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Abstract: High precision geometric measurement of free-form surfaces has become the key to high-
performance manufacturing in the manufacturing industry. By designing a reasonable sampling plan,
the economic measurement of free-form surfaces can be realized. This paper proposes an adaptive
hybrid sampling method for free-form surfaces based on geodesic distance. The free-form surfaces
are divided into segments, and the sum of the geodesic distance of each surface segment is taken as
the global fluctuation index of free-form surfaces. The number and location of the sampling points
for each free-form surface segment are reasonably distributed. Compared with the common methods,
this method can significantly reduce the reconstruction error under the same sampling points. This
method overcomes the shortcomings of the current commonly used method of taking curvature as
the local fluctuation index of free-form surfaces, and provides a new perspective for the adaptive
sampling of free-form surfaces.

Keywords: adaptive sampling; free-form surface; non-uniform rational B-spline (NURBS);
geodesic distance

1. Introduction

Free-form surface parts are widely used in aerospace, automotive and other high-end
equipment manufacturing fields [1]. It is one of the hotspots in the measurement field to
measure their precise geometric quantities and ensure that they meet the accuracy require-
ments. This kind of part has a complex structure and large size, which also puts forward
higher requirements for the dexterity and space of measuring equipment. The geometric
measurement of a free-form surface can adopt a contact or non-contact measurement [2].
In the process of the geometric measurement of a free-form surface, the geometric error
can be evaluated from two aspects: measurement accuracy and measurement efficiency.
The measurement accuracy can be quantified by measuring the deviation between the
actual value and the real value. When the measurement accuracy meets the measurement
requirements, the measurement efficiency can be improved by optimizing the number and
location of the measurement points and the measurement path [3–6].

As shown in Figure 1a, the coordinate measuring machine (CMM) equipped with a
contact probe is one of the common contact measuring instruments [7]. It can obtain the
point coordinates of the parts to be measured by scanning the measurement point by point.
The point coordinates of the parts to be measured are reconstructed into free-form surfaces,
and the geometric errors are compared with the original surfaces to accurately evaluate the
machining errors generated in the manufacturing process of free-form surface parts. As
shown in Figure 1b, the articulated industrial robot equipped with an optical probe is one
of the common non-contact measuring instruments. The scanning measurement path is
generated based on the measurement points of the parts to be measured with significant
geometric characteristics, and the industrial robot drives the optical probe to move along
the scanning measurement path. The scanning point cloud is reconstructed into a free
surface, and the geometric error is compared with the original surface to determine the
machining error of the free surface [8].
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measurement. Thus, the high-precision measurement of free-form surfaces can be real-
ized, and the measurement efficiency can be significantly improved. 

Blind sampling is a sampling method that does not consider the geometric character-
istics of the free-form surface [9]. The number and location of sample points determine the 
geometric error of the reconstructed free-form surface. Uniform sampling is a simple and 
efficient sampling method, which is widely used in the field of free-form surface sampling. 
Dunbar et al. [10,11] introduced a random sampling strategy of fast disk under arbitrary 
dimension, which can realize blind sampling of a free-form surface simply and efficiently. 
Woo et al. [12] sampled the surface to be measured using the Hammersley distribution 
method. The research results show that blind sampling has the characteristics of simple 
and efficient sampling, but it cannot adaptively change the number and position of the 
sampling points based on the geometric characteristics of the free-form surface to be meas-
ured, thus affecting the measurement accuracy and efficiency. 

Adaptive sampling generates sampling points according to the geometric character-
istics of a free-form surface. In short, more sampling points are generated in the area with 
a large fluctuation of the free-form surface, and fewer sampling points are generated in 
the area with a small fluctuation of the free-form surface [13]. Ren et al. [14] proposed a 
method of using the curvature change matrix of adjacent points as the change index of a 
free-form surface. According to the proposed index, the optimal position of the newly 
added bi-directional curve mesh was determined, and the free-form surface was recon-
structed based on the Gordon surface fitting principle. Javad et al. [15] used the optimiza-
tion method and particle swarm optimization algorithm to optimize the position of the 
sampling points. On the basis of the initial sampling points, the optimal position of the 
new sampling points was determined by iterative optimization. When the geometric error 

Figure 1. Two measurement methods. (a) CMM; (b) Robot optical scanning system.

