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Abstract: Axial postural abnormalities (aPA) are common features of Parkinson’s disease (PD)
and manifest in over 20% of patients during the course of the disease. aPA form a spectrum of
functional trunk misalignment, ranging from a typical Parkinsonian stooped posture to progressively
greater degrees of spine deviation. Current research has not yet led to a sufficient understanding of
pathophysiology and management of aPA in PD, partially due to lack of agreement on validated,
user-friendly, automatic tools for measuring and analysing the differences in the degree of aPA,
according to patients’ therapeutic conditions and tasks. In this context, human pose estimation
(HPE) software based on deep learning could be a valid support as it automatically extrapolates
spatial coordinates of the human skeleton keypoints from images or videos. Nevertheless, standard
HPE platforms have two limitations that prevent their adoption in such a clinical practice. First,
standard HPE keypoints are inconsistent with the keypoints needed to assess aPA (degrees and
fulcrum). Second, aPA assessment either requires advanced RGB-D sensors or, when based on the
processing of RGB images, they are most likely sensitive to the adopted camera and to the scene
(e.g., sensor–subject distance, lighting, background–subject clothing contrast). This article presents
a software that augments the human skeleton extrapolated by state-of-the-art HPE software from
RGB pictures with exact bone points for posture evaluation through computer vision post-processing
primitives. This article shows the software robustness and accuracy on the processing of 76 RGB
images with different resolutions and sensor–subject distances from 55 PD patients with different
degrees of anterior and lateral trunk flexion.

Keywords: axial postural abnormalities; human pose estimation; deep learning; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease and
is characterized by non-motor and motor symptoms [1–6]. Among the latter, axial postural
abnormalities (aPA) are a frequent complication associated with back pain, reduced mobility
and postural instability, thus leading to higher risk of falls and reduced quality of life [7–9].
Clear definitions and cut-off values for axial postural abnormalities in people with PD and
atypical Parkinsonisms were recently given to avoid heterogeneity of the reported results
and lack of clarity in the literature, and to foster advances on diagnosis, management and
prevention [10].

Among aPA, camptocormia (CC) and Pisa syndrome (PS) indicate reversible severe
flexions of the trunk on the sagittal (with thoracic fulcrum—tCC: anterior flexion at C7–T12
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vertebrae > 45◦; with lumbar fulcrum—lCC: anterior flexion at L1–L5 vertebrae > 30◦

and hip flexion) and coronal planes (lateral flexion > 10◦), respectively, [10]. Their reliable
evaluation and early recognition may help tuning pharmacological [11] and physical [12]
therapies for their management [13].

The analysis of posture is normally performed with stereophotogrammetric systems,
force platforms [14,15] and inertial sensors [16]. To the best of the authors’ knowledge,
these approaches are not normally used to assess CC and PS. The only exception is given
in [17], where the authors proposed a marker-based approach complemented with a ground
reaction force analysis to investigate the effects of PS on standing posture and gait symmetry,
with a particular focus on joint kinematics and weight distribution. However, no direct
assessment of aPA was proposed.

aPA have been recently evaluated with Kinovea [18]. Kinovea is an open-source
video annotation tool able to measure angles after virtual palpation of landmarks on RGB
images/videos (www.kinovea.org, accessed on 2 September 2022). Following an equivalent
approach, NeuroPostureApp© (www.neuroimaging.uni-kiel.de, accessed on 2 September
2022) provides clinicians with PS and CC measures, both with the lumbar and thoracic
fulcrum [19].

The Task Force on Postural Abnormalities in Parkinsonism, within the International
Movement Disorders Society, has recently established the consensus on nosology and
cut-off values, and recommended the use of either the NeuroPostureApp©, or the wall
goniometer [20] as state-of-the-art methods to evaluate aPA, with the wall goniometer
potentially underestimating such measures [10].

The NeuroPostureApp© has been developed by Kiel University, following the def-
initions given in [19,21] and calls for an operator to collect a picture of the undressed
subject and to virtually palpate landmarks on that picture. Then, NeuroPostureApp© can
calculate the following angles: (i) tCC, defined as the external angle between the line joining
the fulcrum of the spine flexion and the fifth lumbar vertebra process (L5), and the line
connecting the fulcrum of the spine flexion to the seventh cervical vertebra process (C7);
(ii) lCC, defined as the external angle between the line joining L5 and the visible lateral
malleolus, and the line connecting L5 to C7; (iii) PS, which is the external angle between
the line joining the midpoint between the feet and L5, and the line connecting L5 to C7 [19].
The intra-subject test–retest and the inter-operator reliability were found to be excellent for
CC and good for PS evaluation [21]. However, virtual palpation of landmarks is strongly
operator-dependent, calling for extensive training and is thus time-consuming.

Software based on human pose estimation (HPE) [22] could be a valid markerless
alternative to virtual landmark recognition and palpation. HPE algorithms are based
on convolutional neural networks (CNN) that automatically identify feature points of
the human body, defined as keypoints, on images captured through standard digital
cameras [23,24]. There is increasing interests from the scientific community in the applica-
tion of HPE algorithms to study motion and posture, with many validation studies have
been published [25,26].

