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Abstract: Methods based on 64-beam LiDAR can provide very precise 3D object detection. However,
highly accurate LiDAR sensors are extremely costly: a 64-beam model can cost approximately USD
75,000. We previously proposed SLS–Fusion (sparse LiDAR and stereo fusion) to fuse low-cost four-
beam LiDAR with stereo cameras that outperform most advanced stereo–LiDAR fusion methods.
In this paper, and according to the number of LiDAR beams used, we analyzed how the stereo and
LiDAR sensors contributed to the performance of the SLS–Fusion model for 3D object detection. Data
coming from the stereo camera play a significant role in the fusion model. However, it is necessary
to quantify this contribution and identify the variations in such a contribution with respect to the
number of LiDAR beams used inside the model. Thus, to evaluate the roles of the parts of the
SLS–Fusion network that represent LiDAR and stereo camera architectures, we propose dividing the
model into two independent decoder networks. The results of this study show that—starting from
four beams—increasing the number of LiDAR beams has no significant impact on the SLS–Fusion
performance. The presented results can guide the design decisions by practitioners.

Keywords: autonomous vehicle, 3D object detection, LiDAR, fusion, stereo camera

1. Introduction

Object detection is one of the main components of computer vision aimed at detecting
and classifying objects in digital images. Although there is great interest in the subject of
2D object detection, the scope of detection tools has increased with the introduction of 3D
object detection, which has become an extremely popular topic, especially for autonomous
driving. In this case, 3D object detection is more relevant than 2D object detection since it
provides more spatial information: location, direction, and size.

For each object of interest in an image, a 3D object detector produces a 3D bounding
box with its corresponding class label. A 3D bounding box can be encoded as a set of seven
parameters [1]: (x, y, z, h, w, l, θ), including the coordinates of the object center (x, y, z), the
size of the object (height, width, and length), and its heading angle (θ). At the hardware
level, the technology involved in the object detection process mainly includes the use of
mono and stereo cameras, with visible light or infrared cameras, RADAR (radio detection
and ranging), and LiDAR (light detection and ranging), and gated cameras. In fact, the
current top-performing methods in 3D object detection are based on the use of LiDAR
(Figure 1) [2,3].
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Figure 1. Example of a road scene where detection results using LiDAR technology is used. Detected
objects are surrounded by bounding boxes. The green boxes represent detection while the red ones
represent ground truth.

However, highly accurate LiDAR sensors are extremely costly (the price of a 64-beam
model is around USD 75,000 [4]), which incurs a hefty premium for autonomous driving
hardware. Alternatively, systems based only on camera sensors have also received much
attention because of their low costs and wide range of use. For example, in [5], the authors
claim that instead of using expensive LiDAR sensors for accurate depth information, the
alternative is to use pseudo-LiDAR, which has been introduced as a promising alternative
at a much lower cost based solely on stereo images. The paper presents the advances to the
pseudo-LiDAR framework through improvements in stereo depth estimation. Similarly,
in [6], instead of using a LiDAR sensor, the authors provide a simple and effective one-stage
stereo-based 3D detection pipeline that jointly estimates depth and detects 3D objects in an
end-to-end learning manner. These authors claim that this method outperforms previous
stereo-based 3D detectors and even achieves comparable performance to a few LiDAR-
based methods on the KITTI 3D object detection leaderboard. Another example is presented
in [7]. To tackle the problem of high variance in depth estimation accuracy with a video
sensor, the authors propose CG-Stereo, a confidence-guided stereo 3D object detection
pipeline that uses separate decoders for foreground and background pixels during depth
estimation, and leverages the confidence estimation from the depth estimation network as
a soft attention mechanism in the 3D object detector. The authors say that their approach
outperforms all state-of-the-art stereo-based 3D detectors on the KITTI benchmark.

Another interesting solution presented in the literature is the combination of LiDAR
and a stereo camera. These methods exploit the fact that LiDAR will complete the vision and
information provided by the camera, by adding notions of size and distance to the different
objects that make up the environment. For example, the proposed method in [8] takes
advantage of the fact that it is possible to reconstruct a 3D environment using images from
stereo cameras, making it possible to extract a depth map from stereo camera information
and enrich it with the data provided by the LiDAR sensor (height, width, length, and
heading angle).

In [9], a new method proposed by us, called SLS–Fusion (sparse LiDAR and stereo
fusion network), is presented. This is an architecture based on DeepLiDAR [10] as a
backbone network and the pseudo-LiDAR pipeline [8] to fuse information coming from
a four-beam LiDAR and a stereo camera via a neural network. Fusion was carried out to
improve depth estimation, resulting in better dense depth maps and, thereby, improving
3D object detection performance. This architecture is extremely attractive in terms of cost-
effectiveness, since 4-beam LiDAR is much cheaper than 64-beam LiDAR (the price of a
4-beam model is around USD 600 [11]). Results presented in Table 1 and in [9] show that the
performance offered by the 64-beam LiDAR (results were obtained with PointRCNN [12]
from testing on the KITTI dataset [13], for “Car” objects with IoU = 0.5 on three levels
of difficulty (defined in [14]): easy (fully visible, max. truncation–15%) = 97.3, moderate
(partly occluded, max. truncation–30%) = 89.9, hard (difficult to see, max. truncation–50%)
= 89.4) is not far from the one reached by the stereo camera and the four-beam LiDAR
model (with the best results obtained from testing on the KITTI dataset, for “Car” objects
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with IoU = 0.5 on three levels of difficulty: easy = 93.16 and moderate = 88.81 with SLS–
Fusion, and hard = 84.6 with Pseudo-LiDAR++). For this comparison, the satisfactory
results obtained by the 64-beam LiDAR were modeled directly in PointRCNN, while the
combination of video and LiDAR requires the generation of a new point cloud, usually
referred to as the pseudo-point cloud.

There are other solutions presented in the literature based only on stereo cameras,
such as the CG-Stereo method presented in [7], which achieves outstanding results on easy
mode (level of difficulty: easy = 97.04, see Table 1). However, implementing two sensors
(e.g., LiDAR and stereo camera) instead of one brings robustness to the 3D object detec-
tion system, as demonstrated in [15]. In addition, the SLS–Fusion and Pseudo-LiDAR++
methods show better results in the hard mode, as illustrated in Table 1.

Table 1. Evaluation of the 3D object detection part of SLS–Fusion compared to other competitive
methods. Average precision APBEV [16] results on the KITTI validation set [13] for the “Car” category
with the IoU at 0.5 and on three levels of difficulty, (defined as [14]): easy, moderate, and hard. S, L4,
and L64, respectively, denote stereo, simulated 4-beam LiDAR, and 64-beam LiDAR. According to
the inputs, the maximum average precision values are highlighted in bold.

Method Input Easy Moderate Hard

TLNet [17] S 62.46 45.99 41.92
Stereo-RCNN [18] S 87.13 74.11 58.93
Pseudo-LiDAR [8] S 88.40 76.60 69.00

CG-Stereo [7] S 97.04 88.58 80.34

Pseudo-LiDAR++ [5] S+L4 90.30 87.70 84.60
SLS–Fusion [9] S+L4 93.16 88.81 83.35

PointRCNN [12] L64 97.30 89.90 89.40

From the above, the interest in using a low-cost LiDAR and stereo camera model as
an alternative solution is justifiable. However, there is still a need to understand the scope
and limitations of a 3D object detection model composed of LiDAR and a stereo camera.
Knowing exactly what is the role of each sensor in the performance of the architecture will
allow optimization of the synergy of these two sensors, possibly reaching higher accuracy
levels at lower costs.