When measuring the geometric quantity of the parts to be measured, the number
of measuring points is positively related to the measurement accuracy. The more the
number of measuring points, the higher the measurement accuracy will be. When the
number of measuring points reaches a certain value, the measurement accuracy will
not change significantly. However, if the number of measuring points is too large, the
measurement time will be significantly increased and the measurement efficiency will
be reduced. Therefore, when measuring the components of the free-form surface to be
measured, the number and position of the sampling points on the free-form surface should
be reasonably distributed to ensure that the measurement efficiency can be improved as
much as possible on the premise of meeting the measurement accuracy.

By setting a reasonable sampling plan, the corresponding measurement path is gen-
erated, and the free surface is measured using a contact measurement or non-contact
measurement. Thus, the high-precision measurement of free-form surfaces can be realized,
and the measurement efficiency can be significantly improved.

Blind sampling is a sampling method that does not consider the geometric characteris-
tics of the free-form surface [9]. The number and location of sample points determine the
geometric error of the reconstructed free-form surface. Uniform sampling is a simple and
efficient sampling method, which is widely used in the field of free-form surface sampling.
Dunbar et al. [10,11] introduced a random sampling strategy of fast disk under arbitrary
dimension, which can realize blind sampling of a free-form surface simply and efficiently.
Woo et al. [12] sampled the surface to be measured using the Hammersley distribution
method. The research results show that blind sampling has the characteristics of simple and
efficient sampling, but it cannot adaptively change the number and position of the sampling
points based on the geometric characteristics of the free-form surface to be measured, thus
affecting the measurement accuracy and efficiency.

Adaptive sampling generates sampling points according to the geometric characteris-
tics of a free-form surface. In short, more sampling points are generated in the area with a
large fluctuation of the free-form surface, and fewer sampling points are generated in the
area with a small fluctuation of the free-form surface [13]. Ren et al. [14] proposed a method
of using the curvature change matrix of adjacent points as the change index of a free-form
surface. According to the proposed index, the optimal position of the newly added bi-
directional curve mesh was determined, and the free-form surface was reconstructed based
on the Gordon surface fitting principle. Javad et al. [15] used the optimization method and
particle swarm optimization algorithm to optimize the position of the sampling points. On
the basis of the initial sampling points, the optimal position of the new sampling points
was determined by iterative optimization. When the geometric error between the recon-
structed surface and the original surface or the number of sampling points reached the set
threshold, the optimization was terminated. Gao et al. [16] took the aeroengine blade as the
measurement object, and adaptively generated the sampling points based on the bending
moment theory for the regions with different curvatures of the engine blade, so that the
number and position of the sampling points could be accurately determined according
to the fluctuation of the blade surface. In consideration of the influence of Gaussian cur-
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vature on machining error, Sang et al. [17] proposed a scanning line distribution strategy
based on star pattern, which classifies peak points and anchor points, and connects the
error peak points in different regions and anchor points in the same region, so that more
scanning lines are generated in the region with small machining error, and fewer scanning
lines are generated in the region with small machining error. Jiang et al. [18] studied a
calculation method based on curve chord deviation, and adopted a two-step sampling
method. First, based on the radius of the CMM probe ball as the threshold, adaptive
Isoparametric sampling was carried out on the leading edge curve and trailing edge surface
of the blade. Secondly, adaptive sampling points were selected on the Isoparametric based
on the proposed curve chord deviation theory, and finally, the adaptive sampling of the
blade was realized. Suleiman et al. [19] proposed a patch based free-form surface adaptive
sampling method, which sorts patches according to the Gaussian curvature of each patch,
determines the number of sampling points of each patch according to the sorting size, and
selects the points of maximum curvature, minimum curvature and average curvature in
the patch as the sampling points. If the number of sampling points exceeds these three
types of points, the maximum curvature, minimum curvature and average curvature are
taken as the sampling points, and so on until the number of sampling points reaches the
threshold of the number of sampling points. Mansour [20] studied an adaptive sampling
method for reducing the number of measurement points and improving the measurement
efficiency with the blade as the measurement object. Based on the least square method, the
minimum number of points required for the curve polynomial is found, so that the fitting
error expressed by the polynomial curve and cubic curve is minimal. He et al. [21] proposed
an adaptive sampling method for a free-form surface based on the machining error model.
The machining error model was established based on the curvature of the free-form surface,
and the relationship between Gaussian curvature and machining error was obtained. The
adaptive sampling of a free-form surface was carried out based on the error model and
the Hammersley principle. The number of sampling points was large in the places with
large errors and small in the places with small errors. Yi et al. [22] discretized the triangular
mesh of a free surface, and simplified the triangular mesh by iteratively shrinking the
triangle edges. Based on the principle of minimum quadratic error, the optimal objective
vertex under discrete curvature constraint is determined. By limiting the side length of the
triangular mesh to control the number of sampling points, the adaptive sampling of free-
form surfaces is realized. Yu et al. [23] selected the initial sampling point set, reconstructed
the initial point set and solved it with the original surface to obtain the global error. The
point with the largest global error is added to the initial point set to obtain the updated
initial point set. The reconstructed surface and the original surface are solved to obtain the
global error. The point with the maximum global error between the reconstructed surface
and the original surface is added to the initial point set as a new sampling point. Cycle in
turn until the global error reaches the set precision threshold or the number of sampling
points reaches the set number threshold. Mian et al. [24] studied the influence of different
sampling strategies on surface reconstruction accuracy, and the influence of workpiece size
and machining quality on sampling methods. Gohari et al. [25] used principal component
analysis to dynamically generate sampling points, thus reducing the number of sampling
points, reducing the measurement cost and improving the measurement efficiency.