A HPE approach has been recently used to assess aPA in people with PD [27]. Nev-
ertheless, keypoints normally identified by HPE algorithms are not sufficient to assess
aPAs as defined by the Movement Disorders Society criteria [10]. Specifically, the missing
keypoints needed to measure CC with thoracic and lumbar fulcra, and PS are: the last
cervical vertebra (C7), the last lumbar vertebra (L5), the mid-point between the two ankles
(MA), and the most distant point on the participant silhouette from the line joining C7 and
L5 on the sagittal view (FC).

Zhang et al. proposed the use of a depth camera (RGB-D sensor, Microsoft Kinect v2)
to extend the standard set of HPE keypoints, detecting the human silhouette [28]. Recently,
several solutions exist to extrapolate depth information both directly (i.e., through RGB and
matrix depth sensors) or indirectly (i.e., stereo RGB cameras) [26]. Although being validated
and reliable solutions, there is a trade-off between the usability, portability and accuracy
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of such systems [29]. Moreover, these methods call for specific devices to be available, or
specialized users to be involved, possibly limiting their applicability to every-day use.

More recently, a software-based tool, called AutoPosturePD, was proposed to auto-
matically evaluate PS, lCC and tCC from RGB pictures of people with PD, taken with single
off-the-shelf cameras (i.e., with no need of depth information) and no additional human
input (e.g., virtual landmark palpation) [30]. AutoPosturePD measures PS, lCC and tCC as
defined by the Task Force on Postural Abnormalities in Parkinsonism of the International
Movement Disorders Society [10]. The authors presented an agreement analysis between
the measures obtained with NeuroPostureApp© (i.e., the gold standard) [19] and the
newly proposed AutoPosturePD, with the aim of evaluating its accuracy in the diagnosis
of aPA (reporting Bland–Altman plots, intra-class correlation coefficients, standard error
of measurements and Cohen’s kappa), and encompassing sensitivity and specificity in
the diagnosis of PS and CC against the current gold standard [30]. AutoPosturePD was
found to be a valid tool for the clinical assessment of of PS, lCC and tCC in PD, supporting
their diagnosis [30]. AutoPosturePD was used to measure the aPA of each participant and
classify whether they had passed the thresholds [10] to define a pathological condition,
thus running a sensitivity and specificity analysis of the software and obtaining excellent
results [30].

It is worth noting that AutoPosturePD automatically measures the aPA starting from
images taken with a single off-the-self camera, with no additional information to be fed to
the algorithm. Parameters that could prevent AutoPosturePD from accurately identifying
landmarks include the subject’s anthropometry, image resolution, the ratio between the
subject image size and total image size, and the hue saturation values of the images.

However, AutoPosturePD’s robustness to participant anthropometry and picture
characteristics, ensuring its portability to different devices, was not tested.

The aim of this work is to fill this gap, presenting a secondary analysis on the same
dataset used in [30] and to test the robustness of AutoPosturePD outcome measures to the
above-mentioned parameters, ensuring its portability to different devices and different
environmental settings (i.e., viewpoints, background colours, room lighting, etc.). This
article also presents a more extended and deep description of the software.

2. Materials and Methods
2.1. The AutoPosturePD Software

The state-of-the-art HPE solutions to implement inference on images (or video frames)
to extrapolate a set of human body keypoints (KPS):

KPS = {kpi
j : i = 1 . . . |VF|, j = 1 . . . |CNN_kps|} (1)

where kpi
j is the j-th keypoint at the i-th frame, and |CNN_kps| is the total number of

keypoints detected through the adopted convolutional neural network (CNN) per frame,
with |VF| being the number of processed video frames. All HPE platforms provide a
common subset of canonical keypoints (i.e., estimates of the human joint centres or seg-
ment centroid), including left and right shoulders (LSH, RSH), elbows (LE, RE), wrists
(LW, RW), pelvis (P), knees (LK, RK), ankles (LA, RA), and face points such as nose (N),
eyes (LEye, REye), and ears (LEar, REar).

Figure 1 shows the platform overview used to augment the set of canonical KPS
with two additional sets of keypoints, F− KPS and S− KPS as proposed in [30], for the
assessment of PS, and lCC and tCC, respectively. OpenPose [31], being an accurate state-of-
the-art HPE software [32], was used to extrapolate the canonical 2D human keypoints. We
selected the BODY25 model trained with the COCO [33] and MPII datasets [34] to train
OpenPose and extrapolate a set of 25 keypoints.
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Figure 1. Overview of the measurement pipeline.

2.1.1. F− KPS for Frontal View Analysis—PS Assessment

We defined the subset F − KPS = {C7, L5, MA}, where C7, L5, and MA are the
seventh cervical vertebra, the fifth lumbar vertebra and the mid-point between the two
ankles, respectively. They are extrapolated geometrically from the canonical KPS as follows
from a frontal plane image of the subject. C7 is the most prominent point on the sagittal
view of the neck along the spine [35] (see Figure 2). AutoPosturePD geometrically identifies
this point as the intersection of the segments connecting the shoulder keypoints (LSH, RSH)
to the ear keypoints (LEar, REar), as shown in Figure 2. L5 corresponds to the first spinal
process under an imaginary line connecting the two iliac crests [35]. AutoPosturePD first
identifies the middle point (MH) between the left hip (LH) and right hip (RH). Starting
from MH, it draws a vertical segment and identifies L5 at a distance dMH−L5:

dMH−L5 = K1%(avg[(LH − LK), (RH − RK)]) (2)

This is a parametric percentage (K1 = 20) of the average left and right leg length,
estimated as the distance between the hip (LH and RH for the left and right side, respec-
tively) and the knee keypoint (LK and RK for the left and right side, respectively). K1 is a
user-defined parameter that was empirically extrapolated from our experimental results to
map L5 on the fifth lumbar vertebra by taking advantage of the ground truth.

