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Abstract: To overcome the problems of long production cycle and high cost in the product manufac-
turing process, a P2P (platform to platform) cloud manufacturing method based on a personalized
custom business model has been proposed in this paper by integrating different technologies such as
deep learning and additive manufacturing (AM). This paper focuses on the manufacturing process
from a photo containing an entity to the production of that entity. Essentially, this is an object-to-object
fabrication. Moreover, based on the YOLOv4 algorithm and DVR technology, an object detection
extractor and a 3D data generator are constructed, and a case study is carried out for a 3D printing
service scenario. The case study selects online sofa photos and real car photos. The recognition rates
of sofa and car were 59% and 100%, respectively. Retrograde conversion from 2D data to 3D data
takes approximately 60 s. We also carry out personalized transformation design on the generated
sofa digital 3D model. The results show that the proposed method has been validated, and three
unindividualized models and one individualized design model have been manufactured, and the
original shape is basically maintained.

Keywords: personalized business model; P2P cloud manufacturing; reverse engineering; deep
learning; 3D reconstruction; 3D printing

1. Introduction

The ever-increasing customization and personalization demands of customers and
the ever-shortening product life cycle have brought severe challenges to the manufactur-
ing industry. Ubiquitous connectivity, digitization and sharing provide opportunities for
personalized production to meet the burgeoning demand for personalized goods [1]. In
the framework for personalized production based on digital twins, blockchain and AM [1],
and the consensus-oriented cloud manufacturing framework based on blockchain tech-
nology [2], professional designers may be required to design the entire product model, or
traditional reverse engineering may be used to obtain the 3D data. These processes have
problems such as long cycle and high cost. The development of extremely flexible cloud
services [3] and novel artificial intelligence technology allows this to be realized at low cost,
in high quality and quickly.

With the improvement of current manufacturing intelligence and productivity,
computer-aided design and manufacturing (CAD/CAM) and rapid prototyping (RP) have
become hot words in the manufacturing field. Traditionally, the two behaviors were han-
dled separately. However, as customer demands continue to increase, there is a growing
trend of combining the two, which leads to concurrent engineering [4]. Manually creating
3D models is time-consuming and expensive. For this reason, techniques for automatically
reconstructing 3D objects have been developed. This technique is the process of capturing
the shape of an object through surface data sampling and generating a CAD model of the
part, known as reverse engineering [5]. Reverse engineering is the process of 3D scanning
and data acquisition of the original physical shape, followed by data processing and 3D
reconstruction to build a 3D model with the same shape and structure. Then, on the basis
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of the original shape, to copy or redesign the original shape to achieve innovation. These
techniques can be subdivided into active and passive approaches [6]. The drawback of
active methods (e.g., structured light, laser scanners, laser range maps and medical MRI) is
that the reconstruction process can be a costly project [7]. Hence, the described methods are
passive methods, which require less equipment and can be more widely applied. As soon
as a CAD model is obtained through reverse engineering, a large amount of information
can be exported and some operations can be performed, such as mechanical design, finite
element (FEM) mesh generation, command code generation for CNC machines, overall
property calculation, tolerance analysis, accessibility analysis, etc. This provides great
support for personalization. At present, many methods [8–10] for reconstructing 3D objects
can recover the 3D model of the object with only a single shot, which enables fast and
low-cost acquisition of 3D data in reverse engineering.

AM is also known as layer manufacturing, rapid prototyping or 3D printing [11].
Different from subtractive manufacturing techniques, such as milling and grinding. It
manufactures designed parts by removing material. Additive manufacturing describes the
manufacturing process of joining materials to create parts from 3D model data, usually
layer by layer [12]. The appeal of additive manufacturing to companies and industries
is clear, as it has not only revolutionized the way final part shapes are obtained, but also
offers a promising way to develop highly customized and personalized products [13]. AM
empowers intelligent manufacturing, and on-demand personalized customization becomes
a new direction of development [14]. With the gradual emergence of commercial value such
as easy molding, personalized customization, and rapid manufacturing, the application
scenarios of 3D printing are becoming more and more diverse. At present, 3D printing
has been widely used in construction, footwear, industrial design, jewelry, engineering,
aerospace, dentistry, automobiles and other fields. Some manufacturers have also begun to
use 3D printing to manufacture aircraft seats, car engines, etc. [15]. After the production
of products with the help of cutting-edge 3D printing technology, the innovation of the
products’ production process has been accelerated, and its appearance, design, and internal
functions have also been further improved.