For the precise measurement of geometric quantities of free-form surfaces, the number
of samples and the position of sampling points should be reasonably set to improve the
measurement accuracy and efficiency. In this study, geodesic distance is used as the
index of global fluctuation of a free-form surface. The free-form surface is divided into
blocks, and the number of samples is adaptively determined according to the changes in
the geometric characteristics of the free-form surface. Combined with the Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution, the
distribution location of the sampling points is determined. Therefore, an adaptive hybrid
sampling method for a free-form surface based on geodesic distance is proposed, which
can effectively improve the measurement accuracy and efficiency.
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The rest of this paper is organized as follows: Section 2 introduces the free-form
surface modeling method; Section 3 introduces the definition of geodesic distance and its
solution method in detail, including three sub-steps; in Section 4, the number of sampling
points and the distribution of the sampling points are given; in Section 5, the reconstruction
errors between the reconstructed surface and the original surface are solved and the results
are analyzed; Section 6 summarizes the conclusions and future work prospects.

2. Free-Form Surface Modeling

Non uniform rational B-spline (NURBS) is one of the most commonly used parametric
mathematical models in free-form surface geometric modeling. NURBS surfaces are widely
used in the field of computer aided geometric design (CAGD), and are widely used in the
geometric representation of complex components in aerospace, automobile and other fields.

The free-form surface can be represented by the control points and degrees in the u
and v directions. The local adjustment of the free-form surface can be realized by adjusting
the control points and weight coefficients. The NURBS surface is usually obtained by using
the tensor product of two NURBS curves with two independent parameters, u and v.

The expression of a NURBS surface is as follows [26].

S(u, v) =
∑m

i=0 ∑n
j=0 wi,jNi,p(u)Nj,q(v)Pi,j

∑m
i=0 ∑n

j=0 wi,jNi,p(u)Nj,q(v)
(1)

where Pi,j is the control point; m is the number of control points in the u direction; n is the number
of control points in the v direction; p is the degree of the parameter coordinate u; q is the degree
of the parameter coordinate v; Ni,p(u) is a basis function of order p; Ni,p(v) is a basis function
of order q; U and V are defined knot vectors, U =

{
0, · · · , 0, up+1, · · · , ur−p−1, 1, · · · , 1

}
,

V =
{

0, · · · , 0, vq+1, · · · , vs−q−1, 1, · · · , 1
}

, which specify the distribution of parameters u
and v; wi,j is the same as the Pi,j relevant weight coefficient. The basis function is recursively
defined by the Cox–deBoor algorithm, where Ni,p(u):

Ni,1 =

{
1 if ui < u < ui+1
0 otherwise

(2)

Ni, p(u) =
u− ui

ui+p−1 − ui
Ni,p−1(u) +

ui+p − u
ui+p − ui+1

Ni+1,p−1(u) (3)

The NURBS surface is shown in Figure 2. The blue curve is the isoparm in the u
direction, the red curve is the isoparm in the v direction, and the red surface and the blue
curve form are the isoparm mesh of the NURBS surface.
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3. Geodesic Distance

On the Riemannian manifold, the geodesic is defined as the shortest path between the
points on the model surface. Geodesic distance is the distance value of geodesic. Compared
with the curvature, the advantage of geodesic is that it can describe the free-form surface
globally, and the curvature can only be described based on the local part of a free-form
surface [27]. Therefore, the geodesic distance is used as the index of the surface fluctuation
of the free-form surface in this paper, which can accurately describe the global fluctuation
of the free-form surface and overcome the limitation that curvature can only describe the
local fluctuation.