Finally, AutoPosturePD identifies MA as the mid-point between the two ankle key-
points (LA, RA).

2.1.2. S− KPS for Sagittal View Analysis—lCC and tCC assessment

We defined the subset S− KPS = {C7, FC, L5, MA}, given on subjects’ images taken
from the sagittal view, and with FC being the most distant point from the line joining C7
and L5 lying on the subject’s silhouette. The points C7 and L5 also lie on the subject’s
silhouette. Different from [28], which relied on the depth information provided by RGB-D
sensors (i.e., Microsoft Kinect v2), AutoPosturePD extrapolates the subject’s silhouette
through the processing of the RGB pictures.
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Figure 2. Geometrical extrapolation of F-KPS keypoints.

Matching between the subject underwear and background colours, as well as the
environment lighting can strongly impact the accuracy of the subject edge extrapolation.
To reduce accuracy loss, AutoPosturePD implements silhouette rendering and masking as
a first step. This procedure applies a graph cut algorithm (Figure 3a) to extract three class
variants [36]: certain foreground, probable background, certain background. The software
iteratively processes the image and finds the best solution to map each pixel in one of the
following classes:

• Red—background: pixels outside the box (Ywidth ×Yheigth) created around the subject,
where Ywidth = REary − RAy. Ywidth is defined by the user. These pixels are not
considered for the edge extrapolation to reduce false positive pixels.

• Green—foreground: pixels inside the bands connecting adjacent joints: ear with
shoulder (ΓREar,RSH), shoulder with hip (ΓRSH,RH), hip with knee (ΓRH,RK), knee with
ankle (ΓRKJ,RA); likely representing the subject’s limbs.

• Yellow—probable background: pixels are neither of the previous classes.

The foreground is identified as follows:

• the segment σij = PiPj joining two keypoints Pi and Pj, {i, j} = 1. . .|CNN_kps|;
• the segment thickness τij ∈ R+

0 , which is upper bounded by the radius of the body
segment, obtained geometrically through distances between the HPE keypoints;

• the band Γij =
(
σij, τij

)
, defined as the area covered by σij when isotropically expanded

by τij.

From the segmented image, AutoPosturePD extrapolates C7 as follows (see Figure 3b).
It first identifies A in the segment REar− RSH such as:

dRSH−A = K2%(REar− RSH) (3)

This is a parametric percentage (K2 = 40) of the distance between the right ear and
shoulder keypoints (REar and RSH, respectively). The K2 was chosen as the value that
empirically minimizes the error between C7 extrapolated by the software and ground truth.
Starting from A, it identifies C7 as the last point of the mask within the line perpendicular
to the segment connecting the ear and shoulder, passing via A.
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Figure 3. Silhouette rendering and masking (a) and geometrical extrapolation of S-KPS keypoints (b).

L5 is extrapolated via two phases. AutoPosturePD extrapolates L5′ with the same
approach used for L5 in the frontal view. Then, starting from L5′, it implements a search
process to find the last segmented pixel of the subject silhouette. With the same value
K1 = 20 as for the frontal view, we empirically observed an estimation error that is neg-
ligible for most of the subjects. The software extrapolates FC starting from the segment
C7− L5 and moving perpendicularly backwards to the silhouette. For the sagittal view,
AutoPosturePD identifies MA as coincident with the right ankle keypoint.

2.2. Participants and Ethics Statement

76 pictures were collected from 55 PD outpatients from sagittal and frontal views when
clinically relevant. PD participants (39 males; age: 71± 9 years old; BMI: 25.07 ± 3.37 kg/m2)
were enrolled at the Neurology Unit, University Hospital of Verona (Verona, Italy), and
at the Neurology 2 Unit, University-Hospital “Città della Salute e della Scienza” (Turin,
Italy) [30]. More clinical and demographical data are provided in [30].

The study was approved by the Ethics Committee for clinical trials of Verona and
Rovigo (protocol code 1655CESC, 14 March 2018) and all participants provided their written
informed consent prior to participating in the study.

2.3. Procedure

Participants were asked to stand barefoot as still as possible, wearing their underwear
only in front of a neutral wall (i.e., the background was not corrupted by other images or
elements). Considering participants’ clinical evaluation, a total of 76 pictures were taken:
25 recording the frontal plane of participants, which were used to detect and measure PS;
and 51 recording the sagittal plane of participants, which were used to detect and measure
lCC and tCC [10]. Pictures were taken with the lens on level of patients’ hip and from either
a strict posterior (for PS evaluation), or lateral view (for lCC and tCC evaluation) [19].

Each picture was analysed both with the NeuroPostureApp© [19], whose results were
taken as the ground truth, and with AutoPosturePD.

2.4. Statistical Analysis

The validity of the measures obtained with the AutoPosturePD against those taken as
the ground truth (i.e., those obtained with the NeuroPostureApp© [19]) were tested in [30]
and are beyond the aim of the present research.