In this study, after analyzing the fusion between the stereo camera and LiDAR for
3D object detection, we studied the respective role of each sensor involved in the fusion
process. In particular, an ablation study was conducted considering LiDAR with different
beam number for object detection. Thus, LiDAR with 4, 8, 16, and 64 beams, either alone
or fused with the stereo camera were tested. Regardless of the number of beams, fusion
with stereo video always brought the best results. On the other hand, to reduce the overall
equipment costs, the fusion between a 4-beam LiDAR and a stereo camera was enough to
obtain acceptable results. Thus, when merging LiDAR with video, it is not necessary to use
a LiDAR with a higher number of beams (which is more expensive).

Thus, a detailed study of the relationship between the number of beams of a LiDAR
and the accuracy obtained in 3D object detection using the SLS–Fusion architecture is
presented here. Roughly, two important results are presented: (1) an analysis of the
camera stereo and LiDAR contributions in the performance of the SLS–Fusion model
for 3D object detection; and (2) an analysis of the relationship between the number of
LiDAR beams and the accuracy achieved by the 3D object detector. Both analyses were
carried out by an ablation method [19], which was carried out by removing one component
from the architecture to understand how the other components of the system performed.
This characterizes the impact of every action on the overall performance and ability of
the system.

After this introduction, to make the paper more self-contained, Section 2 presents the
work related to the sensor LiDAR fusion technique. Section 3 describes the framework by
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detailing the main contributions. Section 4 explains the main characteristics of combining
a stereo camera and LiDAR in the SLS–Fusion architecture. Section 5 evaluates the con-
tribution of each component to the neural network fusion architecture. Finally, Section 6
presents the concluding remarks, lessons learned, and some advice for practitioners.

2. Related Work

The automation of driving is based on many aspects, such as perception, positioning,
scenario analysis, decision-making, and command control. The perception sub-system
is one of the most critical elements, since the behavior of the autonomous vehicle (AV)
depends entirely on the objects that are around it. Furthermore, the safety of the users
who share the road with the AV depends on them being detected and identified by the AV.
Consequently, object detection has become one of the most critical research areas for the
perception of self-driving cars.

Currently, vision systems combine visible imaging, LiDAR, and/or RADAR tech-
nology to perceive the vehicle’s surroundings. Moreover, thermal cameras have been
introduced to respond to a lack of visibility in low light conditions or adverse weather
conditions [20]. Despite this, LiDAR and stereo cameras continue to be the most widely
used sensors for vehicle environment perception. This is mainly due to the wealth of
information offered by these two sensors:

• Visible light cameras are passive sensors used as the “eyes” of automated driving
vehicles. Unlike thermal cameras, stereo cameras provide information about the
textures and colors of objects in the image, which leads to better results when they are
used for the detection of other road users, road signs, traffic lights, and lane markings.
In addition, stereo camera systems use inherent 3D capabilities.

• LiDAR involves active devices that operate by emitting pulsed light laser and mea-
suring its reflection time. From the measurements, a 3D map of the environment can
be generated. In addition, LiDAR can provide higher angular resolution than radars
(due to their shorter wavelengths), resulting in higher accuracy when implemented
for edge identification.

Part of the interest in these two sensors is because both are capable of providing
information necessary for 3D object detection. However, the estimation of contours, shapes,
and textures is better in the stereo camera, while LiDAR provides higher accuracy for
depth estimation. To obtain better results, data fusion is usually performed to exploit the
advantages of both sensing systems.

2.1. Camera-LiDAR-Based 3D Object Detection Methods

Three-dimensional (3D) object detection is a topic that has gained interest within the
scientific community dedicated to vehicle automation. Based on LiDAR and stereo cameras,
and considering only deep learning-based approaches, 3D object detection methods are
classified according to the type of input data: camera-based, LiDAR-based, and fusion-
based 3D object detection.

2.1.1. Camera-Based Methods

Some of the first algorithms were keypoint/shape-based methods. In 2017, Chabot
et al. [21] presented Deep MANTA, one of the first works on camera-based 3D object
detection. This architecture recognizes 2D keypoints and uses 2D-to-3D matching. This
algorithm has two steps: (1) a RCNN architecture to detect and refine 2D bounding boxes
and keypoints, and (2) a predicted template similarity to pick the best matching 3D model
inside a 3D dataset. However, the main disadvantage of this method is the excessive time
required for 2D/3D matching.

On the other hand, the pseudo-point cloud-based methods arose from the idea of
simulating LiDAR from a stereo camera. These methods typically convert data from 2D to
3D by using extrinsic calibration information between the camera and LiDAR. For example,
in Xu and Chen [22], a depth map from RGB images was predicted and then concatenated as



Sensors 2023, 23, 3223 5 of 20

RGB-D (where D is the datum provided by the depth map) to form a tensor of six channels
(RGB image, Z-depth, height, distance) used to regress the 3D bounding boxes. For example,
the Pseudo-LiDAR method presented by Wang et al. [8] was inspired by that article, based
on the idea of data representation transformation to estimate the depth map from an
RGB image using a depth estimation neural network. Next, the predicted depth map is
converted into a pseudo-3D point cloud by projecting all pixels with depth information
into LiDAR coordinates. Then, the pseudo-point cloud was ready to be used as input in
any LiDAR-based object detection method. The ability to reconstruct a 3D point cloud from
less expensive monocular or stereo cameras is a valuable feature of this approach. Based
on Pseudo-LiDAR [8], the same authors proposed Pseudo-LiDAR++ [5] through a stereo
depth estimation neural network (SDN). They proposed a depth cost volume to directly
predict the depth map instead of predicting the disparity map, as proposed by Chang
and Chen [23]. This boosts the predicted depth map accuracy. In addition, to improve
the accuracy of the predicted depth map, they proposed a depth correction phase using a
simulated four-beam LiDAR to regularise the predicted depth map.

2.1.2. LiDAR-Based Methods

Due to the irregular, unstructured, and unordered nature of point clouds [24], they are
often handled in one of three ways: projecting point clouds to generate a regular pseudo-
image, sub-sampling point cloud cells called voxels, or encoding raw point clouds with
a sequence of multi-layer perceptron (MLP), as proposed in [25]. For 3D object detection,
LiDAR-based methods are usually classified into four categories: view-based, voxel-based,
point-based, and hybrid point-voxel-based detection.

View-based detection methods, such as the one presented by Beltran et al. [26], project
a point cloud onto a 2D image space to obtain a regular structure as an initial stage.
Generally, a CNN (convolutional neural network) is then used to take advantage of this
information [27,28]. The most common types of projection are bird’s eye view (BEV), front
view (FV) [16], range view (RV) [29], and spherical view (SV) [30].

The voxel-based method maps a point cloud into 3D grids (voxels) as an initial stage.
In 2017, Engelcke et al. [31] presented their LiDAR-based detector Vote3Deep. In this
method, LiDAR point clouds are discretized into a sparse 3D grid. Then, items are detected
using a sliding-window search with a fixed-size window with N different orientations. In
each window, a CNN performs binary classification.