The geodesic distance solution method used in this paper is the thermodynamic
method proposed by Crane [28]. It can be imagined that a hot needle touches a point x on
the surface, which is a hot core point. With the passage of time, the heat on this point x
diffuses to the rest of the surface. The heat at point y on the surface can be expressed by a
thermal kernel function kt,x(y) to describe how the geodesic distance between any point
x, y on the Riemannian manifold ϕ(x, y) can be recovered by the point state transformation
of the thermal core, as shown in Formula (4). The geodesic distance can be recovered by
solving the direction of thermal motion [29].

ϕ(x, y) = lim
t→0

√
−4t log kt,x(y) (4)

Step 1: Solve the thermal kinematics in Equation (5) by describing the propagation
state of heat, and establish the temperature scalar field U. The time dispersion of the thermal
propagation equation is

∂u
∂t

= ∆u (5)

The thermal kinematics equation is discretized and sorted to obtain

(id− t∆)ut = u0 (6)

where id is the identity matrix, t is the time interval, ∆ is the discrete Laplacian operator, ut
is the thermal state at time t, and u0 is the thermal state at the initial time.

Step 2: The thermal gradient direction calculated in step 1 is the same as the gra-
dient direction of the geodesic distance. Since the gradient of the geodesic distance is a
unit vector, the gradient of the geodesic distance is obtained by normalizing the thermal
gradient direction.

X = −∇u/|∇u| (7)

where X is the gradient of the geodesic distance.
Step 3: after the gradient of geodesic distance is obtained through step 2, the geodesic

distance is solved through Formula (8):

min
φ

∫
M
|∇φ− X|2 (8)

According to the variational method, the minimization of Formula (8) is the Pois-
son equation.

∆φ = ∇ · X (9)

where φ is the geodesic distance between the vertex and the hot core point.
Based on the principle of the NURBS surface in part 2 of this paper, the free-form surface

to be measured is shown in Figure 3, with a size of 50 mm × 50 mm. Reduce the dimension
of the free-form surface from the three-dimensional space to the two-dimensional parameter
domain (u, v); carry out Isoparametric sampling on the two-dimensional parameter domain
(u, v); map the sampling points on the two-dimensional parameter domain to the three-
dimensional space; use the collection of sampling points on the three-dimensional space to
replace the free-form surface, and set the number of sampling points to (41 × 41) = 1681.
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Segment Distance/mm 
1 7750 
2 7816 

Figure 3. Free-form surface.

In order to evaluate the global fluctuation of a free-form surface, it is necessary to
segment the surface. The principle of the surface segment is shown in Figures 4 and 5.
As shown in Figure 4, the free-form surface to be measured is divided into four surface
segments Pi in the two-dimensional parameter domain. Select the (41× 41 + 1)/2 = 841
sampling points to be used as hot core points (the red point in Figure 4 needs to be mapped
to the three-dimensional space). Since the sampling points in the same row and column
as the hot core point belong to the overlapping part of the two segments, the sampling
points in the same row and column as the hot core point will be deleted. Solve the geodesic
distance from the sampling point to the thermal core point in each surface segment Pi after
deleting the duplicate sampling points; sum the geodesic distances from the sampling
point to the thermal core point in each segment; obtain the sum of the geodesic distances
di of each segment sampling point, and take it as the global fluctuation change index of
the free-form surface. The sum of the geodesic distances di of each segment Pi is shown in
Table 1.
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Table 1. Sum of the geodesic distances of the first surface segment.

Segment Distance/mm

1 7750
2 7816
3 7578
4 7171

As shown in Figure 5, each surface segment Pi is further subdivided into four surface
segments Pij, and the sum of the geodesic distances dij from the sampling point to the hot
core point (red point in Figure 5) in each segment Pij is calculated. The results are shown in
Table 2. Finally, the sum of the geodesic distances dij of each free-form surface segment is
obtained, which is used as an indicator of global fluctuation. Based on this indicator, the
sampling quantity of each free-form surface segment is determined.

Table 2. Sum of the geodesic distances of the second quadric surface segment.

Segment Distance/mm

11 4207
12 4305
13 3983
14 3714
21 4174
22 4186
23 3824
24 3728
31 3546
32 3442
33 4059
34 4004
41 3366
42 3427
43 4069
44 4163
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4. Sampling Strategy

In this section, firstly, the sampling quantity of each surface segment is calculated
based on the sum of the geodesic distances of each surface segment solved in Section 3, and
then the positions of the sampling points are generated based on the Isoparametric distri-
bution, Poisson distribution, Hammersley distribution and NRook distribution. Finally, the
geometric error evaluation method of the reconstructed surface and the original surface
is determined.

