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Abstract: Thin-walled structures, like aircraft skins and ship shells, are often several meters in size
but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method
(LU-LDM), signals can be detected over long distances without physical contact. Additionally,
this technology offers excellent flexibility in designing the measurement point distribution. The
characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound
and hardware configuration. Next, the methods are categorized based on three criteria: the quantity
of collected wavefield data, the spectral domain, and the distribution of measurement points. The
advantages and disadvantages of multiple methods are compared, and the suitable conditions for
each method are summarized. Thirdly, we summarize four combined methods that balance detection
efficiency and accuracy. Finally, several future development trends are suggested, and the current
gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework
for LU-LDM for the first time, which is expected to serve as a technical reference for applying this
technology in large, thin-walled structures.

Keywords: thin-walled structures; nondestructive testing; laser ultrasonic detection; ultrasonic lamb
wave; damage imaging algorithm

1. Introduction

Metal/composite thin-walled structures are widely used as an essential load-bearing
structure in large equipment, such as aircraft skins [1,2], ship shells [3], and energy storage
tanks [4,5]. Large thin-walled structures are typically several meters in size but only a
few millimeters thick [6,7]. During service, these structures are subjected to complex
and alternating loads for extended periods, or to sudden impacts. Structures that exceed
their design life are also susceptible to performance degradation. The above factors may
lead to imperceptible damage, such as delamination and debonding in composites [8],
or corrosion and impact in metals [9]. Therefore, the development of a robust NDT method
is imperative to detect damage during the manufacturing stage, as well as to perform
routine maintenance during the operational stage [10].

When the ultrasonic wave length is approximately the same dimension as the geo-
metric size of the structure, the ultrasonic guided wave is formed by the superposition
of interference and dispersion after the wave is reflected repeatedly in the structure [11].
For free boundary plates, with zero stress on the upper and lower surfaces, the guided
waves propagating in them are called ultrasonic Lamb waves. According to the different
vibration modes, ultrasonic Lamb waves are divided into symmetric and anti-symmetric
modes. Thin-walled structures are typical plates/shells in which ultrasonic Lamb waves
can propagate over long distances with low energy attenuation. Structural anomalies
change a structure’s local/global properties, and ultrasonic Lamb wave detection aims
to capture the dynamic response of the structure (e.g., scattered waves, vibration mode)
and then interpret the physical properties [12]. Laser ultrasonics is a non-contact sensing
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technique. When a high-energy pulsed laser is incident at a point on the structure surface,
then the laser is absorbed to a certain depth [13,14]. The release of heat energy causes
local expansion, resulting in local stress and strain as the source of waves, so that waves
propagate within and on the surface. Finally, the wavefield is collected and used as the basis
for analyzing structural anomalies [15]. The generation mechanism of laser ultrasound
is either thermoelastic (nondestructive) or thermal etching (destructive), and this paper
focuses on the former [16].

The strengths of LU-LDM lie in its ability to perform online inspection, as demon-
strated by the following aspects. Firstly, the technology facilitates long-distance operation,
positioning detection systems from tens of centimeters to several meters away from the
structure [17]. This means structures with higher positions and larger areas, such as aircraft
wings, can be inspected. Secondly, the technique allows non-contact operation, which
avoids many inconveniences of the contact/embedded sensor technique [18]; for example,
couplant contamination, welding line, calibration and maintenance. Thirdly, with the
assistance of the galvanometric laser mirror scanner (robot2) or multi-degree-of-freedom
manipulator for laser deflection, as well as the development of machine vision technology
and upper computer software, the distribution of laser measurement points in space has
high designability [19–21]. Finally, the sensing technology, based on a laser vibrometer, has
high accuracy and high scanning density, which can provide high-resolution and wave-
fields. In conclusion, LU-LDM satisfies the need for non-contact, long-distance, and on-site
inspection of large thin-walled structures. Moreover, it offers high design flexibility and
measurement accuracy.

In the last decade, contact-based sensing techniques for ultrasonic Lamb wave damage
detection have been fully developed. However, LU-LDM differs from these techniques
in several aspects, such as Lamb wave modes, bandwidth, and hardware equipment.
A unique framework has been established for LU-LDM in this review, which combines
the characteristics of laser ultrasound technology with ultrasonic Lamb wave detection
technology. Extensive research showed that the review studies in the past 20 years have
focused on contact ultrasonic Lamb wave damage detection methods [11,22,23] and the
application of laser ultrasonic detection techniques [24–27]. However, to the best of our
knowledge, no relevant review has comprehensively analyzed the application of LU-LDM
in thin-walled structures. This review presents a comprehensive framework of LU-LDM
based on research conducted over the past 20 years. The displacement amplitude, frequency,
wave number, arrival time, and other characteristics of Lamb waves in laser ultrasonic
testing can be used as feature parameters for evaluating the damage. Different parameters
represent different physical meanings and are worthy of further research.

The rest of this paper is organized as follows. Section 2 summarizes five characteristics
of the LU-LDM. Section 3 identifies the technical framework of the LU-LDM order of this
review. Sections 4 and 5 provide a summary of methods based on full wavefield data and
a small amount of wavefield data. Section 6 lists four combination types to enhance the
overall detection efficiency and precision. Section 7 outlines several future perspectives for
the technology. In the last section, there is a summary.

2. Characteristics of LU-LDM

The excitation, propagation, and acquisition characteristics serve as the theoretical
basis of LU-LDM. This section provides a summary of the characteristics of LU-LDM based
on these aspects.

(1) Broadband characteristics

Using a 1 mm aluminum plate as an example, the laser ultrasonic detection system
was used to excite ultrasonic Lamb waves. The wavefield signals of uniformly distributed
and discretized points at different distances from the excitation point were collected to
form a dense line scan of the wave field. This section analyzes the characteristics of laser
ultrasonic Lamb waves in the t-domain and f -domain. As shown in Figure 1a, the red
waveform collected at the center of the excitation source exhibited a unipolar Gaussian
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pulse with uneven frequency distribution in the range of 0–1 MHz. As the propagation
distance increased, the Lamb wave evolved into an oscillatory signal with a gradually
diminishing frequency. The frequency components near the excitation source were broad,
the high frequency decayed rapidly, and the frequency spectrum gradually concentrated
below 100 kHz at about 10 cm away from the excitation source, as shown in Figure 1b.

Figure 1. Time domain (t-domain) and frequency domain (f -domain) characteristics of laser ultrasonic
Lamb wave. (a) Response signals at 0 and 8.2 cm from the excitation source. (b) Frequency spectrum
of the response signal at 0 to 9.5 cm from the excitation source.

The bandwidth of laser ultrasound can be altered depending on the time and space.
A cylindrical planoconvex lens was applied to transform the laser spot into a line source,
which alters the directivity of the wavefield [28,29]. We utilized acoustic lenses, slit masks
and an optical interferometer to excite narrow-band ultrasonic Lamb waves, and used the
wavelength matching method to adjust the array element spacing to achieve frequency
selection [30,31].