Point-based methods usually deal with the raw point cloud directly instead of convert-
ing the point cloud to a regular structure. Qi et al. [25] introduced PointNet, a pioneering
study on deep learning-based architectures for processing point cloud raw data for classifi-
cation and semantic segmentation. They argue that as the point cloud is unordered, the
architecture should be permutation-invariant for all points.

2.1.3. Fusion-Based Methods

Image-based object detection is an advanced research area. In addition, cameras are
cheap and provide a lot of texture information about objects based on color and edges.
However, images lack depth information, which is extremely important for 3D tasks.
Even with a stereo camera, the resulting depth map lacks accuracy. On the other hand,
although LiDAR does not give texture information, LiDAR-based methods show a very
high performance compared to camera-based methods. However, there are still limitations
(such as obscure information) regarding object categories. For example, in some cases, it
is difficult to distinguish whether it is a car or a bush based on point cloud data alone,
while this can be handled more easily by looking at the image data. This is why methods
based on data fusion have been developed exploiting the advantages of both sensors. In
the literature, there are three main fusion methods: early fusion, where the raw data are
fused at the data level or feature level to form a tensor data of numerous channels; late
fusion, where the fusion takes place at the decision level; and deep fusion, where fusion is
carefully constructed to combine the advantages of both early and late fusion systems.
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For example, Qi et al. [1] presented the Frustum-PointNet architecture, which is com-
posed of three phases: 3D frustum proposal, 3D instance segmentation, and 3D bounding
box estimation. The first phase of this procedure is to produce 2D region proposals. By
extruding the matching 2D region proposal under a 3D projection, a 3D frustum proposal
is generated. The instance segmentation stage feeds the frustum proposal point cloud to
the PointNet segmentation network [25], which classifies each point and determines if it is
linked with the discovered item. In the last stage, all positively classified points are loaded
into a new PointNet that estimates 3D bounding box parameters.

Chen et al. [16] introduced MV3D, where the LiDAR point cloud is projected onto
both a 2D top view and a 2D front view, from which feature maps are extracted using two
separate CNN. The LiDAR top-view feature map is passed to an RPN (Region Proposal
Network) to output proposal 3D bounding boxes. Each 3D proposal is projected onto the
feature maps of all three views and a fixed-size feature vector is extracted for each view
using pooling. The three feature vectors are then fused in a region-based fusion network,
which finally outputs class scores and regresses 3D bounding box residuals.

A similar approach, also utilizing the PointNet architecture, was independently pre-
sented in Xu et al. [32]. Just as in Frustum-PointNet, a 2D object detector is used to extract
2D region proposals (ResNet), which are extruded to the corresponding frustum point
cloud. Each frustum is fed to a PointNet, extracting both point-wise feature vectors and
a global LiDAR feature vector. Each 2D image region is also fed to a CNN that extracts
an image feature vector. For each point in the frustum, its point-wise feature vector is
concatenated with both the global LiDAR feature vector and the image feature vector. This
concatenated vector is finally fed to a shared MLP, outputting 8 × 3 values for each point.
The output corresponds to predicted (x, y, z) offsets relative to the point for each of the eight
3D bounding box corners. The points in the frustum are thus used as dense spatial anchors.
The MLP also outputs a confidence score for each point, and in inference, the bounding
box corresponding to the highest-scoring point is chosen as the final prediction.

Ku et al. [33] introduced another fusion architecture named AVOD. Here, the LiDAR
point cloud is projected onto a 2D top-view, from which a feature map is extracted by a
CNN. A second CNN is used to extract a feature map also from the input image. The
two feature maps are shared by two subnetworks: an RPN and a second-stage detection
network. The reported 3D detection performance is a slight improvement compared to [16];
it is comparable to that of [34] for cars but somewhat lower for pedestrians and cyclists.
The authors also found that using both image and LiDAR features in the RPN, as compared
to only using LiDAR features, has virtually no effect on the performance of cars but a
significant positive effect for pedestrians and cyclists.

Similar to some of the methods mentioned above, the SLS–Fusion method presented
in Mai et al. [9] resulted from this idea. Roughly, the SLS–Fusion method estimates
the depth maps from a stereo camera and the projected LiDAR depth maps. However,
as Zhu et al. [35] point out, this produces a mismatch between the resolution of point
clouds and RGB images. Specifically, taking the sparse points as the multi-modal data
aggregation locations causes severe information loss for high-resolution images, which in
turn undermines the effectiveness of multi-sensor fusion.

More research is needed on the limits of a 3D object detection model composed
of a LiDAR and a stereo camera. Knowing the role of each sensor will allow for the
optimization and configuration of the proposed methods. With this in mind, this paper
presents a detailed study of the relationship between the number of LiDAR beams and the
accuracy obtained in 3D object detection using the SLS–Fusion architecture.

3. Analysis of the Role of Each Sensor in the 3D Object Detection Task

SLS–Fusion is a fusion method for LiDAR and stereo cameras based on a deep neural
network for the detection of 3D objects (see Figure 2). Firstly, an encoder–decoder based on
a ResNet network is designed to extract and fuse left/right features from stereo camera
images and project the LiDAR depth map. Secondly, the decoder network constructs a left
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and right depth map of optimized features through a depth cost volume model to predict
the corrected depth. After the expected dense depth map is obtained, a pseudo-point cloud
is generated using calibrated cameras. Finally, a LiDAR-based method for detecting 3D
objects (PointRCNN [12]) is applied to the predicted pseudo-point cloud.

Section 1 shows previous results of SLS–Fusion on the KITTI dataset, which uses
the refined work of PoinRCNN to predict the 3D bounding boxes of detected objects.
Experience with the KITTI benchmark and the low-cost four-beam LiDAR shows that the
SLS–Fusion proposed by us outperforms most advanced methods as presented in Table 1.
However, compared to the original PointRCNN detector that uses the expensive 64-beam
LiDAR, the SLS–Fusion performance is lower. The superiority of the 64-beam LiDAR, used
without fusing with stereo cameras, is expected because LiDARs with a high number of
beams can provide very precise depth information, but highly accurate LiDAR sensors are
extremely costly. In this case, the higher the number of LiDAR beams (i.e., the higher the
number of point clouds generated), the higher the cost of the LiDAR sensor (from USD 1000
to 75,000). This paper, thus, analyzes how the stereo and LiDAR sensors contribute to the
performance of the SLS–Fusion model for 3D object detection. In addition, the performance
impact of the number of LiDAR beams used in the SLS–Fusion model was also studied.
As shown in Figure 2, to separate the parts of the SLS–Fusion network that represents
LiDAR and stereo camera architectures, it is only necessary to divide the model’s decoder
into independent decoder networks. The decoder inside the SLS–Fusion model is the only
component responsible for fusing features between LiDAR and stereo sensors.