4.1. Determine the Sampling Quantity

In this paper, a relative proportion method based on the sum of the geodesic distances
of each segment is used to determine the P of each surface segment. The specific solution
steps are as follows.

Step 1: According to the results of Section 3, calculate the average value of the sum of
the geodesic distances of P1, P2, P3 and P4; obtain the ratio λi of the sum of the geodesic
distances of P1, P2, P3 and P4 and di. The reference sampling number Ni of each surface
segment Pi is the ratio of the total number of samples N and the number of segments ϕ.
The sampling number of each surface segment Pi is the product of the number of reference
samples Ni and λi. The formula is as follows:

λi =
di

d
(10)

Ni =
N
ϕ

(11)

Ni = Ni ∗ λi (12)

Step 2: Each surface segment Pi continue to subdivide into surface segment Pij. Ac-
cording to the principle of step 1, calculate the average value di of the sum of the geodesic
distances of Pij; obtain the ratio λij of the sum of the geodesic distances of Pi1, Pi2, Pi3 and
Pi4 and dij. The reference sampling number Nij of each surface segment Pi is the ratio of
the total number of samples Ni and the number of segments ϕ; The sampling number of
each surface segment Pij is the product of the number of reference samples Nij and λij. The
sampling number of each surface segment Pij is the calculation result of step 1. The formula
is as follows:

λij =
dij

di
(13)

Nij =
Ni
ϕ

(14)

Nij = Nij ∗ λij (15)

According to the requirements of measurement accuracy, the total number of sampling
points of the free-form surface is determined to be 1600, ϕ = 4. Calculate the number of
sampling points of each surface segment as shown in Table 3.

4.2. Determine the Sampling Position

After determining the number of sampling points in each segment, a specific point
distribution algorithm is used to distribute the sampling points. In this paper, the sampling
points generated based on the Isoparametric distribution, Poisson distribution, Hammersley
distribution and NRook distribution are studied.
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Table 3. Number of sampling points for each surface segment.

Segment Sample Size

11 131
12 144
13 119
14 106
21 181
22 194
23 169
24 156
31 69
32 56
33 94
34 81
41 6
42 19
43 31
44 44

(a) Isoparametric distribution

Isoparametric distribution is to map the free-form surface from the three-dimensional
space to the two-dimensional parameter domain, sample the two-dimensional parameter
domain according to a certain step size to obtain the sampling points in the two-dimensional
parameter domain, remap the sampling points in the two-dimensional parameter domain to
the three-dimensional space, and obtain the set of sampling points in the three-dimensional
space. It is calculated by Formulas (16) and (17):

u = umin + (i− 1)
umax − umin
(Nu − 1)

; i = 1, 2, · · · , Nu (16)

v = vmin + (i− 1)
vmax − vmin
(Nv − 1)

; i = 1, 2, · · · , Nv (17)

where umin is the minimum value of the u direction parameter; umax is the maximum value
of the u direction parameter; Nu is the number of sampling points in the u direction; vmin
is the minimum value of the v direction parameter; vmax is the maximum value of the v
direction parameter; Nv is the number of sampling points in the v direction.

(b) Poisson distribution

Poisson distribution is a more uniform distribution mode compared to Isoparametric
distribution. This distribution method can generate a random point set. The distribution
method adopted is that every two points are at least on a specified minimum distance.
The algorithm takes the range of the Rn sample domain, the minimum distance r between
samples and the constant k as the inputs. The steps are as follows [30].

Step 1: Initialize the n dimensional background grid, which is used to store variables
and spatial search data. The search cell size is r/

√
n, and each grid cell contains, at most,

one sample. Therefore, the grid is an n dimensional integer array. The default index (−1)
indicates that there is no sample, and the non-negative integer indicates the index of the
sample in the single grid.

Step 2: The initial sample x0 is randomly selected from the sample field, inserted into
the background grid, and this uses index (0) to initialize the activity list (sample index list).

