillates at frequency ωs, and the control
pulses are applied on time nodes where the AC signal changes its direction. Due to the
power limitation of the microwave field, each pulse possesses a finite pulse length Tpulse,

whose value follows the relationship ωs = π/
(

Tpulse + τpulse

)
, where τpulse is the time

separation between two adjacent pulses. The amplitude of AC magnetic signal gac can
be read out from the Ramsey oscillation of the NV center sensor. At the beginning of the
measurement, the NV centers in the ensemble are initialized into state |0〉 and flipped
with a π/2 pulse, and begin to rotate around the σz-axis. After a time period t, one
3π/2 pulse is applied to the sensors, and their population on |0〉 is measured. Under
the ideal condition with instantaneous gate pulses, the population can be expressed as P0 =

(1 + cos(2χ(t))ξ(t))/2, with phase term χ(t) ≡
∫ t

0 g|cos(ωst′)|dt′ and exponential decay
term ξ(t) being induced by inhomogeneous broadening and dynamic noise. At coherent
time t = T2, the decay term goes down to 1/e. In practice, the finite pulse length leads to a
deviation in the real phase term from χ(t).

Specifically, the total Hamiltonian in the rotating-wave approximation is

Hδ,κ(t) =
δ + δd(t)

2
σz + gac cos(ωst)σz + κHc, (35)

where a time-dependent dynamic noise term δ(t) is considered, obtained with the Ornstein–
Uhlenbeck process

δd(t + ∆t) = δd(t)e−∆t/τ +
[ cτ

2

(
1− e−2∆t/τ

)]1/2
n, (36)

where τ and c are the correlation time and the diffusion constant of noise, respectively,
valued as τ = 20 µs and

√
cτ/2 = 2π × 50 KHz [17]; and n ∼ N (0, 1). Controlled

Hamiltonian Hc only takes a non-zero value during pulse duration Tpulse. We took the

frequency of the signal to be ωs = π/
(

Tpulse + τpulse

)
= 2.5π MHz, where τpulse is

the time separation between two adjacent pulses. We took the maximum limit of the
field amplitude as Ωmax = 2π × 10 MHz; so, for the rectangular pulse, Tpulse = 50 ns,
during which Hc = Ωmaxσx for the Pauli-X gate and Hc = Ωmaxσy for the Pauli-Y gate,
and the time separation was τpulse = 350 ns. For the optimization pulses, we set Tpulse =
100 ns and τpulse = 300 ns.

3. Results
3.1. Feasibility of the Estimation Model

We first demonstrate the feasibility of the estimation model based on its estimation
accuracy and time efficiency. Figure 3 shows its performance in predicting the fidelity of
the final state under certain frequency detuning δ and amplitude drift factor κ. For the fixed
control field shown in Figure 3a, the value of f (δ, κ) varied with δ and κ, which we show
with a 2D color distribution image in Figure 3b, where 50× 50 sample points were taken to
ensure its resolution. If the available sample number decreased to 9 and 16, respectively,
the resolution ratio clearly dropped, as shown in Figure 3c,d. However, based on the
same number of sample points, the images depicted with 2500 prediction values f̂ (x) in
Figure 3e,f show an obvious improvement in resolution ratio and accuracy compared with
their counterparts in Figure 3c,d, respectively. By applying the estimation method, more
information about how the target function distributed in the parameter space was extracted
based on the knowledge provided by the sample points.
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(a) (c) (e)

(b) (d) (f)

Figure 3. (a) Shape of control field in interaction picture, ΩPM
x (t) = ∑ND

j=1
aj
2 cos

[
bj
vj

sin
(

vjt
)]

and

ΩPM
y (t) = ∑ND

j=1
aj
2 sin

[
bj
vj

sin
(

vjt
)]

, with randomly taken parameters a = 0.0332, b = 0.0104 and
ν = 0.0378. (b,c) Values of true function with sample number Ns = 9. (d) Values of true function
with sample number Ns = 16. (e) Values of estimation function with sample number n = 9 and
estimation point number Ne = 2500. (f) Values of estimation function with sample number n = 16
and estimation point number Ne = 2500. Black circles in (e,f) represent locations of sample points.