(2) Low-order anti-symmetric mode

As shown in Figure 2a,b, when the single pulse energy of the excitation laser was 25 mJ,
in the t-s wavefield and f -k domain, the A0 mode was prominent, but the S0 mode was barely
visible. In contrast, Figure 2c,d shows that when the energy was 100 mJ, a distinct A0 mode
and a faint S0 mode could be observed, indicating that out-of-plane displacement could be
enhanced by increasing pulse energy [32]. However, surface ablation occurs at this time,
and it is necessary to ensure that the material surface is not ablated. Therefore, the laser
power density cannot be higher than the ablation threshold, which is about 107 W/cm2.
From the analysis of the frequency components in Figure 1b, it is clear that the main energy
was concentrated below 100 kHz. The A0 of the ultrasonic Lamb wave was dominated by
out-of-plane displacement. The laser interferometry principle determines that it is more
sensitive to out-of-plane displacements [33]. Therefore, the low-order anti-symmetric mode
A0 was mainly analyzed in LU-LDM of a 1 mm aluminum plate.
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Figure 2. (a) Time-space (t-s) wavefield and (b) frequency-wavenumber domain (f -k domain) maps
of ultrasonic Lamb waves excited by a laser at a single pulse energy of 25 mJ. (c) t-s wavefield and
(d) f -k domain maps of ultrasonic Lamb waves excited by laser at a single pulse energy of 100 mJ [32].

(3) Limitations: low signal-to-noise ratio

The measurements of laser ultrasonic Lamb waves are susceptible to interference from
external environmental factors, such as vibration and temperature [34]. The surface state
of the structure also has a significant impact on the detection result. The above factors
contribute to a low SNR in the laser ultrasound signal. Consequently, it is more challenging
to extract valid scattering information from the signal. The most straightforward method
for noise reduction is to place reflective tape in the area surrounding the measuring point.
Metal structures are typically coated and polished, making their surfaces smooth and
requiring high precision in the perpendicularity of the incident sensing laser. Minor angular
deviations can impede the reflection of the laser back to the vibrometer for interference with
the reference laser, leading to a low SNR. Thus, pasting silver-plated reflective tape is often
necessary to create diffuse conditions in the detection region, effectively enhancing the
SNR. It is worth noting that, for the plate with a thickness of less than 1 mm, the behavior
of pasting reflective tape impacts the wavefield measurement, and the original surface
should be used as far as possible. Enhancing the pulse energy of the excitation laser is also
the most direct method of noise reduction, but the ablation threshold limits it. Therefore,
aluminum foil can be pasted on the excitation point to protect the structure’s surface [35].

Since the amplitude level of the scattered wave is typically smaller than that of the
direct wave, identifying and extracting parameters can be challenging. Noise reduction
can be achieved through methods such as multiple averaging measurements or utilizing
filtering algorithms. Usually, continuous wavelet transform (CWT) is used to extract the
components at a specific frequency, which has the most significant correlation with the
intensity of the scattering wave [36,37]. As shown in Figure 3, through-hole damage, with a
0.8 cm diameter, located 10 cm away from the excitation point was created, and the damage
scattering wave was collected 2 cm to the right of the excitation point. The narrowband
component was extracted using a wavelet packet with a center frequency of 120 kHz,
and the scattering wave was significantly enhanced. In addition, the latest technology
has developed a transducer with high photoacoustic conversion efficiency, which can be
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attached to the structure’s surface. The laser incident on the transducer can stimulate strong
ultrasonic amplitude while protecting the surface [38].

Figure 3. Limitation of low signal-to-noise ratio (SNR) of laser ultrasonic Lamb wave. (a) Scat-
tered waves are submerged. (b) Scattering waves are highlighted after the continuous wavelet
transform (CWT).

(4) Hardware configuration with flexibility

Laser ultrasound is usually generated by solid lasers (such as Nd: YAG) and gas lasers
(such as CO2). Q-switched/mode-locking techniques can obtain ultrashort laser pulses
with narrow pulse widths and high peak power. The pulse duration for laser ultrasound
detection is usually chosen to be 5–10 ns. The body wave excited by the pulse laser has a
broadband characteristic with a non-uniform frequency distribution from zero to several
MHz. By theoretical calculations [13], in the 1 mm aluminum plate, the maximum body
wave frequency that can be excited is 19 to 37 MHz. The main frequency of an ultrasonic
Lamb wave used for detection is generally not more than 1MHz. Therefore, pulse duration
between 5–10 ns is suitable to LU-LDM in thin-walled structures.

As for wavefield sensing, the most widely used technique is the double-beam het-
erodyne interferometer, based on the Doppler effect, commonly referred to as the laser
Doppler vibrometer (LDV) [26]. Compared with other intensity modulation interferome-
ters, it has higher sensitivity and stability. The Confocal Fabry–Perot Interferometer has a
poor response at low frequencies. The surrounding environmental vibration does not affect
the device. Therefore, it is more suitable for application in the complex environments of
the industrial field. Nevertheless, the main drawback is that it is not highly sensitive to
vibrations [39]. The Photorefractive Two-Wave Mixing Interferometer has better sensitivity
at low frequencies and can, therefore, more easily detect materials with strong attenua-
tion. This setup is well-suited for applications in multiplexing schemes, where a surface
is projected with an array simultaneously, resulting in substantial increases in detection
speed [40].

According to the acoustic reciprocity theorem [41], Laser ultrasonic detection can
be conducted through either fixed-point excitation-scanning measurement or scanning
excitation-fixed-point measurement. The latter only needs to collect at a fixed point and
paste local reflective tape. Therefore, the latter has relaxed the requirements for the inci-
dence angle. The incidence angle of the excitation laser can reach 70◦, which applies to the
detection of curved structures [42]. Given the progressiveness of the scanning laser doppler
vibrometer (SLDV), most studies still use the former detection mode.

The full non-contact laser ultrasonic detection system mainly comprises two sets of
equipment: the pulse laser and the laser vibrometer. The laser vibrometer is triggered
externally by the pulsed laser, synchronously. The wavefield scanning speed depends
on the repetition rate of the laser, which is limited by the residual guided wave excited
last time. Due to the different attenuation characteristics, the repetition frequency of laser
excitation used for metal and composite materials is 100 Hz and 1.5 kHz [43]. In laser
ultrasonic detection systems, the transmitting and receiving devices are not integrated,
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and the instrument configuration is flexible. The laser vibrometer can cooperate with an
air-coupled transducer (ACT) and a lead zirconate titanate transducer (PZT), and the laser
can cooperate with PZT, ACT and fiber Bragg grating (FBG) sensor [18,44–46]. In addition,
a new air-coupled optical microphone is also used as a vibrometer to cooperate with the
laser [47]. The specific implementation can be configured according to specific conditions,
as shown in Figure 4.

Figure 4. Setup of the laser ultrasonic Lamb wave detection system.

(5) Exact laser vibration measurement

Thanks to the assistance of laser deflection devices, such as the LMS or multi-degree-
of-freedom manipulator, LU-LDM can precisely control the angle and distance of the
laser [21]. The exact wavefield acquisition is reflected in three aspects. For one thing,
the spot diameter of the laser can reach several hundred microns, most of the moving steps
are set to 1–2 mm, and a moving step of 50 µm can achieve realistic fatigue closure cracks
in microstructures [48]. Secondly, the point source has a high spatial position precision,
directly affecting the damage localization precision based on the time of flight (TOF) [49].
Third, the vibrometer has a micron-level resolution of out-of-plane velocity several meters
away. The SLDV from Polytec (Germany), a resolution of sensing out-of-plane vibration
velocity can reach 20 nm/s, far exceeding the velocity 500 µm/s of an ultrasonic Lamb wave.