Step 3: When the active list is not empty, a random index is selected from the list, and
evenly selects k points from the spherical ring between the surrounding radius r and the
radius 2r. For each point, check whether it is within the radius r of the existing sample (use
the background grid to test only the nearby samples). If a point is far enough from the
existing sample, it is taken as the next sample and added to the existing index. If no such
point is found after k attempts, the index is removed from the active list.
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(c) Hammersley distribution

The Hammersley distribution is one of the most prominent uniform distribution
sampling algorithms at present. This method is based on the computer binary number
representation method, which converts a given decimal number into a binary number,
inverts the order, multiplies each number on each bit of the binary by a power series with
1/2 as the base number and the corresponding number of digits as the exponent, and
cumulatively sums them. The calculation result is placed after the decimal point to form
the sampling value. The sampling formula is as follows:

ui = i/N (18)

vi = ∑k−1
j=0 bij2−j−1 (19)

k = [log2 N] (20)

where N is the number of sampling points; i is the ith sampling point, and its range is
[0, N − 1]; bi is the binary representation of the index; bij is the jth bit representing bi, and
the range of j is [0, k− 1]; k is b number of digits of bi.

(d) NRook distribution

NRook distribution is a uniform distribution algorithm based on the principle of a
chess board. If a square is divided into n ∗ n small squares and n sampling points are placed
inside, there is only one sampling point in each row and column. The algorithm steps are
as follows.

Step 1: Initialize the sampling set Q and the sampling step λ according to the number
of samples N. The calculation formula is as follows:

Q = [0, 1, · · · , N − 1] (21)

λ = 1/N (22)

Step 2: Selecting random samples ni from the sample set Q; select the random
number pi , qi from [0, 1], ui is the sum of the result of multiplying the sampling step λ
by ni and a random number pi , vi is the sum of the result of multiplying the sampling
step λ by the sampling times i and a random number qi . The calculation formula is
as follows: {

ui = λni + pi
vi = λi + qi

(23)

According to the basic principles of the four distribution modes of Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution,
the distribution sequence of parameter u ∈ [0, 1] and parameter v ∈ [0, 1] is calculated
and generated. The number of samples is set to 700. The results are shown in Figure 6.

The sampling points generated by the four distribution methods, i.e., Isopara-
metric distribution, Poisson distribution, Hammersley distribution and NRook distri-
bution, need to be remapped to the corresponding sections according to the surface
segment interval, and the sampling points are reconstructed. This is described in detail
in Section 5.

4.3. Error Comparison Method between the Reconstructed Surface and Original Surface

The reconstructed surface and the original surface after surface reconstruction need
to be evaluated for the geometric error of reconstruction. The method adopted in this
paper is shown in Figure 7. The Isoparametric method is used to take a series of sampling
points on the original surface, and make a straight line perpendicular to the z axis of the
oversampling point. The straight line has an intersection with the reconstructed surface.
The x and y coordinate values of the intersection and the sampling point are the same. The
difference between the z coordinate values of the sampling point and the intersection is
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calculated, which is the reconstructed geometric accuracy of the reconstructed surface and
the original surface.
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By solving the z coordinate value difference between each sampling point on the
original surface and the intersection point on the reconstructed surface, the root mean
square error (RMSE) and the global maximum error (ME) are used as the reconstruction
accuracy indexes of the reconstructed surface and the original surface. The formula is
as follows:

MSE =
1
N

N

∑
i=1
‖zi − zi

′‖2 (24)

RMSE =

√√√√ 1
N

N

∑
i=1
‖zi − zi

′‖2 (25)
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ME = max
∣∣zi − zi

′∣∣ (26)

where N is the number of sampling points; zi is the z coordinate value of the original surface
sampling point; zi

′ is the coordinate value of the reconstructed surface sampling point.

5. Experiment and Discussion

The free-form surface is reconstructed according to the different sampling strategies.
The reconstructed surface is analyzed based on the reconstruction accuracy indexes, RMSE
and ME, of the reconstructed surface and the original surface to evaluate the impact of the
different sampling strategies on the reconstruction’s accuracy.

The parameter interval obtained by the four distribution methods of Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution is
[0, 1], and the length of the parameter u and v interval of the surface segment is 0.25. There-
fore, it is necessary to map the boundary range of the divided surface to the corresponding
interval. The interval range of each surface segment is shown in Figure 8.
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Figure 8. Interval range and sampling quantity of the surface segment.