Given the described processing procedure, it is worth highlighting that: (i) images
used to test and develop AutoPosturePD were taken with various off-the-shelf devices and,
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thus, at various resolutions and hue–saturation–variance; (ii) operators were not instructed
to take pictures at specific distances from the targeted person with PD; and (iii) an intrinsic
variability of participants’ anthropometry (i.e., the body mass index—BMI) could serve as
an additional confusing factor for the algorithm.

To check for AutoPosturePD measure sensitivity to all these quantities, the Pearson’s
correlation coefficient (R) and the significance of the correlation (p < 0.05) were computed
between the AutoPosturePD measured angle and: (i) the participants’ body mass index
(BMI); (ii) the image size in pixels (width, height and area); (iii) the participants’ cover
factor, obtained as the ratio between the subject image size and the total image size in
pixels (width, height and area); and (iv) the colour characteristics of the analysed picture
(hue–saturation—variance (HSV)).

Moreover, to also check for AutoPosturePD measurement error sensitivity to the same
quantities and strengthen the validation study proposed in [30], the Pearson’s correlation
coefficient (R) and the significance of the correlation (p < 0.05) were computed between the
measurement error (i.e., the difference between AutoPosturePD and NeuroPostureApp©
measurements) and: (i) the participants’ body mass index (BMI); (ii) the image size in pixels
(width, height and area); (iii) the participants’ cover factor, obtained as described above;
and (iv) the colour characteristics of the analysed picture (HSV).

Statistical analyses were performed in RStudio (version 2022.12.0+353, Boston, MA, USA).

3. Results

Correlation of the AutoPosturePD measures to participants’ anthropometry were not
significant considering all the aPA (−0.23 < R < 0.0065 and p > 0.30; see Figure 4).
Similar results were obtained when looking at the correlation of the measured angles
with the picture characteristics: no significant correlations with colour characteristics
(−0.17 < R < −0.068 and p > 0.39; Figure 5), and image size (−0.21 < R < 0.45 and
p > 0.066; Figure 6). Significant correlation was instead obtained for: tCC measures with
respect to image width (R = 0.46 and p = 0.026; Figure 6a); and lCC measures with respect
to width cover factor (R = 0.51 and p = 0.0084; Figure 7a), height cover factor (R = −0.43
and p = 0.027; Figure 7b), and area cover factor (R = 0.43 and p = 0.03; Figure 7c).

R = − 0.23, p = 0.3 R = 0.0065, p = 0.98 R = − 0.029, p = 0.9

lCC tCC PS
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Figure 4. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the AutoPosturePD measured angle against the participants’ body mass index (BMI, kg/m2): anterior
trunk flexion with lumbar fulcrum (lCC) in red; camptocormia with thoracic fulcrum (tCC) in green;
and Pisa syndrome (PS) in blue.
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Figure 5. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value)
of the AutoPosturePD measured angle against the picture hue–saturation–variance (HSV): campto-
cormia with lumbar fulcrum (lCC) in red; camptocormia with thoracic fulcrum (tCC) in green; and
Pisa syndrome (PS) in blue.
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Figure 6. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the AutoPosturePD measured angle against the image size (image width in panel (a); image height
in panel (b); and total image area in panel (c)): camptocormia with lumbar fulcrum (lCC) in red;
camptocormia with thoracic fulcrum (tCC) in green; and Pisa syndrome (PS) in blue.
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Figure 7. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the AutoPosturePD measured angle against the participants’ cover factor (ratio between participants
width and image width in panel (a); ratio between participants height and image height in panel (b);
and ratio between total participants’ area and image area in panel (c)): camptocormia with lumbar
fulcrum (lCC) in red; camptocormia with thoracic fulcrum (tCC) in green; and Pisa syndrome (PS)
in blue.

Correlation of the AutoPosturePD measurement error to participants’ anthropometry
and to picture characteristics (i.e., image size, participants cover factor, and colour charac-
teristics) were not significant considering all the aPA (−0.21 < R < 0.19 and p > 0.29). See
Figures 8–11 for details. Exceptions were obtained for the lCC abnormality with respect to:
image height (R = −0.46 and p = 0.019, Figure 10b); width cover factor (R = −0.43 and
p = 0.028, Figure 11a); and area cover factor (R = −0.44 and p = 0.024, Figure 11c).
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Figure 8. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the error (i.e., the difference between the AutoPosturePD and the NeuroPostureApp© measurements)
against the participants’ body mass index (BMI, kg/m2): anterior trunk flexion with lumbar fulcrum
(lCC) in red; camptocormia with thoracic fulcrum (tCC) in green; and Pisa dyndrome (PS) in blue.
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Figure 9. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the error (i.e., the difference between the AutoPosturePD and the NeuroPostureApp© measurements)
against the picture hue–saturation—variance (HSV): camptocormia with lumbar fulcrum (lCC) in
red; camptocormia with thoracic fulcrum (tCC) in green; and Pisa syndrome (PS) in blue.
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Figure 10. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the error (i.e., the difference between the AutoPosturePD and the NeuroPostureApp© measurements)
against the image size (image width in panel (a); image height in panel (b); and total image area in
panel (c)): camptocormia with lumbar fulcrum (lCC) in red; camptocormia with thoracic fulcrum
(tCC) in green; and Pisa syndrome (PS) in blue.
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Figure 11. Scatter plot with Pearson’s correlation coefficient (R) and relevant significance (p value) of
the error (i.e., the difference between the AutoPosturePD and the NeuroPostureApp© measurements)
against the participants’ cover factor (ratio between participants’ width and image width in panel (a);
ratio between participants’ height and image height in panel (b); and ratio between total participants’
area and image area in panel (c)): camptocormia with lumbar fulcrum (lCC) in red; camptocormia
with thoracic fulcrum (tCC) in green; and Pisa syndrome (PS) in blue.