In conclusion, the laser ultrasonic Lamb wave is a broadband signal. The tool for char-
acterizing the damage is mainly the low-order anti-symmetric mode A0 with a wavelength
of 10–20 mm, but the large wavelength limits the detection resolution. Dispersion and low
SNR can impede the effective extraction of scattering information, necessitating algorithms
or devices to enhance the scattering wave. In terms of hardware configuration, the laser
and vibrometer can be flexibly combined with other sensors.

3. Classification Criteria And Overall Framework

International institutions have recently conducted much LU-LDM research around
thin-walled structures. According to the number of wavefield acquisitions, LU-LDM can
be divided into two categories: methods based on full wavefield data and methods based
on a small amount of wavefield data. These methods can be further classified based on the
spectral domain type and the measurement points’ distribution density. Figure 5 shows the
overall framework, which is also the outline of this overview.
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Figure 5. The overall framework of LU-LDM.

Detection methods based on full wavefield data benefit from spatially dense scanning.
They can characterize damage details, including depth and morphology, and have high
imaging resolution. Scanning a specific area at intervals of a few millimeters can collect up
to 103∼4 data points. The collected three-dimensional matrix represents the t-s wavefield of
the ultrasonic Lamb wave. Based on the spectral domain type of signal processing methods,
several detection methods are classified into the t-domain, f -domain and f -k domain.

Based on the distribution density of the measurement points, the detection methods
based on a small amount of wavefield data are divided into sparse distribution and dense
distribution. Dense distribution requires that the spacing of measurement points is equiv-
alent to the wavelength, and requires a particular topological array. Sparse distributions
have large and irregular intervals between measurement points. A small amount of wave-
field data (usually less than 50) is used to invert the damage location and size. Since the
wavefield data from sparse distributions is incomplete, accurately locating damage can be
challenging for most methods. As a result, the estimated location of the damage could be
more precise.

4. Detection Method Based on Full Wavefield Data
4.1. Detection Methods in the f-k Domain
4.1.1. Wavenumber Filtering

The complex propagation mechanism of ultrasonic waves and the multimodal charac-
teristic of Lamb waves are the main factors hindering signal processing [50]. Wavefields that
cannot be separated in the time domain can be separated in the f -k domain. The Wavenum-
ber Filtering (WF) algorithm is used to convert the wavefield data at a specific time from the
t-s domain to the f -k domain using the two-dimensional Fourier transform [51]. The wave-
field in different directions/modes is separated using a window function, as shown in
Figure 6, and then converted back to the t-s domain by the inverse Fourier transform. M.
Ruzzene et al. [52] utilized WF to directly filter incident waves to highlight the scattering
wavefield with damage. This approach detected narrow grooves in aluminum plates and
debonding in tongue-and-groove joints.

Acquiring data from only a single incidence direction can provide only partial infor-
mation on the damage boundary. Ma et al. [53] obtained more information by increasing
the angle of incidence. Multiple image fusion methods were used to detect various types of
damage, such as a triangular notch in an aluminum plate and the shape of letters produced
by 3D printing technology. In addition, WF is also used in damage detection of the small
amount of wavefield data. Jeon et al. [54] gathered wavefield data from a square ring
array and highlighted the damaged scattered waves by WF. Many methods, described
later, require pre-extraction of the wavefield in a specific direction/mode. Therefore, it is
necessary to introduce the principle of WF in advance.
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Figure 6. Wavenumber domain information and window function are used to separate incident and
reflected waves. (a) Original wavenumber domain information. (b) The incident wavefield. (c) The
reflected wavefield.

4.1.2. Local Wavenumber Estimation

When an ultrasonic Lamb wave propagates at a specific frequency, its wavenumber is
a definite function of material thickness, which allows the assessment of damage depth
to be based on this function. The local wavenumber estimation (LWE) algorithm con-
verts the three-dimensional t-s matrix of the full wavefield into the f -k domain through a
three-dimensional Fourier transform [55]. The f -k domain contains spatial wavenumber
information at different frequencies. This method averages the signal strengths within a
specific frequency range. These wavenumbers are significantly higher at the thickness re-
duction than in the surrounding area, indicating the presence of damage [56]. Tian et al. [57]
achieved the visualization of delamination, due to impact within the composite, through
the LWE algorithm. The shape of the damage in the wavenumber distribution map was
highly similar to the shape of the shallower parts in C-scan imaging, as shown in Figure 7.
He also pointed out that the LWE algorithm is insensitive to deeper delamination in a
previous report.

Figure 7. Comparison of composite delamination and imaging results [57]. (a) Shape of impact
damage. (b) C-scan imaging (reference). (c) LWE imaging.

By adjusting the incident angle to excite a single-mode ultrasonic Lamb wave, the groove
damage located at different depths of aluminum/CFRP plates was visualized, and the
shape of the damage was identified [58]. Previous LWE algorithms only analyzed nar-
rowband wavenumber information. In contrast, Gao et al. [59] took full advantage of the
broadband characteristic of laser ultrasonic waves and used wavenumber information at
multiple frequencies to optimize the damage details. High-accuracy imaging of circular
delamination in aluminum plate bonded parts was achieved by data fusion.

The LWE is a high-precision imaging algorithm with the highest application rate in
recent years. Its principle determines that it is more sensitive to damage with reduced
thickness, such as composite delamination, aluminum alloy corrosion and notch.
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4.2. Detection Methods in the t-Domain
4.2.1. Anomalous Wave Propagation Imaging

As a laser has stable excitation, the generated ultrasonic field is also stable, so an
abnormal wave field can be detected. These wavefields may consist of scattered and
confined waves with standing wave characteristics [1]. In the scanning excitation–fixed-
point measurement method, the waveforms of two adjacent points are very similar, and the
wavefield at a damaged location is significantly different from that at an undamaged
position [4]. During anomalous wave propagation imaging (AWPI), the first step is to
match the arrival time and amplitude of adjacent signals. Then, the two are subtracted
to suppress the incident wave and amplify the anomalous wave. Finally, a variable time
window is proposed so that the damage imaging is closer to the actual damage. Lee et al. [1]
utilized the AWPI method to successfully visualize impact damage in CFRP composite
wings and to sequentially assess the length of cracks in the lining of aluminum alloy
fuel tanks.

AWPI relies heavily on fast laser scanning and advanced computational capabilities.
AWPI does not require complex theoretical knowledge or conversion between spectral
domains. Instead, it relies on a relatively simple t-domain computation, making it well-
suited for evaluating defects in complex structures. This approach holds great promise
for achieving real-time defect detection in the field, with the added benefit of automated
results processing.

4.2.2. Cross-Correlation Imaging

The principle of 2D cross-correlation imaging (CCI) is that the incident and time-
reversed scattered waves coincide at structural discontinuities [60]. The algorithm requires
the incident wavefield vincident(x,y,t) and the scattered wavefield vscattered(x,y,t) to be ex-
tracted separately by WF. A two-dimensional correlation calculation is performed for the
two wavefields, as shown in Equation (1) [61].

I(x, y) =
∫ T

0
vincident (x, y, t)vscattered (x, y, t)dt (1)

The intercorrelation values at the damage are much larger than those at the undamaged
locations. Xiao et al. [61] accurately quantified cracks in aluminum specimens by the CCI
method with an error of only 3.3%. The stainless steel specimens were monitored for crack
extension under fatigue loading with quantification errors as low as 2% for 5 mm cracks.
In a subsequent study [44], they constructed a fully non-contact detection system with
ACT-SLDV to achieve high-precision imaging of notches in thin stainless steel plates with
varying lengths, depths, and orientations. He et al. [62] proposed innovative imaging
conditions which can compensate for the attenuation effect due to distance. Quantitative
imaging of a composite impact was achieved, which provided enhanced imaging of multi-
site damage.