Left/Right 

images

Left/Right

LiDAR 

depth maps

Encoder

Encoder

decoder

Encoder-decoder
Feature fusion 

extractor 

decoder

LIDAR 

point cloud

Projection

Depth Cost 

Volume

Corrected 

Depth map

pseudo 

point cloud

3D Objects

PointRCNN

Stereo component 
network

Decoder fusion / 
separation process

LiDAR component 
network

Figure 2. Overall structure of the SLS–Fusion neural network: red, blue, and red–blue boxes represent,
respectively, stereo, LiDAR, and fusion networks: The LiDAR and stereo camera data are considered
as inputs. Subsequently, in the encoder/decoder process, the resulting features are merged to obtain
a depth map. Afterward, the depth map is converted into a point cloud, which makes it possible to
estimate the depth of the objects detected by the two sensors.
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Given a pair of images from a stereo camera and a point cloud from a LiDAR as
input to detect 3D objects, the SLS–Fusion deep learning approach [9] has shown a high
performance in the 3D object detection task. The analysis of this performance focuses on
the contribution of the neural network component of each sensor (LiDAR or stereo) and of
the type of LiDAR selected for the overall architecture of the system. In this work, LiDAR
sensors are compared in terms of the number of beams and are grouped into 3 main types:
low-cost (4 or 8 beams), medium-cost (16 beams), and high-cost (32 or 64 beams). This kind
of study, particularly in artificial intelligence, is known as an ablation study [19,36], which
is used to understand the contribution of each component in the system by removing it,
analyzing the output changes, and comparing them against the output of the complete
system. This characterizes the impact of every action on the overall performance.

This type of study has become the best practice for machine learning research [37,38],
as it provides an overview of the relative contribution of individual architectures and
components to model performance. It consists of several trials such as removing a layer
from a neural network, removing a regularizer, removing or replacing a component from
the model architecture, optimizing the network, and then observing how that affects the
performance of the model. However, as machine learning architectures become deeper and
the training data increase [39], there is an explosion in the number of different architectural
combinations that must be assessed to understand their relative performances. Therefore,
we define the notion of ablation for this study as follows:

• Consequences of varying the number of layers for the 4- and 64-beam LiDAR on the
results of SLS–Fusion.

• Consequences of retraining SLS–Fusion by separating the parts of stereo cameras and
LiDAR architectures.

• Analyzing and discussing the characteristics of the neural network architecture used.
• Applying some metrics with precision–recall curves (areas inside curves, F1-scores,

etc.) to evaluate detection results achieved by the study.

4. Characteristics of the Neural Network Architecture Used

The main component of the SLS–Fusion neural network, used to fuse or separate Li-
DAR and stereo camera features (for an ablation study), is the encoder–decoder component
(see Figures 2 and 3). It is the main part of the SLS–Fusion network that aims to enrich the
feature maps and, thus, lead to better-predicted depth maps from the stereo camera and the
projected LiDAR images. To understand all of this, we outline how the encoder–decoder
component works and how it will help to improve the precision of the system when using
low-, medium-, or high-cost LiDAR.

As shown in Figure 3, both the stereo camera and LiDAR encoders are composed
of a series of residual blocks from the neural network ResNet, followed by step-down
convolution to reduce the feature resolution of the input. ResNet is a group of residual
neural network blocks and each residual block is a stack of layers placed in such a way that
the output of one layer is taken and added to another deeper layer within the block, as
shown in Figure 4. The main advantage of ResNet is its ability to prevent the accuracy from
saturating and degrading rapidly during the training of deeper neural networks (networks
with more than 20 layers). This advantage helps in choosing a network to be as deep as
needed for the problem at hand. What we needed in this case, was to extract as much
detailed features as possible from sparse LiDAR data and high-resolution stereo images.
This process considerably assisted the decoder network to fuse the extracted features well.
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Figure 3. SLS–Fusion encoder–decoder architecture: The residual neural network blocks (ResNet
blocks) within the encoder are used to extract features from the LiDAR and stereo inputs. The fusion
process inside the decoder is accomplished through the use of addition and up-projection operators.
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Step-down convolution direction

Fusion 
Block 1

Fusion 
Block 

2

Fusion 
Block 3

Figure 4. The structure of Stereo and LiDAR residual blocks inside the encoder/decoder of the SLS–
Fusion model. A stack of layers is grouped into blocks for stereo and LiDAR networks, conducted by
a step-down convolution direction and followed by a set of fusion blocks.

The network of the decoder consists of adding the functions of both LiDAR and
stereo encoders, then up-projecting the result to progressively increase the resolution of
the features and generate a dense depth map as a decoder output. Because the sparse
input of LiDAR is heavily linked to the depth decoder output, features related to the
LiDAR sensor should contribute more to the decoder than features related to the stereo
sensor. However, as the add operation promotes features on both sides [40], the decoder
is encouraged to learn more features related to stereo images in order to be consistent
with the features related to the sparse depth from LiDAR. In this way, whatever the type
and associated resolution of the selected LiDAR (low-, medium-, or high-cost types), the
decoder network will correctly learn merged features. Consequently, the SLS–Fusion
network always outperforms all types of LiDAR sensors in 3D object detection, as shown
in the next section.



Sensors 2023, 23, 3223 10 of 20

5. Assessment of the Different Network Architectures Implemented

To assess the operation of the SLS–Fusion system, the KITTI dataset [13,41], one of
the most common dataset for autonomous driving is used to train the neural network for
dense depth estimation, pseudo-point cloud generation, and 3D objection detection. It has
7481 training samples and 7518 testing samples for both stereo and LiDAR.

In this section, the results obtained with each component of the SLS–Fusion model
(stereo camera, 4- and 64-beam LiDAR) are presented to understand the impact of each
component on the ultimate detection performance of 3D objects and show how results are
affected. To do this, a complete ablation study was performed by disabling each component
as previously explained, or by changing the number of LiDAR model component beams.
As shown in Figure 5, increasing the number of LiDAR beams will increase the number
of points that represent the targets detected by the LiDAR. The aim of this illustration
is to show the difficulty when dealing with LiDAR data processing. Depending on the
environment, some areas are full of detected points, while others are empty. Consequently,
the LiDAR contribution to the performance of the object detection model will be enhanced.
However, as shown in Table 2, increasing the number of beams from 4 to 64 beams will
significantly increase the cost of the LiDAR sensor. An optimized solution involves selecting
the appropriate number of corresponding LiDAR beams, which can provide a desired
performance level. For a more comprehensive survey of the LiDARs available on the
market, the reader is referred to [42].

(a) The 64-beam point cloud (b) The 16-beam point cloud

(c) The 8-beam point cloud (d) The 4-beam point cloud

Figure 5. LiDARpoint clouds representing the measured environment. The point cloud is colored
according to the information coming from the RGB image. The number of targets (points) varies
according to the version of the LiDAR (number of beams): very dense for 64 beams (upper left) and
dispersed for 4 beams (bottom right).
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Table 2. Comparison of some LiDAR sensors. Channels show the number of laser beams of the
LiDAR sensor vertically. Range indicates the maximum distance to objects at which a LiDAR can
detect. HFoV/RES and VFoV/RES decode the horizontal and vertical field of view and angular
resolution, respectively. There are a number of LiDARs whose resolution depends on frequency.