4. Discussion

Early and reliable detection of axial postural abnormalities (aPA) in people with PD,
such as camptocormia and Pisa syndrome, is clinically relevant for their prompt manage-
ment and treatment [10]. A previous study presented a novel low-cost solution, called
AutoPosturePD, for the automatic and reliable evaluation of camptocormia with lumbar
and thoracic fulcrum (lCC and tCC, respectively), and Pisa syndrome (PS) [30]. The pro-
posed algorithm automatically builds a set of keypoints through silhouette extraction [36]
and geometrical post-processes images of people with PD taken with off-the-shelf RGB
cameras, initially processed with a state-of-the-art HPE platform [31,32]. The strengths of
AutoPosturePD are: (i) to not only consider the canonical keypoints obtained with HPE
algorithms [27], which are not sufficient to estimate aPA when dealing with people with
PD [10]; (ii) to not call for any external reference as in [27]; (iii) to call for 2D, rather than 3D
images, as in [28], avoiding the need of specific instruments to be purchased and managed;
and (iv) to be potentially used retrospectively on pictures taken beyond the clinic, avoiding
patients needing to travel to clinical facilities. Moreover, the results obtained with the
present study demonstrated that AutoPosturePD is robust to participants’ anthropometry
(i.e., BMI) and to picture characteristics (i.e, image size, the ratio between the pixels covered
by the participant and the total image picture, and hue–saturation–variance), ensuring
its portability to different devices and different environmental settings (i.e., viewpoints,
background colours, room lighting, etc.).

AutoPosturePD measures have been proven to be in agreement with those taken as
the ground truth (i.e., those obtained with the NeuroPostureApp© [19]) and encourage
the use of this novel tool to evaluate PS, lCC and tCC [30]. Indeed, correlation analysis
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and agreement between the two measures were very good [30], with systematic bias
and the limit of agreements lower than the minimal detectable changes (MDC) for the
same measures obtained with the NeuroPostureApp© (MDClCC = 3.7◦; MDCtCC = 6.7◦;
MDCPS = 2.1◦) [21], or other conventional methods (X-ray images: MDCPS = 5◦ [37];
bubble inclinometer: MDCCC = 13.7◦ [38]).

It is worth noting that the measures taken as the ground truth are strongly operator-
dependent. Indeed, the operator is asked to virtually palpate a few landmarks on a picture:
the fulcrum of the spine flexion (FC), the most prominent process of the fifth lumbar
vertebra (L5), the most prominent process of the seventh cervical vertebra (C7), and either
the lateral malleoli or the mid-point between the feet (MA; depending on the sought
measure: PS or lCC and tCC, respectively). An inaccuracy in the palpation of these points,
would lead to a measurement error, that could hinder both the correct quantification of the
axial postural abnormality, and the worst or better performance of AutoPosturePD with
respect to NeuroPostureApp©. Most likely, the AutoPosturePD approach can overcome
these limitation as it is based on automatic image processing to detect the keypoints used to
measure PS, lCC and tCC angles. Factors that could hamper good keypoint identification
could be associated with subjects’ anthropometry and images’ characteristics (i.e., the
image size, the ratio between subject and image sizes, and the colour characteristics). The
presented results demonstrated that AutoPosturePD measurement error is, though, robust
to all the aforementioned variables (Figures 8 and 9). Significant but weak correlations
were obtained for lCC measures with respect to image height (R = −0.46 and p = 0.019,
Figure 10b); width cover factor (R = −0.43 and p = 0.028, Figure 11a); and area cover
factor (R = −0.44 and p = 0.024, Figure 11c). Similarly, the analysis performed on the
AutoPosturePD outcomes demonstrated robustness of PS, lCC and tCC measurements to
participants’ anthropometry (Figure 4) and image characteristics (Figures 4–7). Weak to
moderate correlations were instead obtained for PS with respect to subject/image height
cover factor (R = −0.46 and p = 0.019; Figure 7b), and for lCC measures with respect to
subject/image width cover factor (−0.43 < R < 0.51 and p < 0.03; Figure 7). These results
suggest that the wider the subject image, the better aPA could be evaluated.

The presented findings lead to the conclusion that any picture taken with the RGB
camera of a commercial smartphone could be sufficient to run this novel tool and still
obtain reliable results on the evaluation of aPA in people with PD.

A few limitations of this study should be acknowledged. Among the 55 PD participants
enrolled for the development of AutoPosturePD, 4 had both PS and tCC, 1 had PS and lCC,
12 had both tCC and lCC, and 2 had the coexistence of PS, tCC and lCC [30]. The authors
also performed a sensitivity and specificity analysis on the AutoPosturePD in detecting
aPA, considering those with no PS as controls for the PS classification, and those with
no lCC and tCC as controls for the lCC and tCC classification, respectively, [30]. Results
showed excellent classification performances of AutoPosturePD but the high heterogeneity
and small sample size calls for a more substantial analysis, where a proper control group is
included (i.e., participants with no diagnosed of axial postural abnormalities). This analysis,
together with a repeatability and reproducibility analysis, is mandatory for the introduction
of this tool into clinical practice. The repeatability analysis (i.e., the agreement of measures
obtained with the same methodology applied by the same operator and device and on the
same subject [39]) must be performed feeding AutoPosturePD with different pictures of
the same participant taken by the same operator. A multi-centre clinical trial would also be
useful to conduct a reproducibility analysis (i.e., the agreement of measures obtained with
the same methodology applied by different operators and devices [39]).