According to the sampling number of each surface segment in Figure 8, four distri-
bution methods, i.e., Isoparametric distribution, Poisson distribution, Hammersley distri-
bution and NRook distribution, are used to calculate and generate sampling points, and
map them to the corresponding interval range of each surface segment in Figure 8. The
original free-form surface sampling point set obtained is used for the free-form surface
reconstruction. The reconstructed surface is shown in Figure 9, where the green point
represents the sample point, and the brown surface represents the reconstructed surface.
Different sampling methods produce a different distribution of the sample points, and the
reconstructed surface is also different.
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Figure 9. Sampling point distribution of the free-form surface and surface reconstruction: (a) Isopara-
metric; (b) Poisson; (c) Hammersley; (d) NRook; (e) Adaptive hybrid Poisson; (f) Adaptive hybrid
Hammersley; (g) Adaptive hybrid NRook.
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The reconstructed surface is compared with the original surface in terms of the recon-
structed geometric error, and the ME of each point (x, y, z) on the reconstructed surface is
converted into the corresponding color. The obtained error distribution results are shown
in Figure 10. Figure 10a is the reconstructed geometric error without surface blocking and
other parameter distribution; Figure 10b is the reconstructed geometric error of Poisson
distribution; Figure 10c is the reconstructed geometric error of Hammersley distribution;
and Figure 10d is the reconstructed geometric error of NRook distribution.
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Table 4 and Figure 11 shows the error comparison results between the reconstructed
surface obtained by surface reconstruction and the original surface after the sampling
points of the free-form surface are obtained by the different distribution methods. Com-
paring Isoparametric distribution from the aspect of reconstruction ME, the reconstruction
error of the hybrid adaptive sampling method, based on geodesic distance combined with
Poisson distribution, Hammersley distribution and NRook distribution, is reduced by
47.12%, 41.56% and 20.22%, respectively, compared with that of the Isoparametric distri-
bution sampling method. Compared with the adaptive sampling method proposed in
Reference [24], the reconstruction error of the hybrid adaptive sampling method based on
the geodesic distance combined with Poisson distribution, Hammersley distribution and
NRook distribution, is reduced by 69.83%, 66.67% and 54.49%, respectively. The recon-
struction error of the adaptive hybrid sampling method, based on the geodesic distance
combined with Poisson distribution, Hammersley distribution, NRook distribution and
the adaptive sampling method used in Reference [14], is reduced by 62.46%, 62.15% and
52.61%, respectively, compared with Poisson distribution, Hammersley distribution and
NRook distribution.

Table 4. Comparison of the reconstruction errors using different sampling methods.

Sampling Method ME/mm RMSE/mm

Isoparametric 0.1855 0.0266
Poisson 0.2613 0.0467
Adaptive hybrid Poisson 0.0981 0.0202
Hammersley 0.2864 0.0708
Adaptive hybrid Hammersley 0.1084 0.0189
NRook 0.3123 0.1226
Adaptive hybrid NRook 0.1480 0.0213
Adaptive sampling method [24] 0.3252 0.0486
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The adaptive hybrid sampling method based on geodesic distance significantly re-
duced the reconstruction ME compared with the general Isoparametric distribution sam-
pling method and the adaptive sampling method in Reference [24], and the reconstruction
accuracy has been greatly improved. The reconstructed ME based on the adaptive hybrid
sampling method of geodesic distance is significantly improved compared with the sam-
pling methods of Poisson distribution, Hammersley distribution and NRook distribution



Sensors 2023, 23, 3224 16 of 19

that are not based on the adaptive hybrid sampling method of geodesic distance, which ver-
ifies the effectiveness of the adaptive hybrid sampling method based on geodesic distance
in reducing the reconstructed ME.

From the aspect of reconstruction RMSE, the adaptive hybrid sampling method
based on geodesic distance combined with Poisson distribution, Hammersley distri-
bution and NRook distribution, reduces the reconstruction RMSE by 24.06%, 28.95%
and 20.00%, respectively, compared with the sampling method of Isoparametric dis-
tribution. Compared with the adaptive sampling method proposed in Reference [24],
the reconstructed RMSE of the hybrid adaptive sampling method based on geodesic
distance combined with Poisson distribution, Hamersley distribution and NRook dis-
tribution is reduced by 58.44%, 61.11% and 56.17%, respectively. The reconstructed
RMSE of the adaptive hybrid sampling method based on geodesic distance combined
with Poisson distribution, Hammersley distribution and NRook distribution is reduced
by 56.75%, 73.31% and 82.63%, respectively, compared with the sampling methods of
Poisson distribution, Hammersley distribution and NRook distribution.

The RMSE reconstruction of the adaptive hybrid sampling method based on
the geodesic distance combined with Poisson distribution, Hammersley distribution
and NRook distribution is greatly reduced compared with the sampling method of
Isoparametric distribution and the adaptive sampling method in Reference [24], and the
reconstruction accuracy is significantly improved. The RMSE of the adaptive hybrid
sampling method based on geodesic distance combined with Poisson distribution,
Hammersley distribution and NRook distribution is significantly reduced compared
with the sampling method based on Poisson distribution, Hammersley distribution
and NRook distribution without geodesic distance, and the reconstruction accuracy is
greatly improved.