Model Channels Range HFoV/RES VFoV/RES Cost
(Vertical) (m) (Degree) (Degree) ($)

VLS-128 [43] 128 300 360°/0.2°@10 Hz +15° to −25°/0.11° 100 k
AT128 [44] 128 200 120°/0.1° 25.4°/ 0.2° NA

Pandar128 [45] 128 200 360°/0.1°@10 Hz +15° to −25°/0.125° NA
HDL-64E S2, S3 [4] 64 120 360°/0.17°@10 Hz +2.0° to −24.9°/0.4° 75 k

Pandar64 [46] 64 200 360°/0.2°@10 Hz +15° to −25°/0.167° 30 k
HDL-32E [47] 32 100 360°/0.2°@10 Hz +10.67° to −30.67°/1.33° 30 k

RS-LiDAR-32 [48] 32 200 360°/0.1° +15° to −25°/0.33° 16.8 k
VLP-16 [49] 16 100 360°/0.2°@10 Hz ±15°/2° 8 k

HS8 [50] 8 100 120°/0.18° 6.66°/0.36° 4 k
Scala [11] 4 200 145°/0.25° 3.2°/0.8° 0.6 k

5.1. Metrics

The indicators that we used and recall here seem basic for specialists but it is important
for us to recall them briefly because they are used in the analysis later. To better understand
the detection process and the results achieved by this study, detection assessment mea-
surements were used to quantify the performance of our detection algorithm in various
situations. Among the popular measures for reporting results, there are basic concepts and
evaluation criteria used for object detection [51] as follows:

• Confidence level: object detection model output score linked to the bounding of the
object detected.

• Intersection over union IoU: the ratio of the area of overlap between the predicted
bounding box and the ground truth bounding box to the area of union between the
two boxes. The most common IoU thresholds used are 0.5 and 0.7.

• Basic measures: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).

• Precision: the number of true positive predictions divided by the total number of
positive predictions.

• Recall: the number of true positive predictions divided by the total number of ground
truth objects.

Precision–recall curve: The precision–recall curve [52] is a good way to evaluate the
performance of an object detector as the confidence is changed. In the case of 3D object
detection, to make things clearer, we provide an example to better understand how the
precision–recall curve is plotted. Considering the detections as seen in Figure 6, there
are 6 images with 10 ground truth objects represented by the red bounding boxes and 21
detected bounding boxes shown in green. Each green bounding box must have a confidence
level greater than 50% to be considered as a detected object and is identified by a letter
(B1, B2, . . ., B21).



Sensors 2023, 23, 3223 12 of 20

B1: Conf. 81% IOU 10%

Image 1

Image 4 Image 5 Image 6

Image 2 Image 3

B2: Conf. 71% IOU 80%

B3: Conf. 77% IOU 0%

B6: Conf.67% IOU 0%

B5: Conf. 87% IOU 71%

B4: Conf. 70% IOU 11%

B7: Conf. 55% IOU 20%

B8: Conf. 65% IOU 6%

B9: Conf. 75% 
IOU 5%

B10: Conf. 85%   
IOU 82%

B11: Conf. 54% IOU 0%

B12: Conf. 57% IOU 2%

B14: Conf. 59% IOU 4 %

B13: Conf. 77% IOU 13%

B15: Conf. 51% IOU 0%

B16: Conf. 61% IOU 4 %

B17: Conf. 71% IOU 31%
B18: Conf. 91% 

IOU 37%

B19: Conf. 81% 
IOU 35%

B20: Conf. 88% 
IOU 100%

B21: Conf. 91% IOU 8%

Figure 6. Example of how the precision–recall curve is generated for six different images. Red
bounding boxes show ground truth objects while green bounding boxes indicate detected objects.

Table 3 shows the bounding boxes with their corresponding confidences. The last
column identifies the detections as TP or FP. In this example, a TP is considered if the IoU
is greater than or equal to 0.2, otherwise, it is a FP.

Table 3. True and false positive-detected bounding boxes with their corresponding confidence levels.
Det. and Conf. denote detection and confidence, respectively.

Images Det. Conf. TP/ FP

Image 1 B1 81% FP
Image 1 B2 71% TP
Image 1 B3 77% FP
Image 2 B4 67% FP
Image 2 B5 70% TP
Image 2 B6 87% FP
Image 3 B7 55% TP
Image 3 B8 65% FP
Image 3 B9 75% FP
Image 3 B10 85% TP
Image 3 B11 54% FP
Image 4 B12 57% FP
Image 4 B13 77% FP
Image 4 B14 59% FP
Image 4 B15 51% FP
Image 5 B16 61% FP
Image 5 B17 71% TP
Image 5 B18 91% TP
Image 5 B19 81% FP
Image 6 B20 88% TP
Image 6 B21 91% FP

For some images, there is more than one detection overlapping a ground truth (see
images 2, 3, 4, 5, 6 from Figure 6). In those cases, the predicted box with the highest IoU is
considered a TP and all others as FPs (in image 2: B5 is a TP while B4 is a FP because the IoU
between B5 and the ground truth is greater than the IoU between B4 and the ground truth).
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The precision–recall curve is plotted by calculating the precision and recall values of
the accumulated TP or FP detections. For this, first, we need to order the detections by their
confidence levels, then we calculate the precision and recall for each accumulated detection
as shown in Table 4 (note that for the recall computation, the denominator term is constant
and equal to 10 since ground truth boxes are constant irrespective of detection).

Table 4. Precision and recall for each accumulated detection bounding box ordered by the confidence
measure. Det., Conf., and Acumm. denote detection, confidence, and accumulated, respectively.

Images Det. Conf. TP FP Accum. TP Accum. FP Precision Recall

Image 5 B18 91% 1 0 1 0 1 0.09
Image 6 B21 91% 0 1 1 1 0.5 0.09
Image 6 B20 88% 1 0 2 1 0.666 0.181
Image 2 B6 87% 0 1 2 2 0.5 0.181
Image 3 B10 85% 1 0 3 2 0.6 0.272
Image 1 B1 81% 0 1 3 3 0.5 0.272
Image 5 B19 81% 0 1 3 4 0.428 0.272
Image 1 B3 77% 0 1 3 5 0.375 0.272
Image 4 B13 77% 0 1 3 6 0.333 0.272
Image 3 B9 75% 0 1 3 7 0.3 0.272
Image 1 B2 71% 1 0 4 7 0.363 0.363
Image 5 B17 71% 1 0 5 7 0.416 0.454
Image 2 B5 70% 1 0 6 7 0.461 0.545
Image 2 B4 67% 0 1 6 8 0.428 0.545
Image 3 B8 65% 0 1 6 9 0.4 0.545
Image 5 B16 61% 0 1 6 10 0.375 0.545
Image 4 B14 59% 0 1 6 11 0.353 0.545
Image 4 B12 57% 0 1 6 12 0.333 0.545
Image 3 B7 55% 1 0 7 12 0.368 0.636
Image 3 B11 54% 0 1 7 13 0.35 0.636
Image 4 B15 51% 0 1 7 14 0.333 0.636

5.2. Ablation Results

This section deals with the use of precision–recall curves to better understand the
effect and the role of each component of SLS–Fusion on the entire model performance. It
corresponds to the stereo component and the LiDAR component (changing the number of
LiDAR beams from 4 to 64). To do this evaluation, we used the KITTI evaluation benchmark
of 3D bounding boxes or 2D bounding boxes in BEV to compute precision–recall curves
for detection, as explained in the previous section. The BEV for autonomous vehicles is
a vision monitoring system that is used for better evaluation of obstacle detection. This
system normally includes between four and six fisheye cameras mounted around the car to
provide right, left, and front views of the car’s surroundings.