The closeness and agreement of the measurements with those taken as the ground truth
and obtained with the NeuroPostureApp© [19] are promising. Moreover, although having
considered AutoPosturePD sensitivity to the subject/image cover factor, a proper sensitivity
analysis to test the effect of camera–subject distance on outcomes (e.g., with a repeated
measure design) was not performed. The lCC measurements dependence on the ratio of
pixels covered by the subject and the total number of pixels (image width, height and area),
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despite being weak, suggests that a deeper understanding of this aspect is worth exploring,
potentially leading to the implementation of a guiding frame to properly take pictures of
patients with PD to evaluate sagittal axial postural deformities with AutoPosturePD.

Future works should consider designing a multi-centre clinical trial, enrolling a larger
number of participants with PD with the inclusion of a appropriate control group. Consid-
ering a population of people with atypical Parkinsonisms and aPA not associated with PD
would also foster AutoPosturePD validation for its use diagnosing other movement disor-
der medical conditions. As part of this clinical trial, the repeatability and reproducibility
of measurements should be tested, together with a sensitivity analysis of AutoPosturePD
to define an appropriate camera–subject distance. From the obtained results—those pre-
sented here and in previous research [30]—could lead to the development of a portable app
easily available to clinicians. Moreover, the potential of this approach could be relevant to
many other applications in aPA involving the spine, such as the non-invasive screening of
idiopathic scoliosis.

5. Conclusions

AutoPosturePD is a novel low-cost software-based automatic and portable tool for
the evaluation of axial postural abnormalities in people with Parkinson’s disease, which
relies on the processing of images taken with off-the-shelf RGB cameras. This tool provides
clinicians with reliable measurements of axial postural abnormalities, robust to differing
operator expertise, image characteristics and subjects’ anthropometry. Its use could foster
the diagnosis, management, and prevention of axial postural abnormalities.
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LA Left ankle joint centre
lCC Lumbar camptocormia
LE Left elbow joint centre
LH Left hip joint centre
LK Left knee joint centre
LSH Left shoulder joint centre
LW Left wrist joint centre
MA Mid-point of the two ankles
PD Parkinson’s disease
PS Pisa syndrome
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RH Right hip joint centre
RK Right knee joint centre
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RW Right wrist joint centre
tCC Thoracic camptocormia
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References
1. Horak, F.B.; Mancini, M. Objective Biomarkers of Balance and Gait for Parkinson’s Disease Using Body-worn Sensors. Mov.

Disord. 2013, 28, 1544–1551. [CrossRef]
2. Latt, M.D.; Lord, S.R.; Morris, J.G.; Fung, V.S. Clinical and physiological assessments for elucidating falls risk in Parkinson’s

disease. Mov. Disord. 2009, 24, 1280–1289. [CrossRef]
3. Nutt, J.G.; Wooten, G.F. Diagnosis and initial management of Parkinon’s disease. N. Engl. J. Med. 2005, 353, 1021–1027. [CrossRef]
4. Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [CrossRef]
5. Peterson, D.S.; King, L.A.; Cohen, R.G.; Horak, F.B. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications

for Physical Rehabilitation. Phys. Ther. 2016, 96, 659–670. [CrossRef]
6. Mancini, M.; Curtze, C.; Stuart, S.; El-Gohary, M.; McNames, J.; Nutt, J.G.; Horak, F.B. The impact of freezing of gait on

balance perception and mobility in community-living with Parkinson’S disease. In Proceedings of the 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3040–3043.

7. Doherty, K.M.; van de Warrenburg, B.P.; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R. Postural
deformities in Parkinson’s disease. Lancet Neurol. 2011, 10, 538–549. [CrossRef]

8. Margraf, N.G.; Granert, O.; Hampel, J.; Wrede, A.; Schulz-Schaeffer, W.J.; Deuschl, G. Clinical definition of camptocormia in
Parkinson’s disease. Mov. Disord. Clin. Pract. 2017, 4, 349–357. [CrossRef]

9. Tinazzi, M.; Gandolfi, M.; Ceravolo, R.; Capecci, M.; Andrenelli, E.; Ceravolo, M.G.; Bonanni, L.; Onofrj, M.; Vitale, M.; Catalan,
M.; et al. Postural abnormalities in Parkinson’s disease: An epidemiological and clinical multicenter study. Mov. Disord. Clin.
Pract. 2019, 6, 576–585. [CrossRef]

10. Tinazzi, M.; Geroin, C.; Bhidayasiri, R.; Bloem, B.R.; Capato, T.; Djaldetti, R.; Doherty, K.; Fasano, A.; Tibar, H.; Lopiano, L.; et al.
Task Force Consensus on Nosology and Cut-Off Values for Axial Postural Abnormalities in Parkinsonism. Mov. Disord. Clin.
Pract. 2022, 9, 594–603. [CrossRef]