CCI takes advantage of the time-reversal symmetry of the fluctuation equation, en-
abling the automatic compensation of dispersion effects. However, this method requires
significant computational amount.

4.2.3. Cumulative Standing Wave Energy

Reflected waves are generated near the damage, and the incident and reflected waves
are superimposed on each other to form interference waves. Since the excitation signal
is transient, the interference is also not stable. The instantaneous power can characterize
the energy of the signal. The instantaneous power of the wavefield not only contains the
incident and reflected waves but also superimposes the interfering waves [63]. Using
WF to extract the scattered and incident waves, the integral of the difference between
the measured wavefield energy minus the incident and reflected wavefield energies is
the cumulative standing wave energy (CSWE), and the imaging principle is given in
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Equations (2) and (3) [64].

SWE(x, t) = W2
T(x, t)−W2

F(x, t)−W2
B(x, t) (2)

CSWE =
∫ t

0
SWE(x, t)dt (3)

The damage size can be analyzed through standing wave energy distribution maps.
Zhang et al. [65] achieved the length visualization of slender notches in aluminum plates.
H. Sohn et al. [64] achieved the visualization of standing wave energy induced by cracks,
and the crack length was effectively evaluated by standing wave energy. The CSWE
imaging principle is relatively straightforward, and the computational requirements are
not excessive, enabling the assessment of damage sizes at the centimeter-level.

4.3. Detection Methods in the f-Domain

As the incident wave propagates to the damage, it produces a new frequency com-
ponent or offset. Ultrasonic frequency tomography (UFT) is based on the principle that
a Fourier transform of the t-domain signal at each scan point constitutes a new three-
dimensional matrix. At each frequency, the tomogram displays the distribution of that
frequency at various locations, as shown in Figure 8. In order to pinpoint the location of
damage, it is necessary to determine the frequency range associated with the damage in
advance. The tomogram at that specific frequency can then be selected as the damage
assessment map. Lee et al. [66] detected circular impact damage in a glass fiber composite
plate of a honeycomb sandwich radome, and its location and size matched well with the
actual impact damage. In a further study, they [48] built the ACT-SLDV non-contact non-
destructive detection system, by setting the laser scan interval to 50 µm. The quantitative
evaluation of real fatigue microcracks was achieved with a size detection accuracy of 96%.

UFT does not require reference signals and can be used as a rapid imaging algorithm
after a laser ultrasonic Lamb wave C-scan, which makes it ideal for applications that require
real-time imaging capabilities.

Figure 8. Principle and results of UFT imaging of impact damage in radome. (a) Characteristics of
Lamb waves in t-domain and f -domain [66]. (b) Signals in the t-domain of vertical scan. (c) Selected
tomogram along the frequency axis. (d) Tomogram at a frequency of 7.5 kHz.

4.4. Nonlinear Ultrasound Detection Method

Linear ultrasound detection methods, based on reflection, diffraction, attenuation,
or mode transformation after the interaction between Lamb wave and damage, are typically
not sensitive to microdamage such as microcracks and pores. Nonlinear ultrasound detec-
tion (NUT) methods rely on the harmonic, subharmonic, or modulated waves generated by
the interaction between ultrasonic waves and micro damage [67]. In summary, nonlinear
ultrasound is a powerful tool for the detection of early damage, and when it is combined
with LU-LDM, it has the potential to yield even more advantages.

Soon Hoon et al. [14] established a PL-SLDV non-contact laser ultrasonic detection
system to visualize cracks with a size of 10 mm × 10 µm. The state space attractor was
reconstructed from the ultrasonic response, and the nonlinearity caused by damage was
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quantified using the nonlinear feature Bhattacharyya Distance. Later, using nonlinear
Lamb wave mixing technology, a single 1.36 µm microcrack was detected by scanning
the wave mixing area [29]. Shen et al. [68] analyzed the phenomenon of ultrasonic Lamb
wave nonlinear scattering and mode conversion. The fatigue cracks around the rivet holes
in an aluminum plate were detected by analyzing the energy of scattering higher-order
harmonics. For anisotropic composite, Shen et al. [69] used the nonlinearity of the wavefield
to detect delamination, and used the second-harmonic imaging algorithm to highlight the
nonlinear interaction in the delamination region. The research indicates that nonlinear
information in the wavefield is relatively insensitive to larger delamination.

In future research, further exploration of nonlinear information from laser ultrasonic
Lamb waves could help detect early damage initiation more effectively.

4.5. Analysis of Comparison and Application

Table 1 lists the detection results from the literature related to LU-LDM, based on full
wavefield data. This table focuses on the damage type, size, and assessment results. The speci-
mens were mainly thin-walled aluminum alloy/CFRP structures. The thickness of the above
structures ranged from 1 mm to 6 mm. The types of natural/artificial damage were mainly
crack, groove and delamination with length and width distributed between 5–30 mm.

Table 1. Laser ultrasonic detection results based on full wavefield data from the relevant literature.

Methods Specimen Damage Type and Size Damage Information Ref

WFA

Aluminum plate
1.27 mm

Narrow grooves
12.7 × 1.27 × 0.76 mm

Location [52]

Aluminum
1 mm

Triangular groove × 1/Letters
bonded onto the surface × 3
10 mm/“USC” 18 × 20 mm

Location/Size/Shape [53]

Aluminum plate
6 mm

Corrosion × 4
30 × 30 mm

Location [54]

LWE

CFRP
1 mm

Impact-induced delamination
32.3 × 22.6 mm

Location/Size/Shape
30 × 20 mm2

[57]

Aluminum/CFRP plate
2 mm

Cut grooves
10 × 10 × 1/1.5 mm
20 × 20 × 1/1.5 mm

Location/Size/Shape [58]

Al/Al bonding plate
0.5/0.5 mm 0.5/1 mm

Delamination
Φ30 mm

Location/Size/Shape [59]

AWPI

CFRP composite wing
2.2 mm

Impact × 2
15.5 × 15.5 mm 26.6 × 22.9 mm

Location/Size
15.5 × 13.6 mm
21.7 × 19.8 mm

[1]

Al-alloy tank liner
1.75–2.3 mm

Crack
11 mm

Location/Length
11 mm

[4]

CCI

Aluminum/Stainless-
steel specimen

1 mm

Fatigue crack
5/10/30 mm

Location /Length
5.2/10.1/31 mm

[61]

Stainless-steel plate
0.5 mm

Notches 40/60/90 deg
10/3 × 2 × 0.25/0.1 mm

Orientation/Size [44]

CFRP plate
2.28 mm

Impact
17 × 22 mm

Location/Size [62]

CSWE

Aluminum plate
4 mm

Notch
20 × 2 × 3 mm

Location/Length [65]

Aluminum plate
6 mm

Notch
20 × 2 × 3 mm

Location/Length
1.5 × 18 mm

[64]

UFT

CFRP radome
0.5 mm

Hidden circular impact
Φ25 mm

Location/Size [66]

Aluminum plate
0.5 mm

Artificial/Closed crack
10 × 1 × 1 mm

Location/Length [48]

NUT

Aluminum plate
0.5 mm

Crack
10 mm × 10 µm

Location/Size [14]

Aluminum plate
1 mm

Microcrack
1.36 µm

Location/Size [29]

two 2 mm thick quasi-
isotropic CFRP plate

bonded together

Delamination
20 mm None [69]
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As shown in Table 1, NUT had the highest resolution for detecting damage at the
micron level, but it was less sensitive to larger defects. LWE was considered the next best
method and hac the ability to identify both the shape and depth of damage. The compara-
tive analysis between several methods is shown in Table 2. AWPI and UFT methods enable
real-time detection but require additional signal processing. The CCI method can automati-
cally compensate for the Lamb wave dispersion effect, but its calculation is complicated,
compared with other methods. Detection methods based on full wavefield data are not
ideal for large-scale detection, but are well-suited for high-precision detection of small
areas after the damage has been located.