Figure 7 shows the precision–recall (P–R) curves obtained by taking into account,
respectively, stereo cameras, 4-beam LiDAR, 8-beam LiDAR, 16-beam LiDAR, and 64-beam
LiDAR. As shown in that figure, an object detector is considered good if its precision stays
high as the recall increases, which means that only relevant objects are detected (0 false
positives = high precision) when finding all ground truth objects (0 false negatives = high
recall). On the other hand, a poor object detector is one that needs to increase the number of
detected objects (increasing false positives = lower precision) in order to retrieve all ground
truth objects (high recall). That is why the P–R curve usually starts with high precision
values, decreasing as recall increases. Finally, detection results are divided into three levels
of difficulty (easy, moderate, or hard) mainly depending on the dimension of the bounding
box and the level of occlusion of the detected objects, especially for cars.
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Figure 7. Precision–recall (P–R) curves obtained for the detection of 3D objects (right column) and 2D
objects in BEV (left column). In this graph, the minimal recall shows the first recall value obtained
when the P–R curve starts to drop sharply and the precision score is still higher or equal to 0.7.

In summary, the P–R curve represents the trade-off between precision (positive pre-
dictive value) and recall (sensitivity) for a binary classification model. In object detection,
a good P–R curve is close to the top-right corner of the graph, indicating high precision
and recall. To provide a comprehensive evaluation of the performance of object detection
models, represented by the shape of the P–R curves, a new metric called “minimal recall” is
added to the graph. The minimal recall is defined exactly as the first recall value obtained
when the P–R curve starts to drop sharply and the precision score is always higher or equal
to 0.7 (this value is fixed experimentally). The best detector is then the detector that can
achieve a high precision score (higher than 0.7) while the minimal recall score is closest to
1. Graphically, this means that a model that achieves a low level of detection will have a
“minimal recall” that follows the left side of the graph, while a model that achieves a high
level of detection will have a “minimal recall” that follows the right side of the graph.

Based on this idea, the P–R curves obtained for 2D objects in BEV are always better
than those obtained for 3D objects. This is because the level of inaccuracy in detecting
bounding boxes in 3D is always greater than in 2D. However, detecting the surrounding
cars in the BEV projection view reduces the precision of estimating the distance of detected
objects (cars) from the autonomous vehicle. P–R curves for the stereo camera show better
results than four-beam LiDAR (BEV/3D minimal recall is 0.6/0.4 for stereo; BEV/3D
minimal recall is 0.4/0.18 for LiDAR for the hard level of difficulty). However, fusing the
two sensors (stereo camera and four-beam LiDAR) improves the detection performance
(BEV/3D minimal recall is 0.63/0.42 in the hard level of difficulty). On the other hand,
when the number of beams of LiDAR passes from a low-cost 4-beam LiDAR to a high-cost
64-beam LiDAR, the detector provides the best P–R curves (BEV/3D minimal recall is
0.65/0.45 in the hard level of difficulty).

Another way of comparing object detection performance is to compute the area
under the curve (AUC) of the P–R. The AUC can also be interpreted as the approximated
average precision (AP) for all recall values between 0 and 1. In practice, AP is obtained by
interpolating through all n points in such a way that:
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AP =
n

∑
i=0

(ri+1 − ri) ∗ max
r̃:r≥ri+1

(p(r̃)) (1)

where p(r̃) is the measured precision at recall r̃.
The statistical properties of various methods to estimate AUC were investigated

by [53], together with different approaches to constructing 95% of the confidence interval
(CI). The CI represents the range within which 95% of the values from the P–R curve are
distributed. Thus, this parameter corresponds to the dispersion around the AUC.

Hence, using the AUC for performance, and the asymmetric logit intervals presented
in [53] for constructing the CI, Table 5 presents the 3D obstacle detection performance and
the corresponding CI for an IoU of 0.7. Each cell of this table contains a pair of numbers
(A/B) corresponding to the results obtained with the APBEV/AP3D metrics. In the upper
side of the table, we consider the stereo camera and the different LiDAR sensors taken
separately. When the sensors are taken separately, the stereo provides the following results:
82.38/68.08%, 65.42/50.81%, and 57.81/46.07% going from easy to hard. If we consider the
LiDAR as taken separately, we can see that the 64-beam LiDAR provides the best results:
87.83/75.44%, 75.75/60.84%, and 69.07/55.95% going from easy to hard. Considering
the progression of the detection as a function of the number of beams, an almost linear
progression from 4 to 64 beams can be observed.

Table 5. Evaluation of 3D object detection performance by a stereo camera, different types of LiDARs,
and the fusion of those. In the upper part of the table, the performance (measured using the area
under the curve (AUC) in the P–R curve) and the confidence interval(s) (CI) of the stereo camera and
LiDAR 4, 8, 16, and 64 beams are shown with respect to three levels of difficulties for objects to detect
(easy, moderate, and hard). The bottom of the table presents the detection performance and CI using
fusion between a stereo camera and LiDAR, i.e., 4-beam (S+L4), 8-beam (S+L8), 16-beam (S+L16),
and 64-beam (S+L64). Each result is provided according to two indicators: average precision BEV
(left)/average precision 3D (right).

Easy Moderate Hard

Se
ns

or
s

S AUC 82.38/68.08 65.42/50.81 57.81/46.07

95% CI [81.75, 82.99]/[67.31, 68.84] [64.64, 66.19]/[49.99, 51.63] [57.00, 58.61]/[45.26, 46.89]

L4 AUC 56.72/38.82 49.25/32.02 44.14/29.75

95% CI [55.91, 57.53]/[38.03, 39.62] [48.43, 50.07]/[31.26, 32.79] [43.33, 44.95]/[29.01, 30.5]

L8 AUC 84.55/68.75 65.68/50.39 58.78/45.75

95% CI [83.95, 85.13]/[67.99, 69.5] [64.9, 66.45]/[49.57, 51.21] [57.97, 59.58]/[44.94, 46.57]

L16 AUC 85.15/70.01 68.70/52.55 60.13/47.49

95% CI [84.56, 85.72]/[69.26, 70.75] [67.94, 69.45]/[51.73, 53.37] [59.33, 60.93]/[46.67, 48.31]

L64 AUC 87.83/75.44 75.75/60.84 69.07/55.95

95% CI [87.29, 88.35]/[74.73, 76.14] [75.04, 76.44]/[60.04, 61.63] [68.31, 69.82]/[55.14, 56.76]

Se
ns

or
s

S+L4 AUC 87.51/76.67 76.88/63.90 73.55/56.78

95% CI [86.96, 88.04]/[75.97, 77.35] [76.18, 77.56]/[63.11, 64.68] [72.82, 74.26]/[55.97, 57.59]

S+L8 AUC 87.52/76.67 76.96/63.99 73.63/56.95

95% CI [86.97, 88.05]/[75.97, 77.35] [76.26, 77.64]/[63.2, 64.77] [72.9, 74.34]/[56.14, 57.76]

S+L16 AUC 87.74/76.88 76.98/64.10 73.91/57.05

95% CI [87.19, 88.27]/[76.18, 77.56] [76.28, 77.66]/[63.31, 64.88] [73.19, 74.62]/[56.24, 57.86]

S+L64 AUC 88.06/77.44 77.18/64.84 74.33/57.25

95% CI [87.52, 88.58]/[76.75, 78.12] [76.49, 77.86]/[64.06, 65.62] [73.61, 75.04]/[56.44, 58.06]

The bottom of Table 5 presents the performance and CI resulting from the fusion
between the stereo camera and the different types of LiDAR. In Table 5, we immediately
notice that, when compared with the stereo camera alone, there is improvement in the 3D
object detection when the stereo camera is fused with the LiDAR with the lowest number of
beams (four-beam); this is true for all levels of object detection difficulties (easy, moderate,
and hard). In addition, we note that the stereo camera and 4-beam LiDAR combination
provides slightly better results than those obtained with the 64-beam LiDAR in the easy and
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moderate modes. On the other hand, what is surprising is that the detection performance
barely improved when the number of beams increased (less than a 1% difference between
S+L4 and S+L64). Moreover, CI values from S+L4 and S+L64 (the cheapest and the most
expensive combinations) are compared. From this comparison, there is an overlap between
the CI of S+L4 (e.g., easy = [86.96, 88.04]) and the CI of S+L64 (easy = [87.52, 88.58]) for all
levels of object detection difficulties, meaning that for the fusion between the stereo camera
and LiDAR, there is no significance when moving from one architecture to another.