11. Artusi, C.A.; Bortolani, S.; Merola, A.; Zibetti, M.; Busso, M.; De Mercanti, S.; Arnoffi, P.; Martinetto, S.; Gaidolfi, E.; Veltri, A.;
et al. Botulinum toxin for Pisa syndrome: An MRI-, ultrasound-and electromyography-guided pilot study. Park. Relat. Disord.
2019, 62, 231–235. [CrossRef]

12. Gandolfi, M.; Tinazzi, M.; Magrinelli, F.; Busselli, G.; Dimitrova, E.; Polo, N.; Manganotti, P.; Fasano, A.; Smania, N.; Geroin, C.
Four-week trunk-specific exercise program decreases forward trunk flexion in Parkinson’s disease: A single-blinded, randomized
controlled trial. Park. Relat. Disord. 2019, 64, 268–274. [CrossRef] [PubMed]

13. Tinazzi, M.; Geroin, C.; Gandolfi, M.; Smania, N.; Tamburin, S.; Morgante, F.; Fasano, A. Pisa syndrome in Parkinson’s disease:
An integrated approach from pathophysiology to management. Mov. Disord. 2016, 31, 1785–1795. [CrossRef]

14. Buckley, C.; Alcock, L.; McArdle, R.; Rehman, R.Z.U.; Del Din, S.; Mazzà, C.; Yarnall, A.J.; Rochester, L. The role of movement
analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sci. 2019,
9, 34. [CrossRef]

15. Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Zawieja, P.; Lefevre, M.; Vidal, P.P.; Ricard, D. Center of pressure displacement
characteristics differentiate fall risk in older people: A systematic review with meta-analysis. Ageing Res. Rev. 2020, 62, 101117.
[CrossRef] [PubMed]

16. Simpson, L.; Maharaj, M.M.; Mobbs, R.J. The role of wearables in spinal posture analysis: A systematic review. BMC Musculoskelet.
Disord. 2019, 20, 55. [CrossRef] [PubMed]

17. Panero, E.; Dimanico, U.; Artusi, C.A.; Gastaldi, L. Standardized biomechanical investigation of posture and gait in pisa syndrome
disease. Symmetry 2021, 13, 2237. [CrossRef]

http://doi.org/10.1002/mds.25684
http://dx.doi.org/10.1002/mds.22561
http://dx.doi.org/10.1056/NEJMcp043908
http://dx.doi.org/10.1136/jnnp.2007.131045
http://dx.doi.org/10.2522/ptj.20140603
http://dx.doi.org/10.1016/S1474-4422(11)70067-9
http://dx.doi.org/10.1002/mdc3.12437
http://dx.doi.org/10.1002/mdc3.12810
http://dx.doi.org/10.1002/mdc3.13460
http://dx.doi.org/10.1016/j.parkreldis.2018.11.003
http://dx.doi.org/10.1016/j.parkreldis.2019.05.006
http://www.ncbi.nlm.nih.gov/pubmed/31097299
http://dx.doi.org/10.1002/mds.26829
http://dx.doi.org/10.3390/brainsci9020034
http://dx.doi.org/10.1016/j.arr.2020.101117
http://www.ncbi.nlm.nih.gov/pubmed/32565327
http://dx.doi.org/10.1186/s12891-019-2430-6
http://www.ncbi.nlm.nih.gov/pubmed/30736775
http://dx.doi.org/10.3390/sym13122237


Sensors 2023, 23, 3193 16 of 16

18. Fabbri, M.; Pongmala, C.; Artusi, C.A.; Imbalzano, G.; Romagnolo, A.; Lopiano, L.; Zibetti, M. Video analysis of long-term
effects of levodopa-carbidopa intestinal gel on gait and posture in advanced Parkinson’s disease. Neurol. Sci. 2020, 41, 1927–1930.
[CrossRef]

19. Margraf, N.G.; Wolke, R.; Granert, O.; Berardelli, A.; Bloem, B.R.; Djaldetti, R.; Espay, A.J.; Fasano, A.; Furusawa, Y.; Giladi, N.;
et al. Consensus for the measurement of the camptocormia angle in the standing patient. Park. Relat. Disord. 2018, 52, 1–5.
[CrossRef]

20. Tinazzi, M.; Gandolfi, M.; Artusi, C.A.; Lanzafame, R.; Zanolin, E.; Ceravolo, R.; Capecci, M.; Andrenelli, E.; Ceravolo, M.G.;
Bonanni, L.; et al. Validity of the wall goniometer as a screening tool to detect postural abnormalities in Parkinson’s disease. Park.
Relat. Disord. 2019, 69, 159–165. [CrossRef]

21. Schlenstedt, C.; Boße, K.; Gavriliuc, O.; Wolke, R.; Granert, O.; Deuschl, G.; Margraf, N.G. Quantitative assessment of posture in
healthy controls and patients with Parkinson’s disease. Park. Relat. Disord. 2020, 76, 85–90. [CrossRef]

22. Hammadi, Y.; Grondin, F.; Ferland, F.; Lebel, L. Evaluation of Various State of the Art Head Pose Estimation Algorithms for
Clinical Scenarios. Sensors 2022, 22, 6850. [CrossRef] [PubMed]

23. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299.