Another concern is how much time this prediction process takes, or if it has advantage
in terms of computing time and cost. Here, we used the average computing time of
100 prediction processes to give a general description. The control field in each process took
the form of g(t) = a cos

[
ω0t + b

ν sin(νt)
]
, with evolution time T = 100 ns, and parameters

a, b and ν were randomly taken from the ranges of a ∈ [0, 10× 2π] MHz, b ∈ [0, 2π/T]
and ν ∈ [0, 2π/T]. Each prediction process used 16 sample points, and the mission was
to calculate the average fidelity (see Equation (11)) in ranges δ ∈ 2π × [−10, 10] MHz and
κ ∈ [0.5, 1.5]. We represent the estimated fidelity as

F̂obj = N
M

∑
k=1

N

∑
j=1

p(δk)p
(
κj
)

f̂
(
δk, κj

)
, (37)

where the formation and values of N , p(δk) and p(κk) are the same as in Equation (11),
and M× N represents the number of different prediction points used in the calculation.
Two strategies were separately applied: in Figure 4a, the estimation model was updated in
each trial, while in Figure 4c, a fixed estimation model served in all the 100 trials. To make
a comparison, we also show the results of calculating the true Fobj with M× N sample
points. It is natural that for the true function-based objective function Fobj, the computation
time was approximately proportional to M× N, the total number of function f (δ, κ) calling
times. In contrast, the processing time of the predict function-based objective function
remained stable as M× N increased, causing distinct time retrenching as M× N increased
to 2500. Notice here that for M×N ≤ 64, the computation time of F̂obj was longer than that
for Fobj, because the values of 16 sample points needed to calculated, and an extra amount
of time needed to be spent on selecting the parameters that constructed the estimation
model. Figure 4c shows that once the estimation model was built, the process for calculating
the value of the predict function became rapid, and its corresponding time consumption
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could be neglected, so the total computation time was decided by the number of true
sample points, i.e., M× N = 16.

(a) (b)

(c) (d)

Figure 4. (a) Average computation time of the objective function as a function of calculating sample
number M × N. In total, 100 processes under random control fields were calculated, and the
estimation model parameter was updated in each process when computing F̂obj. Insert: Zoomed-in
graph for M× N ≤ 100. (b) Average function value deviation as a function of calculating sample
number M × N. Based on the same data as (a). The deviation was calculated by subtracting the
values of f (δ, κ), with M× N = 2500, i.e., |Fobj −Fobj(M×N=2500)| for the true value-based process
and |F̂obj −Fobj(M×N=2500)| for the predictor-based process. (c) Average computation time of the
objective function as a function of calculating sample number M× N, where the estimation model
parameter was fixed in all the 100 random processes. Insert: Zoomed-in graph for M× N ≤ 100.
(d) Average function value deviation as a function of calculating sample number M× N. Based on

the same data as (c). The control fields took the form of g(t) = a cos
[
ω0t + b

ν sin(νt)
]
, with evolution

time T = 100 ns, and a, b and ν being randomly taken from ranges a ∈ [0, 10× 2π] MHz, b ∈ [0, 2π/T]
and ν ∈ [0, 2π/T]. The sample number used in the estimation model was n = 16.

Figure 4b,d show the estimation accuracy of F̂obj and Fobj with different calculated
sample numbers M × N. In Figure 4b, we used the same data as in Figure 4a, and
in Figure 4d, we used the same data as in Figure 4c. We used the value of Fobj with
M × N = 2500 as the benchmark to calibrate the accuracy, denoted as Fobj(M×N=2500).
The estimation accuracy was expressed as the value deviation from Fobj(M×N=2500), that
is, |F̂obj − Fobj(M×N=2500)| with the estimation objective function method and |Fobj −
Fobj(M=50)| with the true objective function method. In general, the deviation decreased as
M×N increased, and the estimation deviation values of Figure 4b,d were in the same scope,
showing that the fixed estimation model strategy did not damage the estimation accuracy.

3.2. Optimization Efficiency of the B-PM Method

The results in Figure 4 demonstrate that by using the fixed estimation model, the total
computation time is decided by the function f (δ, κ) calling times. Figure 5 shows a compari-
son among the B-PM method, the PM method, the Bayesian estimation SFB (B-SFB) method
and the SFB method in terms of the final value of Fobj and the calling times of function
f (δ, κ) during the search process. The results with ND = 1 are shown in Figure 5a,c, and
the results with ND = 2 are shown in Figure 5b,d. Each result is based on 100 trials with
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random initial parameters. On the whole, the B-PM method gave the result of Fobj = 0.905
with 1252 average calling times, while the SFB method gave the result of Fobj = 0.894 with
13,479 average calling times, so B-PM resulted in improved average fidelity using only 9.3%
of computation resources compared with SFB method.