The obtained results could be related to the dataset processed. Thus, to deepen this
analysis, other datasets other than KITTI must be used. This is perspective work. In any
case, the best solution is obtained by fusing both sensors. This proves that each component
of the SLS–Fusion architecture effectively contributes to the final performance of the model,
and we cannot eliminate these components of the neural network architecture in all possible
cases: low-cost, medium-cost, or high-cost LiDAR sensors.

6. Conclusions

In this work, we analyzed the contribution of a stereo camera and different versions of
LiDAR (4 to 64 beams) to the performance of the SLS–Fusion model in detecting 3D obstacles,
through an ablation study. Based on the ablation analysis and the different measurements
used to evaluate our detection algorithm, it has been shown that sensors performed better
when fused. The quantitative results showed that the detection performance drops moder-
ately with each component disabled (stereo camera or LiDAR) or by modifying the number
of LiDAR beams, and the full model works best. Moreover, this fusion approach was found
to be very useful in detecting 3D objects in foggy weather conditions [54].

This analysis allowed us to identify several inherent characteristics of video and
LiDAR. The camera’s resolution provides an undeniable and important advantage over
LiDAR, as it captures information through pixels, which makes a significant difference
even if the number of layers for the LiDAR is increased. Using two cameras makes it
possible to measure distances to obstacles while keeping the same resolution because depth
is calculated on all the pixels (dense stereo vision). LiDAR is mainly useful for determining
distances. By extension, it also allows us to know the size and volume of objects very
precisely, which can be extremely useful when classifying objects (cars, pedestrians, etc.).

In terms of resolution, LiDAR is limited to the fact that each of its pixels is a laser. A
laser light means that we have a focused light. It is a point that does not deform and it
allows high precision. It is more complicated to multiply the lasers in a very small space,
and that is why, for the moment, LiDAR has a much lower resolution than the camera. A
classic smartphone-type camera provides 8 million pixels per image, while LiDAR will
have around 30,000 pixels (at the most). An advantage of LiDAR is its ability to adapt to
changes in light, which is a strong disadvantage for imaging. As a consequence, the two
types of sensors must be used in a complementary way.

In conclusion, SLS–Fusion is an effective obstacle detection solution for low and high
cost LiDAR when combined with a stereo camera; an optimal cost-effective solution is
achieved with the most economical four-beam LiDAR component. To better generalize the
SLS-Fusion model and find the optimal balance between obstacle detection performance
and the cost of the LiDAR component, it is desirable to test the model on various datasets
and environments, such as waymo [55], nuScenes [56], or argoverse2 [57].

7. Perspectives to Go Further

To better understand the role and contribution of each technology to obstacle detection,
it is necessary to make a more detailed analysis of the objects detected by one sensor or the
other. Each type of sensor detects a list of objects with their 3D positions.

It is then necessary to merge the two lists of objects by following a rigorous procedure.
In our system, when we consider the sensors separately, each provides a list of detected
objects (included in 3D boxes) belonging to the same scene. We can develop a fusion module
that would take as input the two lists of objects detected by the two types of sensors. In this
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case, the fusion module takes as input the list of the detected objects provided by both kinds
of sensors and delivers a fused list of detected objects. For each object, we have the centroid
of the bounding box, the class of the object, and the number of sensors that detected the
object. To perform fusion between data from LiDAR and stereo vision objects, we could, for
example, project the objects detected by stereo vision processing onto the laser plane.

Object association: In this step, we determine which stereo objects are to be associated
with which LiDAR objects from the two object lists using, for example, the nearest neighbor
technique. We could define a distance between the centroids of the objects detected by
stereo and LiDAR. Then we can associate the current stereo object to the nearest LiDAR
object from the stereo object, using as a reference point the coordinate points of the sensors
installed on the vehicle. Exploiting the depths calculated by the stereo and the LiDAR, we
only need to compare objects whose centroids are very close to each other (with a threshold)
from the reference point. The result of this fusion process is a new list of fused objects. This
list has the LiDAR objects, which could not be associated with stereo objects, and all of the
stereo objects, which could not be associated with some LiDAR objects. By doing this, we
can more objectively analyze the advantages and disadvantages of the two technologies,
in what circumstance, for what type of object, at what distance, and with what brightness.
The output of the fusion process consists of a fused list of objects. For each object, we have
position (centroid) information, dynamic state information, classification information, and
a count of the number of sensors (and for how many beams) detecting this object. This
work is under development.

Author Contributions: Conceptualization, P.H.S., J.M.R.V. and N.A.M.M.; methodology, P.H.S.,
J.M.R.V., G.S.P., and L.K.; software, P.H.S. and N.A.M.M.; validation, P.H.S., J.M.R.V., L.K. and S.A.V.;
formal analysis, P.H.S., J.M.R.V., G.S.P., L.K., N.A.M.M., P.D., A.C. and S.A.V.; investigation, P.H.S.,
J.M.R.V. and L.K.; resources, N.A.M.M. and P.D.; data curation, P.H.S. and N.A.M.M.; writing—
original draft preparation, P.H.S., J.M.R.V., L.K., P.D., A.C. and S.A.V.; writing—review and editing,
P.H.S., J.M.R.V., G.S.P., L.K., P.D., A.C. and S.A.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.
2. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 10526–10535. [CrossRef]

3. He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure Aware Single-Stage 3D Object Detection From Point Cloud. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 11870–11879. [CrossRef]

4. Velodyne’s HDL-64E Lidar Sensor Looks Back on a Legendary Career. Available online: https://velodynelidar.com/blog/hdl-64
e-lidar-sensor-retires/ (accessed on 20 February 2022).

5. You, Y.; Wang, Y.; Chao, W.L.; Garg, D.; Pleiss, G.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR++: Ac-
curate Depth for 3D Object Detection in Autonomous Driving. In Proceedings of the International Conference on Learning
Representations (ICLR), Virtual Conference, 26 April–1 May 2020.