24. Moro, M.; Marchesi, G.; Hesse, F.; Odone, F.; Casadio, M. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
Sensors 2022, 22, 2011. [CrossRef] [PubMed]

25. Lam, W.W.; Fong, K.N. The application of markerless motion capture (MMC) technology in rehabilitation programs: A systematic
review and meta-analysis. Virtual Real. 2022, 1–16. [CrossRef]

26. Scott, B.; Seyres, M.; Philp, F.; Chadwick, E.K.; Blana, D. Healthcare applications of single camera markerless motion capture: A
scoping review. Sport. Med. Rehabil. 2022, 10, e13517. [CrossRef] [PubMed]

27. Shin, J.H.; Woo, K.A.; Lee, C.Y.; Jeon, S.H.; Kim, H.J.; Jeon, B. Automatic Measurement of Postural Abnormalities with a Pose
Estimation Algorithm in Parkinson’s Disease. J. Mov. Disord. 2022, 15, 140–145. [CrossRef]

28. Zhang, Z.; Hong, R.; Lin, A.; Su, X.; Jin, Y.; Gao, Y.; Peng, K.; Li, Y.; Zhang, T.; Zhi, H.; et al. Automated and accurate assessment
for postural abnormalities in patients with Parkinson’s disease based on Kinect and machine learning. J. Neuroeng. Rehabil. 2021,
18, 169. [CrossRef]

29. Kanko, R.M.; Laende, E.K.; Strutzenberger, G.; Brown, M.; Selbie, W.S.; DePaul, V.; Scott, S.H.; Deluzio, K.J. Assessment of
spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J. Biomech. 2021,
122, 110414. [CrossRef]

30. Artusi, C.A.; Geroin, C.; Imbalzano, G.; Camozzi, S.; Aldegheri, S.; Lopiano, L.; Tinazzi, M.; Bombieri, N. Assessment of Axial
Postural Abnormalities in Parkinsonism: Automatic Picture Analysis Software. Mov. Disord. Clin. Pract. 2023, early view.
[CrossRef]

31. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity
Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [CrossRef]

32. Mehdizadeh, S.; Nabavi, H.; Sabo, A.; Arora, T.; Iaboni, A.; Taati, B. Concurrent validity of human pose tracking in video for
measuring gait parameters in older adults: A preliminary analysis with multiple trackers, viewing angles, and walking directions.
J. Neuroeng. Rehabil. 2021, 18, 139. [CrossRef]

33. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing: New York,
NY, USA, 2014; pp. 740–755.

34. Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

35. Robinson, R.; Robinson, H.S.; Bjørke, G.; Kvale, A. Reliability and validity of a palpation technique for identifying the spinous
processes of C7 and L5. Man. Ther. 2009, 14, 409–414. [CrossRef] [PubMed]

36. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.
2001, 23, 1222–1239. [CrossRef]

37. Etoom, M.; Alwardat, M.; Ala’S, A.; Lena, F.; Fabbrizo, R.; Modugno, N.; Centonze, D. Therapeutic interventions for Pisa
syndrome in idiopathic Parkinson’s disease. A Scoping Systematic Review. Clin. Neurol. Neurosurg. 2020, 198, 106242. [CrossRef]
[PubMed]

38. Nair, P.; Bohannon, R.W.; Devaney, L.; Maloney, C.; Romano, A. Reliability and validity of nonradiologic measures of forward
flexed posture in Parkinson disease. Arch. Phys. Med. Rehabil. 2017, 98, 508–516. [CrossRef] [PubMed]

39. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. International Vocabulary of Metrology—Basic and General Concepts and Associated
Terms (VIM), 3rd. ed.; JCGM 200:2012; Joint Committee for Guides in Metrology: Paris, France, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10072-020-04319-3
http://dx.doi.org/10.1016/j.parkreldis.2018.06.013
http://dx.doi.org/10.1016/j.parkreldis.2019.10.024
http://dx.doi.org/10.1016/j.parkreldis.2020.01.012
http://dx.doi.org/10.3390/s22186850
http://www.ncbi.nlm.nih.gov/pubmed/36146199
http://dx.doi.org/10.3390/s22052011
http://www.ncbi.nlm.nih.gov/pubmed/35271158
http://dx.doi.org/10.1007/s10055-022-00696-6
http://dx.doi.org/10.7717/peerj.13517
http://www.ncbi.nlm.nih.gov/pubmed/35642200
http://dx.doi.org/10.14802/jmd.21129
http://dx.doi.org/10.1186/s12984-021-00959-4
http://dx.doi.org/10.1016/j.jbiomech.2021.110414
http://dx.doi.org/10.1002/mdc3.13692
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://dx.doi.org/10.1186/s12984-021-00933-0
http://dx.doi.org/10.1016/j.math.2008.06.002
http://www.ncbi.nlm.nih.gov/pubmed/18793865
http://dx.doi.org/10.1109/34.969114
http://dx.doi.org/10.1016/j.clineuro.2020.106242
http://www.ncbi.nlm.nih.gov/pubmed/32979681
http://dx.doi.org/10.1016/j.apmr.2016.06.008
http://www.ncbi.nlm.nih.gov/pubmed/27373746

	Introduction
	Materials and Methods
	The AutoPosturePD Software
	F-KPS for Frontal View Analysis—PS Assessment
	S-KPS for Sagittal View Analysis—lCC and tCC assessment

	Participants and Ethics Statement
	Procedure
	Statistical Analysis

	Results
	Discussion
	Conclusions
	References