Table 2. Comparison of detection methods based on full wavefield data.

Methods Detectable
Information Advantages Disadvantages

LWE
Shape
Depth

Enables high resolution
imaging for damage detail

Sensitive to damage in the thickness
direction only

AWPI Size
Real-time detection with no
conversion between spectral

domains

Additional processing steps required
in pre and post

CCI
Orientation

Size
Automatic dispersion

compensation
High calculation volume and low

efficiency

CSWE Size Simple imaging principle
Highly influenced by standing
waves, only centimetre-level

resolution achieved

UFT Size
Simple calculation, real-time

detection, no conversion
between spectral domains

Need to find the optimal damage
correlation frequency

NUT Size
Identification of pores or early

sprouting microdamage
Special equipment is required to
excite narrowband ultrasound

5. Detection Method Based on the Small Amount of Wavefield Data
5.1. Sparse Distribution
5.1.1. Geometric Positioning Method

By analyzing the group velocity and TOF of the scattered wave packet, it is possible
to obtain the linear distance from the measurement point to the damage. Multiple dis-
tances obtained from multiple measurement points can be used to determine the damage’s
location. The geometric positioning method (GPM) can roughly locate the damage by
intersecting multiple geometric curves. GPM is classified into three main types, based on
the type of geometric curve: triangular positioning method, elliptical positioning method,
and hyperbolic positioning method. Researchers used the triangular positioning method
for detection on a 10 kW composite wind turbine blade [49], drawing circles from two di-
rections and using the intersection of multiple circles to successfully identify delaminations
with φ10 mm.

In order to perform detection on an aluminum plate shell in the sandwich structure,
Sikdar et al. [70] successfully detected hidden impact damage and holes using the elliptical
positioning method, based on sparse wavefield data, as shown in Figure 9a. The results
of the study showed that the distribution of measurement points has a significant impact
on the accuracy of localization. The traditional multi-curve intersection approach needs to
provide accurate damage locations. Therefore, an imaging algorithm, based on the GPM,
was developed to assign magnitude values to each coordinate point, which can improve
the recognition of damage. Yao Chen et al. [71] combined the ellipse location method and
probability imaging algorithm to realize the location of the rectangular through a hole
in the aluminum plate. Han et al. [72] proposed a hyperbolic positioning method, based
on phase inversion theory, which does not need to consider dispersion effects and is not
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affected by material anisotropy. As shown in Figure 9b, this study achieved the localization
of simulated damage in orthotropic composites.

Figure 9. Geometric localization method based on laser ultrasonic Lamb wave. (a) Elliptical local-
ization method [70]. (b) Hyperbolic localization images in both directions, and damage localization
results after multiple image fusion [72].

GPM is a simple method belonging to the forward-solving algorithm, which does not
require the complex inversion of the fluctuation equation. By sensing a small amount of
wavefield data from a sparse/array distribution, the GPM can be used as a solution for
rapid damage location. Despite its advantages, the GPM strongly depends on the accuracy
of TOF, and dispersion effects can strongly influence the accuracy of this method.

5.1.2. Damage Detection Based on Compression Sensing

The Compressed Sensing (CS) algorithm can under-sample wavefields at a rate lower
than the spatial Nyquist sampling rate, while retaining the necessary information. It is
characterized by the ability to reconstruct a high-dimensional signal from low-dimensional
sampled data [73]. The spatial Nyquist sampling rate limits the scan interval of the array
elements to less than half a wavelength of the highest frequency. By exploiting the sparsity
of the wavefield under various bases, the CS can achieve dispersion curve reconstruction,
de-dispersion, wavefield reconstruction, and damage localization [74].

If the damage location is taken as the detection target, the CS equation of the ul-
trasonic Lamb wave needs to be reconstructed, and the sparsity directly related to the
damage exploited. The rapid development of LU-LDM, based on CS theory, comes after
the relative maturity of laser ultrasonic technology. The laser can be subject to precise
deflection, and facilitates the jitter acquisition of sparse wavefields. Esfandabadi et al. [75]
sparsely represented the wavefield under different sparse representation bases (e.g., multi-
dimensional Fourier transform, wavelet) and compared the variability of the reconstructed
wavefield in different representation bases to localize multiple damage types in plates.
In addition, the guided wavefield is represented as a linear superposition of a finite number
of scattering source functions, according to the sparsity of the damage in the spatial location.
Mesnil et al. [76] collected the wavefield data in the local region by laser ultrasonic jitter
sampling. He used the f -domain wavefield expression to construct the higher-order CS
equation. Finally, he achieved high-resolution imaging of the delamination in a GFRP plate
with a sampling rate of 90%. The wavefield reconstruction process is shown in Figure 10.

Figure 10. Sparse reconstruction process of wavefield based on CS [76].
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Using the same principle, Li PF [77] analyzed guided wave wavenumber in anisotropic
composite plates. The wavenumber dictionaries in different directions were constructed for
wavefield reconstruction. Finally, the damage localization in CFRP was realized with a 86%
sampling rate. In previous studies, only the phase information of the dispersion relation-
ship was considered in the construction of the dictionary, and the amplitude modulation
(e.g., source and sensor response, attenuation) was not considered. Moreover, amplitude
modulation of broadband laser ultrasonic Lamb wave signal in low-frequency band in-
creases the difficulty of signal interpretation. Lin et al. [78] considered both amplitude
modulation and phase information to enhance the consistency of the atoms in the dictionary
with the original signal. Therefore, the positioning accuracy of composite surface damage
was enhanced.

The outstanding advantages of the LU-LDM, based on CS, are the significant reduction
of sampling points, saving measurement time and storage space, and precision that relies
on an exact dictionary library generated by a rational model. Its limitation is that the
distribution of sparse measurement points significantly influences the results, and the re-
peatability of localization results needs further improvement. The computational efficiency
of the reconstructed wavefield is low, and only preliminary damage localization can be
achieved at this stage.

5.2. Dense Array Distribution
5.2.1. Phased Array Imaging

The phased array imaging (PAI) algorithm requires the acquisition of dense arrays of
wavefields with array element spacing typically less than half a wavelength [30]. With the
development of machine vision technology, as well as upper computer software, the des-
ignability of measurement point distribution has improved, which facilitates the successful
development of laser ultrasonic PAI technology. PAI technology is based on the beamform-
ing theory of array signal processing [79]. The corresponding algorithm is the DAS imaging
algorithm in the t-domain. However, its hot zone at the damage is far more extensive
than the actual size, due to the influence of the dispersion effect on longitudinal resolution.
The lateral effect is due to the poor performance of beam directivity, resulting in poor
angular resolution [80]. Therefore, the wave packet extension, caused by dispersion, can
alleviate the problem of low longitudinal resolution by implementing a DAS algorithm in
the f -domain based on a known dispersion curve [81]. Further, Yu [82] used the adaptive
weighting function of minimum variance distortionless response (MVDR) beamforming
theory to improve the angular resolution by increasing the weight of the incident direction
and suppressing other directions.