(a)
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(δ

,κ
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op
tim

ia
za

tio
n 

va
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es
 o

f  
 F
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j 

ND = 1

(b)

(c) (d)

ND = 2

ND = 1 ND = 2

Figure 5. (a) Optimizedfidelity of B-PM, PM, B-SFB and SFB methods with parameter set number
ND = 1. (b) Optimized fidelity of B-PM, PM, B-SFB and SFB methods with parameter set number
ND = 2. (c,d) Average function f (δ, κ) calling times in Equation (6) that gave the results in (a,b),
respectively. All results are based on 100 trials with random initial parameters. The total evolution
time was taken as T = 100 ns, and the maximal field amplitude was bounded as max |g(t)| 6 Ωmax =

2π × 10 MHz.

Figure 6 shows the detailed optimization results of the B-PM method with ND = 1
and n = 9 and those of the SFB method with ND = 2 and M × N = 16. Figure 6a,d
show the final objective function values of 100 trials with random initial parameters λ,
in which we marked the value used in the optimization process with black points and their
corresponding, more accurate values calculated with M× N = 2500 true sample points
with red points. As is shown in Figure 6a, among 100 trials of the B-PM method, 42
results gave Fobj ≥ 0.9, and 86 results gave Fobj ≥ 0.87, while with the SFB method
(Figure 6b), only 3 results out of 100 trials gave Fobj ≥ 0.87. Figure 6b,e display the shape
of the optimized control field in the interaction picture, and Figure 6c,f display the fidelity
distribution in regions δ ∈ 2π × [−10, 10] MHz and κ ∈ [0.5, 1.5].

3.3. Sensitivity Improvement in AC Magnetometry

Figure 7a shows the sketch of the XY-8 sequence and AC signal to be sensed. Figure 7b
shows the population of the sensor in |0〉, measured at every terminal of a single XY-8
period so that the time interval between two data points was 3.2 µs. The 1000 measurements
made under different δ obeyed the Gaussian distribution with zero mean value and FWHM
= 2π × 26.5 MHz, and the T2 time was identified as the time when the maximal value of P0
dropped below (1 + 1/e)/2, the value of which is marked with a reference gray dashed
line in Figure 7b. Because of the inhomogeneous broadening of δ as well as dynamic noise
δ(t), the populations decayed over time, i.e., T2 ≈ 180 µs for the rectangular XY-8 pulse
and T2 ≈ 1500 µs for the PM XY-8 pulse, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 6. (a–c) Optimization results obtained with the B-PM method with ND = 1 and n = 9.
(d–f) Optimization results obtained with the SFB method with ND = 2 and M × N = 16. (a,d)
Optimization values of objective function of 100 trials with random initial parameters λ. (b,e)
Shape of the optimized control field in the interaction picture. (c,f) Fidelity distribution in regions
δ ∈ 2π × [−10, 10] MHz and κ ∈ [0.5, 1.5].

rectangle

PM

gc(t)

T (μs) T (μs)

(a) (b)

Figure 7. (a) Scheme of XY-8 pulse and AC signal to be sensed. The pulse length of the rectangular
pulse was Tpulse = 50 ns, and that of the PM pulse was Tpulse = 100 ns. The time separation for the
rectangular pulse was τ = 350 ns, and that for the PM pulse was τ = 300 ns. The frequency of the
AC signal was ωs = π/(Tpulse + τ) = 2.5π MHz. (b) Simulation results of the population of |0〉 of
the NV center ensemble using different XY-8 pulses. Red line with point marks: population under
optimized pulse obtained with the B-PM method with pulse length Tpulse = 100 ns. Green line with
cross marks: population under rectangular π pulse with pulse length Tpulse = 50 ns. Gray solid
curve: population under rectangular π pulse with pulse length Tpulse = 100 ns without considering
inhomogeneous broadening or the dynamic noise term. Gray dashed lines: from top to bottom,
P0 = (1 + 1/e)/2 reference, P0 = 1/2 reference and P0 = (1− 1/e)/2 reference, respectively. The T2

time was identified as the time when the maximal value of P0 dropped below (1 + 1/e)/2.