In order to further verify the effectiveness of the proposed method, this paper uses
an ABB IRB1200 robot and Creaform MetraSCAN-R BLACK for experimental verification.
The measurement accuracy is 25 µm, and the measurement depth is 250 mm, as shown in
Figure 12.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 22 
 

 

which verifies the effectiveness of the adaptive hybrid sampling method based on geo-
desic distance in reducing the reconstructed ME. 

From the aspect of reconstruction RMSE, the adaptive hybrid sampling method 
based on geodesic distance combined with Poisson distribution, Hammersley distribution 
and NRook distribution, reduces the reconstruction RMSE by 24.06%, 28.95% and 20.00%, 
respectively, compared with the sampling method of Isoparametric distribution. Com-
pared with the adaptive sampling method proposed in Reference [24], the reconstructed 
RMSE of the hybrid adaptive sampling method based on geodesic distance combined with 
Poisson distribution, Hamersley distribution and NRook distribution is reduced by 
58.44%, 61.11% and 56.17%, respectively. The reconstructed RMSE of the adaptive hybrid 
sampling method based on geodesic distance combined with Poisson distribution, Ham-
mersley distribution and NRook distribution is reduced by 56.75%, 73.31% and 82.63%, 
respectively, compared with the sampling methods of Poisson distribution, Hammersley 
distribution and NRook distribution.  

The RMSE reconstruction of the adaptive hybrid sampling method based on the ge-
odesic distance combined with Poisson distribution, Hammersley distribution and NRook 
distribution is greatly reduced compared with the sampling method of Isoparametric dis-
tribution and the adaptive sampling method in Reference [24], and the reconstruction 
accuracy is significantly improved. The RMSE of the adaptive hybrid sampling method 
based on geodesic distance combined with Poisson distribution, Hammersley distribution 
and NRook distribution is significantly reduced compared with the sampling method 
based on Poisson distribution, Hammersley distribution and NRook distribution without 
geodesic distance, and the reconstruction accuracy is greatly improved. 

In order to further verify the effectiveness of the proposed method, this paper uses 
an ABB IRB1200 robot and Creaform MetraSCAN-R BLACK for experimental verification. 
The measurement accuracy is 25 µm, and the measurement depth is 250 mm, as shown 
in Figure 12. 

 
Figure 12. Measuring the surface using a MetraSCAN laser scanner. 

Set the number of sample points to 100, and use the self-developed path algorithm to 
obtain the robot scanning measurement path, as shown in Figure 13. The free-form surface 
is scanned and measured. The measured results are shown in Figure 14.  

Figure 12. Measuring the surface using a MetraSCAN laser scanner.

Set the number of sample points to 100, and use the self-developed path algorithm to
obtain the robot scanning measurement path, as shown in Figure 13. The free-form surface
is scanned and measured. The measured results are shown in Figure 14.
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Figure 14. Point cloud reconstruction results of the free-form surface.

In order to further verify the effectiveness of the sampling algorithm, repeated mea-
surement experiments are carried out. Taking the first measurement data as the error
judgment standard, analyze the error of the two measurement experiments. The error
results are shown in Figure 15. The average deviation is 0.001 mm and the standard error is
0.013 mm, which verifies the effectiveness and robustness of the sampling method proposed
in this paper.
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6. Conclusions

In this paper, an adaptive hybrid sampling method for a free-form surface based on
geodesic distance is proposed, which can be used for the precise measurement of geometric
parameters of free-form surfaces. This method can effectively improve measurement efficiency.

The geodesic distance is introduced as a measure of the global fluctuation of the
free-form surface. The free-form surface is divided into multiple surface segments. The
sampling number of each surface segment is determined according to the sum of the
geodesic distances of each surface segment within the surface segment. The sampling points
of each surface segment are generated based on the Poisson distribution, Hammersley
distribution and NRook distribution sampling methods. Finally, the sampling points of the
overall free-form surface are obtained.

The reconstruction error of the free-form surface obtained by this method was compared
with the common sampling strategies. The results show that the adaptive hybrid sampling
method of a free-form surface based on geodesic distance can effectively reduce the reconstruc-
tion error and significantly improve the reconstruction accuracy of free-form surfaces.

In future work, the sampling distribution method can be self-optimized by combining
intelligent algorithms, to further improve the reconstruction accuracy of free-form surfaces.
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