The energy leakage of the side lobe and grating lobe is the main reason for the low
angular resolution, and, to a large extent, the array parameters affect the array beam di-
rectivity, where the topology is an important factor affecting the array performance [83].
With the high designability of the measuring points, the damage resolution can be im-
proved by optimizing the array parameters. Ambrozinski et al. [84,85] compared the beam
directivity of multiple 2D topological arrays, such as a cross, spiral, circular, and square
ring. Among them, the spiral array has the best directivity.

Increasing the incidence direction can effectively improve imaging resolution [86].
To this end, Tian et al. [87] used PZT incidents in four directions around the damaged
region and used a fence array to acquire the wavefield. The densely distributed clusters of
subwavelength corrosion pits were imaged. Finally, they could identify most pits, except for
the central pit, using data fusion techniques. The Total Focus Method (TFM) is the PAI
algorithm of the multi-transmission and multi-receiving modes, and its imaging principle
is Equation (4) [88].

I(x, y) =

∣∣∣∣∣ N

∑
i=1

N

∑
j=1

si,j(i 6=j)
(
ti,j(x, y)

)∣∣∣∣∣ (4)
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where, Si,j(x,y) is the signal excited by the i-th sensing point and received by the j-th
sensing point. ti,j(x,y) is TOF, which is the time when the excitation signal from the i-th
sensing point passes through the space point (x,y) and then scatters to the j-th sensing
point. Liu et al. [88] built a fully non-contact laser ultrasonic detection system based on the
TFM method to achieve damage localization. Each array element is used for excitation and
reception, and two laser deflection systems are required. The symbolic coherence factor
was also proposed to narrow the damage location hot zone, and the localization precision
was much higher than that of PAI with single excitation and multiple receivers.

Signal acquisition for laser ultrasonic PAI takes only a little time. However, numerous
virtual scattering points must be assigned, and much time is spent on post-processing.
Therefore, PAI does not meet the need for rapid damage detection within a large area.
Although many studies are approaching the actual damage size. Intrinsically, the beam-
forming theory, based on PAI, cannot break the half-wavelength diffraction limit and is not
an effective method for obtaining high-precision imaging.

5.2.2. Multiple Signal Classification

Multiple signal classification (MUSIC) separates the signal and noise subspaces by
eigen decomposition of the received data covariance matrix. The spatial spectrum esti-
mation of the signal source is achieved by scanning each point in the space and using
the orthogonality between the space spanned by the steering vectors and the noise sub-
space [89]. Spatial spectrum estimation and damage location are similar, and their target is
finding sound sources [90]. According to extensive research, it is known that the MUSIC
algorithm has been applied to impact source localization and ultrasonic Lamb wave dam-
age detection [91]. Most studies have used contact sensing, and only a few have used laser
ultrasonic technology. The related research has focused on the following issues:

(1) Many topological arrays are designed, such as line [91], cross [92,93], petal [94],
bilinear [95], biflabellate [96], and sparse [97]. The near-field 2D-MUSIC algorithm
is used to locate the damage. The scattering waves are described as spherical waves
when the damage is located in the near-field range. The 2D-MUSIC algorithm has a 2D-
steering vector, and the near-field spatial spectrum is estimated as in Equation (5) [91]:

PMUSIC(r, θ) =
1

AH(r, θ)UNUNH A(r, θ)
(5)

where A(r, θ) is a two-dimensional steering vector, r and θ are the scanning dis-
tance and angle, respectively. UN denotes the noise subspace tensed by the matrix
of eigenvectors corresponding to small eigenvalues. By varying r and θ to scan
each spatial point, the peak point of the spatial spectrum corresponds to the impact
source/damage.

(2) MUSIC assumes that the incident wave is a single-frequency continuous wave,
but laser ultrasonic Lamb waves have broadband characteristics. Shannon wavelets
are good at extracting the narrowband component [98].

(3) It is not easy to artificially set the threshold to select the eigenvalues of the covariance
matrix. For this reason, researchers proposed Gerschgorin’s disc theorem, based on
unitary transform, which can judge the number of wave sources more directly [91].

(4) When there are multiple damages close to each other, or the damage is close to the
boundary, the scattering wave interference causes the singularity of the covariance
matrix. Researchers introduced a spatial smoothing method to average the covariance
matrix of multiple subarrays to obtain a smoothed covariance matrix [91]. This
method was only used for linear arrays.

The time reversal method allows adaptive focusing of the ultrasonic Lamb wave
in the presence of unknown propagation media and array sensors. The array response
matrix is obtained by a full matrix acquisition method. Eigenvalue decomposition of the
time reversal matrix enables super-resolution imaging. Time reversal with the MUSIC
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(TR-MUSIC) and decomposition of the time reversal operator (DORT) are typical subspace
class algorithms, both of which use noise subspace and signal subspace to construct the
space spectrum, respectively. Yun et al. [99] built a detection system for PL-PZT and
proposed the modified TR–MUSIC, which uses moving time windows to establish the local
spatial spectrum at different times and distances, so as to improve the image quality of
multiple damages. However, the distance resolution is very low. Yuan et al. [100] used an
L-shaped array of PZT-SLDV detection system to acquire the array response matrix and
used DORT–MUSIC to image multiple damage sites within an aluminum plate, showing
excellent localization accuracy.

MUSIC has excellent advantages in damage detection efficiency and angular resolution,
and it can break the Rayleigh diffraction limit to identify two damages with less than half-
wavelength spacing. It does not need a complex model, nor does it need to extract TOF,
and only uses simple mathematical analysis to describe the geometric relationship between
the wave source and the array. However, MUSIC is not suitable for signals with low SNR,
nor can it identify damage details. In the next step of research, the direct spatial spectrum
estimation of broadband laser ultrasonic Lamb wave signals is a development direction
that needs attention.

5.2.3. Ultrasonic Lamb Wave Tomography

The ultrasonic Lamb wave tomography (LWT) arranges a sensing array around the
detection area and designs a multi-transmission and multiple-receiving paths to cover the
detection area [101]. High-accuracy damage reconstruction is achieved, based on the direct
wave, scattering wave and transmitted wave. LWT can be performed in standard parallel
projection [102], sector projection [103], or cross projection [104]. With the development of
LU, the sensing method of tomography imaging has gradually evolved from traditional
contact to non-contact.

Tomography is divided into two categories: the first category is transmission tomog-
raphy, which is based on the ray theory and ignores scattering effects. A transmission
tomograph typically uses TOF, amplitude, and frequency shift as characteristic parameters
to detect and image damage [105]. The resolution is determined by the size of the first
Fresnel zone and the wavelength [106]. Typical methods are the RAPDI [107], conver-
sion [108] and iterative [109]. The reconstruction algorithm for probability detection of
damage (RAPID) uses probabilistic statistical techniques to analyze the same parameters
for different paths. Cho et al. [110] used signal difference coefficient (SDC) as the dam-
age index. A ring-shaped array was designed to detect multiple defects in a large plate.
The method does not require interpretation of the physical meaning, allowing flexible
design of topological arrays, and enabling fast and effective wavefield reconstruction.