6. Chen, Y.; Liu, S.; Shen, X.; Jia, J. DSGN: Deep Stereo Geometry Network for 3D Object Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12533–12542. [CrossRef]

7. Li, C.; Ku, J.; Waslander, S.L. Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January
2021; pp. 5776–5783. [CrossRef]

http://doi.org/10.1109/CVPR42600.2020.01054
http://dx.doi.org/10.1109/CVPR42600.2020.01189
https://velodynelidar.com/blog/hdl-64e-lidar-sensor-retires/
https://velodynelidar.com/blog/hdl-64e-lidar-sensor-retires/
http://dx.doi.org/10.1109/CVPR42600.2020.01255
http://dx.doi.org/10.1109/IROS45743.2020.9341188


Sensors 2023, 23, 3223 19 of 20

8. Wang, Y.; Chao, W.L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR From Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8437–8445. [CrossRef]

9. Mai, N.A.M.; Duthon, P.; Khoudour, L.; Crouzil, A.; Velastin, S.A. Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth
Estimation and 3D Object Detection. In Proceedings of the the International Conference of Pattern Recognition Systems (ICPRS),
Universidad de Talca, Curico, Chile, 17–19 March 2021; Volume 2021, pp. 150–156.

10. Qiu, J.; Cui, Z.; Zhang, Y.; Zhang, X.; Liu, S.; Zeng, B.; Pollefeys, M. DeepLiDAR: Deep Surface Normal Guided Depth Prediction
for Outdoor Scene From Sparse LiDAR Data and Single Color Image. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3308–3317. [CrossRef]

11. Valeo Scala LiDAR. Available online: https://www.valeo.com/en/valeo-scala-lidar/ (accessed on 17 February 2022).
12. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 770–779.
[CrossRef]

13. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Rob. Res. 2013, 32, 1231–1237. [CrossRef]
14. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
[CrossRef]

15. Mai, N.A.M.; Duthon, P.; Khoudour, L.; Crouzil, A.; Velastin, S.A. 3D Object Detection with SLS-Fusion Network in Foggy
Weather Conditions. Sensors 2021, 21, 6711. [CrossRef] [PubMed]

16. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D Object Detection Network for Autonomous Driving. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6526–6534.
[CrossRef]

17. Qin, Z.; Wang, J.; Lu, Y. Triangulation Learning Network: From Monocular to Stereo 3D Object Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 7607–7615. [CrossRef]

18. Li, P.; Chen, X.; Shen, S. Stereo R-CNN Based 3D Object Detection for Autonomous Driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7636–7644.
[CrossRef]

19. Meyes, R.; Lu, M.; de Puiseau, C.W.; Meisen, T. Ablation Studies in Artificial Neural Networks. arXiv 2019, arXiv:1901.08644.
[CrossRef]

20. Rivera Velázquez, J.M.; Khoudour, L.; Saint Pierre, G.; Duthon, P.; Liandrat, S.; Bernardin, F.; Fiss, S.; Ivanov, I.; Peleg, R. Analysis
of Thermal Imaging Performance under Extreme Foggy Conditions: Applications to Autonomous Driving. J. Imaging 2022, 8, 306.
[CrossRef]

21. Chabot, F.; Chaouch, M.; Rabarisoa, J.; Teuliere, C.; Chateau, T. Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint
2D and 3D Vehicle Analysis from Monocular Image. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1827–1836. [CrossRef]

22. Xu, B.; Chen, Z. Multi-level Fusion Based 3D Object Detection from Monocular Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2345–2353.
[CrossRef]

23. Chang, J.R.; Chen, Y.S. Pyramid Stereo Matching Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5410–5418. [CrossRef]

24. Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [CrossRef]
25. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 77–85. [CrossRef]

26. Beltran, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; Garcia, F.; De La Escalera, A. BirdNet: A 3D Object Detection Framework
from LiDAR Information. In Proceedings of the IEEE InternationalConference Intelligent Transportation Systems (ITSC), Maui,
HI, USA, 4–7 November 2018; pp. 3517–3523. [CrossRef]

27. Liu, T.; Yang, B.; Liu, H.; Ju, J.; Tang, J.; Subramanian, S.; Zhang, Z. GMDL: Toward precise head pose estimation via Gaussian
mixed distribution learning for students’ attention understanding. Infrared Phys. Technol. 2022, 122, 104099. [CrossRef]

28. Liu, T.; Wang, J.; Yang, B.; Wang, X. NGDNet: Nonuniform Gaussian-label distribution learning for infrared head pose estimation
and on-task behavior understanding in the classroom. Neurocomputing 2021, 436, 210–220. [CrossRef]

29. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. LaserNet: An Efficient Probabilistic 3D Object Detector
for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 12669–12678. [CrossRef]

30. Gigli, L.; Kiran, B.R.; Paul, T.; Serna, A.; Vemuri, N.; Marcotegui, B.; Velasco-Forero, S. Road segmentation on low resolution
LiDAR point clouds for autonomous vehicles. arXiv 2020, arXiv:2005.13102. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2019.00864
http://dx.doi.org/10.1109/CVPR.2019.00343
https://www.valeo.com/en/valeo-scala-lidar/
http://dx.doi.org/10.1109/CVPR.2019.00086
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/CVPR.2012.6248074
http://dx.doi.org/10.3390/s21206711
http://www.ncbi.nlm.nih.gov/pubmed/34695925
http://dx.doi.org/10.1109/CVPR.2017.691
http://dx.doi.org/10.1109/CVPR.2019.00780
http://dx.doi.org/10.1109/CVPR.2019.00783
http://dx.doi.org/10.48550/ARXIV.1901.08644
http://dx.doi.org/10.3390/jimaging8110306
http://dx.doi.org/10.1109/CVPR.2017.198
http://dx.doi.org/10.1109/CVPR.2018.00249
http://dx.doi.org/10.1109/CVPR.2018.00567
http://dx.doi.org/10.3390/rs12111729
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1109/ITSC.2018.8569311
http://dx.doi.org/10.1016/j.infrared.2022.104099
http://dx.doi.org/10.1016/j.neucom.2020.12.090
http://dx.doi.org/10.1109/CVPR.2019.01296
http://dx.doi.org/10.48550/ARXIV.2005.13102


Sensors 2023, 23, 3223 20 of 20

31. Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3Deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 1355–1361. [CrossRef]

32. Xu, D.; Anguelov, D.; Jain, A. PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 244–253.
[CrossRef]

33. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3D Proposal Generation and Object Detection from View
Aggregation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 1–8. [CrossRef]

34. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
[CrossRef]

35. Zhu, H.; Deng, J.; Zhang, Y.; Ji, J.; Mao, Q.; Li, H.; Zhang, Y. VPFNet: Improving 3D Object Detection with Virtual Point based
LiDAR and Stereo Data Fusion. IEEE Trans. Multimedia 2022, 1–14. [CrossRef]

36. Hameed, I.; Sharpe, S.; Barcklow, D.; Au-Yeung, J.; Verma, S.; Huang, J.; Barr, B.; Bruss, C.B. BASED-XAI: Breaking Ablation
Studies Down for Explainable Artificial Intelligence. arXiv 2022, arXiv:2207.05566. [CrossRef]

37. Liu, T.; Wang, J.; Yang, B.; Wang, X. Facial expression recognition method with multi-label distribution learning for non-verbal
behavior understanding in the classroom. Infrared Phys. Technol. 2021, 112, 103594. [CrossRef]

38. Li, X.; Li, T.; Li, S.; Tian, B.; Ju, J.; Liu, T.; Liu, H. Learning fusion feature representation for garbage image classification model in
human–robot interaction. Infrared Phys. Technol. 2023, 128, 104457. [CrossRef]

39. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 1–74. [CrossRef] [PubMed]

40. Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The computational limits of deep learning. arXiv 2020, arXiv:2007.05558.
Available online: https://doi.org/10.48550/ARXIV.2007.05558 (accessed on 21 November 2022).
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