4. Discussion

Our work shows that the Bayesian-based estimation model can be effectively applied
to estimating the fidelity of the state transformation and the gate construction of NV centers
under wide inhomogeneous broadening noise. The estimation accuracy as well as the time
efficiency make it an ideal tool to constitute a new practical optimization method, which
we denote as Bayesian estimation phase-modulated (B-PM) method. The B-PM method
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can be combined with various of search algorithms, i.e., the direct search algorithm [43,44],
the genetic algorithm [45] and the gradient-based algorithm [46–49]. Here, we adopted the
widely used Nelder–Mead direct search method [50] and related optimization tools that are
easily available on the most common programming platforms. The Nelder–Mead method
seeks the best parameter point by successively constructing new points to replace the worst
point following a heuristic simplex approach. Consequently, the objective function needs
to be frequently called to rank the points during the searching process, which consumes
the majority of the total processing time. The hybrid Bayesian estimation phase-modulated
(B-PM) method reduces the processing time in two ways. On the one hand, by setting the
predict function as the objective function, the time needed to compute the objective function
value once is reduced, as shown in Figure 4. On the other hand, the phase-modulated
method can significantly decrease the total number of times in which objective functions
are called, by introducing a simpler landscape of the parameter space. This is based on
its ability to comprise more frequencies with the same number of parameters than the
conventional SFB and other amplitude-modulated methods. A detailed description about
this point can be found in reference [29], and recent works [51] using other kinds of phase-
modulated control methods also show their usability in protecting the coherence of samples
with large inhomogenities.

Taking these two factors together, the advantage of the B-PM method over the com-
monly used standard Fourier basis(SFB) method becomes obvious. To be specific, compared
with the best result obtained with the SFB method, the B-PM method increased the optimal
value of the objective function from 0.894 to 0.905, with a more than 90% decrease in the
average time consumption. Moreover, among 100 results obtained with random initial
parameters, only 1 result of the SFB (ND = 2 and M× N = 16) method gave Fobj ≥ 0.89,
while 42 results of the B-PM (ND = 1 and n = 9) method gave Fobj ≥ 0.9, indicating that
the B-PM method is much more robust and can reach a fine result when the amount of total
trials is limited. When making a comparison between the B-PM and PM methods, people
may query that the improvement induced by the Bayesian estimation model is not obvious.
This is true for the current system studied in this article, which needs to be tested on more
physical models and systems. However, we stress here that based on the results showed in
Figure 5, the B-PM method guarantees a higher value of objective function than the PM
method when the computation resources are on the same scale. This is crucial when the
computation resources are severely stressed and when the control performance is sensitive
to the precise value of the objective function.

We further displayed the utility of the B-PM method in NV center-based AC mag-
netometry, especially in high-frequency cases where adiabatic strategies are not viable.
The numerical simulation result shows that the optimized pulse achieved an eight-fold
extension of coherence time T2 compared with the conventional rectangular π pulses with
the same maximum amplitude. A similar optimization strategy can applied to other sensing
cases, e.g., the spin bath driving [22,52,53] process for DC magnetometry sensing. We used
the XY8 sequence in our simulation, but the optimization pulses can be applied to other DD
sequences, including XY16 [54], periodic dynamical decoupling (PDD) [55], concatenate dy-
namical decoupling (CDD) [56] and so on [57]. Comparing the performance of optimization
pulses in these sequences could provide a useful prescription for DD optimization, which
will be completed in our subsequent studies. We denote that the normal distribution in
Equation (3) results from a variety of disturbance factors, including the interaction between
NV center spins, nearby nuclear spins or spin bath, and external bias fields, as well as the
frequency bias of the control field. We took the FWHM of the broadening as 2π× 26.5 MHz
in our simulation, corresponding to a dephasing time of T∗2 ≈ 20 ns. To check the feasibility
of the B-PM method under other conditions with longer T∗2 , we simulated the fidelity of
the Pauli-X gate for T∗2 ≈ 20 ns, T∗2 ≈ 260 ns (corresponding FWHM = 2π × 2 MHz)
and T∗2 ≈ 2600 ns (corresponding FWHM = 2π × 0.2 MHz). The B-PM control field gave
the results of 0.8454, 0.9671 and 0.9804, respectively, while the rectangular pulse gave the
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results of 0.8047, 0.9583 and 0.9628. These results show that our method is feasible under
different T∗2 conditions.

One important potential application area of the B-PM method is the closed-loop
optimization [25–27] of complex systems, such as many-body [58] and many-electron
systems [59]. In these cases, numerical simulations fail to accurately describe the system
due to a lack of information of the complex system, and the experimental results are directly
used as the values of the objective function in the optimization process. The advantage
of the B-PM method in reducing the requisite total sample number during the process
could be more prominent in such conditions, since the time needed to experimentally
obtain one sample dataset is generally much longer than that of the simulation process.
Besides NV centers, the B-PM method is also expected be applied to the optimization
of other prevailing quantum platforms, such as trapped ions [60–62], cold atoms and
superconducting qubits [63,64].
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