Cho et al. [111] proposed a Hilbert inverse projection algorithm, and constructed
a robotic arm-assisted automatic detection system, as shown in Figure 11, which was
successfully applied to detect different types of defects in aluminum plates with high
accuracy. Hu et al. [112] used Lamb wave amplitude as the parameter, and used horizontal
and vertical parallel projection to scan the detection area. A threshold was set to roughly
evaluate the damage location. In subsequent research [109], the local area was scanned
by cross-hole tomography, and the damages were reconstructed inversely, based on the
least square method. Finally, high-precision reconstruction of notch and delamination in
aluminum/composite hollow cylinders was achieved.

The second type is based on the scattering wavefield theory [113]. The fluctuation
equations of the exact scattering wavefield are established, and the structure is reconstructed
according to the measured external scattered waves [114,115]. The scattering waves carry
comprehensive information and can truly reflect the distribution of the medium inside
the structure. Huthwaite et al. [116] introduced the hybrid algorithm for robust breast
ultrasonic tomography to the LWT. It provides accurate characterization of the remaining
thickness of the plate. In addition, it can also improve the contrast of small-sized damage by
iteration. Full waveform inversion (FWI) is a method, based on the iterative optimization
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calculation, which takes into account diffraction and high-order scattering effects and
has the highest theoretical imaging resolution [117]. Various types of defects in complex
structures can be detected, with defect detection resolution up to one-half wavelength.
He et al. [118] combined the least squares reverse time migration and LWT. He built a
circular array detection system, PZT-SLDV. Based on the born approximation, the scattering
signals were used to reconstruct the damage shape, such as rectangles, and complex shapes,
with multiple different sizes.

Figure 11. Robotic arm-assisted automated detection system and imaging results [111]. (a) PL-ACT
tomography detection system. (b) Multi-damage sample. (c) Results of high-precision tomogra-
phy imaging.

LWT has high hardware requirements, both exciting and sensing require devices to
assist laser deflection. The acquisition efficiency is low, due to its having wraparound multi-
transmission and multi-receiving. The imaging method of fluctuation equation inversion
often has the advantage of high resolution, but the disadvantages of inefficient computing
cannot be ignored.

5.3. Intelligent Detection Methods Based on Machine Learning

Machine learning (ML) is a data-driven decision-making method that automatically
analyzes patterns from data and uses the patterns to make predictions about unknown
data [119]. ML has a superior ability to identify and classify patterns in datasets and can
be used as an extension of traditional damage detection techniques. Combining physical
models with data models to establish a nonlinear mapping relationship between signal
input and damage assessment can compensate for the shortcomings of traditional damage
detection [120]. ML can be applied in several steps of ultrasonic Lamb wave damage
detection, from the judgment of existence [121] to classification [122], localization [123], size
assessment [124], depth reconstruction [125], and shape recognition [126]. The operational
process can be summarized as obtaining detection information, extracting and selecting fea-
tures, and classifying actual cases according to the categories that have been assigned labels.
The signal is pre-processed by various algorithms and delivered to the training model as
input. The following input forms are commonly used: original signal, parameters/images
in the t-domain, f -domain or t-f domain, and low-resolution damage images.

Most machine learning methods, based on ultrasonic Lamb wave, use the convolu-
tional neural network (CNN), and support vector machine (SVM), and a few use clustering
in unsupervised learning [127,128]. Deep learning (DL) is a calculation method with a
multi-layer neural network, which can solve the nonlinear mapping relationship between
high-dimensional complex data, and it has been widely used in ultrasonic nondestructive
testing in recent years [129]. The combination of DL and laser ultrasonic detection mainly
focuses on the surface/subsurface damage of metal additive manufacturing structures, in-
volving the damage classification and the assessment of depth and size [130–132]. However,
research on combining DL with LU-LDM is still in a tentative stage, and only a few studies
have had outstanding results in damage shape recognition. The DL is good at dealing
with problems related to high-resolution imaging. H. Song et al. [133,134] constructed two
multilayer convolutional neural networks with TFM/DAS imaging as the input and dam-
age location and shape as the output. Their study successively achieved the localization
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and shape recognition of subwavelength damage. Moreover, the effectiveness of DL in
high-resolution imaging of subwavelength damage was demonstrated. Chen et al. [80]
applied clustering methods to damage localization and acquired wavefield arrays based
on a fully non-contact laser ultrasonic detection method. The evolutionary strategy and
clustering algorithm were combined to propose a search algorithm based on the symbolic
coherence factor. The method improves the SNR, and the imaging time is less affected by
the number of discrete grids.

ML is a mathematical tool connecting the input (measurement signals) and output
(structural health states). The future trend is to exploit the correlation between ML and
LU-LDM and to expand the database to enrich the training samples to achieve a leap
forward in efficiency and accuracy.

5.4. Analysis of Comparison and Application

Table 3 lists the detection results from the literature related to LU-LDM based on
a small amount of wavefield data. The studies were mainly on thin-walled aluminum
alloy/CFRP structures and particularly honeycomb sandwich structures, whose thicknesses
ranged from 1 mm to 10 mm. The types of damage were mainly holes, cracks, grooves,
and delaminations, and partly by using magnets attached to the structure’s surface to
simulate the damage. Most damage lengths and widths were distributed in the range of
5–30 mm, and there were also clusters of subwavelength damage and pitting damage of
2 mm.

Table 3. Related literature and detection results of detection methods based on a small amount of
wavefield data.

Methods Specimen Damage Type and Size Damage Information Ref

GPM

Wind turbine
composite blade

3 mm

Delamination
Φ10 mm

Location
Error = 5.4 mm

[49]

Aluminum Nomex
sandwich core
structure 1 mm

BVID(Impact damage)/hole
Φ14/18/5 mm

Location [70]

Aluminum plate
1 mm

Rectangular through-hole
damage

12 × 3 mm
Location [71]

Composite plate
1 mm

Through hole
Φ10 mm

Location [72]

CS

GFRP
1.6 mm

Delamination
Φ25.4 mm between layer 2/3

Location/Size/Shape
Compression ratios = 90%

[76]

CFRP
1.6 mm

A circular magnet
Φ10 mm

Location
Compression ratios = 86%

Error <2λ/3

[77]

GFRP/CFRP plates
3.2/0.5 mm

Notch cut/Delamination
15 × 0.5 mm/Φ10 mm

Location/Size [75]

CFRP plate
2 mm

A square magnet
10 × 10 mm

Location [78]

PAI

Aluminum plate
1 mm

Quartz rod × 4/Crack × 2
Φ4/6/8/10 mm 10 mm

Location/Orientation [82]

Aluminum plate
0.8 mm

Circular magnet/Through hole
25/20 mm 5 mm

Location/Size [88]

Aluminum plate
3.2 mm

Pitting corrosion cluster (3 × 3)
Φ2 mm Interval:2 mm

Location/Size
Except the center one

[87]

MUSIC

Aluminum plate
0.8 mm

Through hole
Φ10/20/30 mm

Location [93]

Aluminum plate
2 mm

Two drilled holes
Φ4 mm

Direction of Arrival [99]

T6061 aluminum plate
1.6 mm

Circular magnetic
Φ6.35 mm

Location [100]
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Table 3. Cont.

Methods Specimen Damage Type and Size Damage Information Ref

LWT

Aluminum plate
3 mm

A round corrosion wastage
Corrosion pits cluster

106 × 30 × 1 mm 32 × 100 × 1.5 mm
Location/Size [110]

Aluminum plate
1 mm

Rectangle/circle/microhole/strip
52 × 26/Φ52/Φ4/52 × 2 mm

Location/Size/Shape [111]

Aluminum plate
10 mm

Flat-bottom defects × 3
60 × 44 × 5 mm 42 × 30 × 4 mm

24 × 16 × 3 mm
Location/Size/Shape [117]

Aluminum alloy plate
2.29 mm

Rectangular/Complex shaped/
Multiple, varying-sized damage

Location/Size/Shape [118]

ML

Aluminum alloy plate
1.6 mm

Crack-like defect
9.4 × 2 × 1.6 mm

Location /Size/Shape/
Orientation

[134]

Aluminum alloy plate
1.6 mm

various subwavelength circular
and notch-type defects

3/10/12/18 mm

Location /Size/Shape/
Orientation

[133]

Aluminum plate
0.8 mm

Circular magnetic × 2
Φ25 mm

Location [80]

The comparative analysis between several methods is shown in Table 4. GPA, CS,
and MUSIC methods are suitable for rapid damage localization in a large area. The LWT can
detect complex damage shapes with high resolution but requires multiple transmissions
and receptions to construct a complete database. They are typically used after initial
damage localization has been performed. A well-trained and sophisticated neural network
allows for fast localization and quantification.

Table 4. Comparison of detection methods based on a small amount of wavefield data.

Methods Checkable
Information Advantages Disadvantages

GPM Location Simple principle, fast
positioning Accuracy affected by dispersion

CS Location Breaks the Nyquist sampling
limit

The construction of dictionary
library has a great impact on the results

PAI Location Simple principle with little data
collection

Extremely inefficient point-by-
point assignment calculations

MUSIC Location Fast calculation and high
resolution in orientation

Low SNR and dispersion result
in low radial resolution

LWT Location
Shape High resolution Multi-transmission and multi-receiving,

low efficiency in acquisition

ML Location
Shape

Fast classification/localisation,
high accuracy quantification

Requires large amount of training data,
poor physical interpretability

6. Combination of Multiple Methods to Balance Efficiency and Accuracy

Balancing detection efficiency and accuracy using a single detection method can be
challenging. However, the fusion of multiple methods can help achieve a balance. Many
researchers have developed a strategy of combining multiple methods, i.e., performing
graded detection sequentially. This approach allows for rapid detection without sacrificing
high-resolution results, making it a valuable tool in damage assessment. An overview of
various combinations of LU-LDM are provided in Table 5.

Table 5. Multiple combinations of laser ultrasonic detection.

Step 1 Result from Step 1 Step 2 Result from Step 2 Ref.

PAI Rough location LWE High-precision imaging [135]

CS Reconstruction of partial wave fields PAI Location [136]

LWE Damage imaging Pulse echo method(body wave) High-precision imaging [137]

DL-CNN1 With or without damage DL-CNN2 Location [138]
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(1) Combination of fast localization and high-precision imaging methods [135]. For dam-
age detection over a large area, a small amount of wavefield data is first collected
to roughly localize the damage. Then, a dense scan of the local wavefield is used
to accurately quantify the damage. Combining multiple methods enables different
methods to exert their advantages at different stages.

(2) The combination of CS and PAI imaging [136]. In a large area, sparse wavefield data
are randomly collected, and the wavefield data of a dense array are reconstructed
using the principle of CS. Based on this data, damage localization is achieved using
PAI. This combination has a random wavefield acquisition, is not limited by the array,
and saves many operations caused by reconstructing the full wavefield.

(3) Laser ultrasonic Lamb waves were combined with the laser ultrasonic body wave
detection method [137]. The longitudinal waves penetrate the structure in a short time
without dispersion [139–141]. The wavelength of longitudinal waves can reach the
micron level and is more sensitive to damage in the thickness direction. A combination
strategy involves using Lamb wave detection to obtain a rough location of the damage,
followed by laser ultrasonic body wave imaging to achieve higher accuracy.

(4) Multiple CNN with different functions is constructed to achieve hierarchical detec-
tion [138]. In the outer loop, the damage detection model predicts the structure’s
damage state (with or without). The inner loop predicts the damage’s location only
when the outer loop’s detection result is present. This combination enables high-
precision damage localization at the millisecond level.

7. Future Perspectives

The advantages of high designability of measurement points and high scanning
precision have attracted more and more attention to LU-LDM. With the development of
advanced laser and laser vibrometer technology, a framework of LU-LDM has gradually
formed, and its effectiveness is reflected in the damage detection of thin-walled structures.
Although some experimental achievements have been made, there is still much room for
precision and efficiency. While an exhaustive list of future trends is not possible, an outlook
on several potential future challenges and their corresponding developmental directions
is provided.

(1) Promote the application of LU on actual project sites. Most detection objects in the
existing studies are simplified to thin plates, but structures are complex, such as wing
ribs, reinforcement bars, and screw holes. In the future, LU-LDM must solve real
problems as the ultimate goal, build physical models of actual structures and study
the corresponding detection methods.

(2) Research and development of a multi-channel laser ultrasonic testing system. The need
for repetitive excitation and acquisition affects the improvement of detection efficiency.
A laser vibrometer with multi-point synchronous acquisition can be developed to
constitute a multi-channel laser ultrasonic detection system.

(3) Promote the application of laser ultrasonic modulation in time and space. Contact
piezoelectric transducers can excite single-frequency continuous waves and narrow-
band signals. Compared with laser, its advantage lies in the strong selectivity of
frequency and mode. The ultrasonic Lamb wave generated by a single laser spot is
a broadband signal with no directivity. Optical devices, such as lenses and gratings,
changing the shape of the laser spot, and, thereby, controlling the directivity and
bandwidth of the ultrasonic wave.

(4) The existing research has focused on formed damage of centimeter size. However,
the formation process is from initiation to evolution. Nonlinear ultrasound Lamb
waves are susceptible to early microscopic damage of materials, such as fatigue
cracks and creep holes. Therefore, using nonlinear LU-LDM to monitor material
creep-damage and initiation-damage formation is a future development direction.

(5) Deep integration of laser ultrasonic detection methods with ML. At present, most
methods are transplants of existing methods, which actually do not effectively utilize
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their specialties in solving nonlinear mapping relationships in damage detection.
Future research must investigate the correlation between damage and signal features
and build multi-level ML models between data and damage details.

8. Summary

This review systematically built a comprehensive framework for LU-LDM, which is
expected to provide technical support to inspectors. Laser ultrasonic Lamb wave signals
focus on the low-frequency A0 mode, which has the apparent disadvantage of a low SNR.
Currently, most detectable damage sizes range from 5–30 mm, and include various types,
such as corrosion, impact, delamination, and debonding. The summarization methods
presented in this article can be applied to the online detection scenario, such as aircraft
metal/composite skins, aircraft radar antenna radomes, high-speed train steel framework
shells, and large ship metal decks.

According to different data characteristics and detection purposes, selecting the ap-
propriate processing algorithms and detection methods can promote the development
of LU-LDM from the laboratory to on-site applications. When high-precision imaging
is necessary for local inspection, utilizing full-wavefield acquisition techniques, such as
LWE, can be practical. It can achieve damage resolution at the micron level. If real-time
imaging is necessary, AWPI and UFT can provide immediate graphical results, in tandem
with detection. Alternatively, calculations with a small amount of wavefield data, such
as MUSIC or trained neural network algorithms, can quickly infer the damage location.
The former can quickly locate the damage location within a few seconds, but its distance
accuracy may be limited. The latter option requires a significant amount of initial training.
The combined use of multiple methods is the trend to improve overall detection efficiency
and accuracy. As the cost of laser equipment continues to decrease, LU-LDM has the
potential to become a detection technology that can replace contact sensing methods.
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