In order to cope with the ever-changing demand for personalized services, high design
costs, long product manufacturing life cycle and other issues, a p2p cloud manufacturing
method is proposed based on the personalized business model [1] and cloud manufacturing
framework [2]. The difference between this study and these manufacturing frameworks
is that it pays more attention to the entity-to-entity manufacturing process, which is used
to solve the problems brought about by the time and cost of product manufacturing.
This paper is a complete and complementary work to these frameworks. Based on the
proposed method, long-distance transmission of physical objects can be realized. When
customers see the products they want in multimedia such as video, they only need to
take a screenshot to quickly generate the corresponding entity. With this method, only
one photo is needed to get the entity in the photo. First, the YOLOv4 [16] is employed
to detect and identify all objects in the photo. The targets are cropped to generate a new
image. Then the differentiable volume rendering (DVR) [10] technology is optimized to
restore the 3D model of the object based on the new image. A digital model file is produced.
Finally, the obtained 3D data can be customized for customers. The entity is produced with
3D printers.

In this research, we propose and implement a novel P2P reverse manufacturing
method that combines deep learning and AM technology. such that the method is com-
patible with fast, low-cost and personalized customization features. By using YOLOv4,
object detection and recognition is realized. The conversion of 2D data to 3D data is realize
by DVR technology. The production printing of 3D digital models is done by employing
AM technology. A further distinction of our work from the limited existing work is the
overall improvement of the scheme for 3D data acquisition during reverse engineering. The
method is applied to the P2P printing service scenario, and the feasibility of the method
is verified through a case study. The contributions of this paper can be summarized as
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follows: (1) A P2P cloud manufacturing method based on the personalized business model
is proposed, which can support on-demand manufacturing and long-distance transmission.
the method is an extended study of [1,2], bringing them closer to reality. This will be a fast,
low-cost, and convenient P2P cloud manufacturing method in the future. (2) Add object
recognition and extraction to the original 3D reconstruction method to improve the clarity
of the 3D digital model. (3) Based on the proposed method, the feasibility of the proposed
method is verified by using photos from the Internet and reality to produce small solid
models.

The remainder of this paper is organized as follows. Section 2 briefly reviews key
relevant research streams in personalized business models across various industries, deep
learning-based reconstruction methods, and additive manufacturing. In Section 3, a P2P
cloud manufacturing method based on the personalized business model is presented
In Section 4, according to the customer-centered production model, the small models
of the objects are generated from two aspects of network pictures and real photos to
verify the feasibility of the proposed scheme. They are employed to verify the feasibility
of the proposed scheme. Section 5 discusses the contributions of this paper as well as
future research.

2. Literature Review

Personalized business model: As early as 20 years ago, various industries had a
business paradigm of personalized customization. For example: personalized interactive
TV advertising [17], personalized medicine [18,19], and personalized web system frame-
works [20]. After the introduction of Industry 4.0, the intelligent manufacturing industry
has moved towards personalized customization. Wang et al. [21] propose cloud-based
manufacturing of personalized packaging. Egon [22] proposes a management tool to
guide business model innovation in the direction of personalized products: the business
model radar template of personalized products. Qin et al. [23] proposed the paradigm
of large-scale personalized intelligent manufacturing. Zhang et al. [24] propose a flexi-
ble intelligent manufacturing system under the large-scale personalized manufacturing
mode. Personalized, mass-manufactured models are gradually becoming the production
paradigm of our generation. Guo et al. [1] propose a personalized production framework
based on digital twins, blockchain, and additive manufacturing in the context of Industry
4.0, providing useful guidance and reference for the personalized production paradigm.
Zhu et al. [2] propose a framework for cloud manufacturing by integrating blockchain
technology. Inspired by [1,2], this paper proposes A P2P cloud manufacturing method that
provides a quick, easy, and low-cost solution to reversely obtain 3D digital models.

3D Reconstruction: In computer vision, 3D reconstruction refers to the process of re-
constructing 3D information from single-view or multi-view images or video streams.
Ref. [25] is the pioneering work of using deep learning for depth map estimation. Eigen
et al. divide the network into a global rough estimation and local fine estimation, esti-
mate the depth from coarse to fine, and propose a scale-invariant loss function. For 3D
reconstruction of singular or multi-view images with voxels, Choy et al. [26] combined
LSTM, if the input is only one image, the input is one, and the output is also a result.
If it is multi-view, consider the multi-view as a sequence, input it into LSTM [27], and
output multiple results. In summary, a 2D-image-to-3D voxel model mapping is established
through the network structure of the Encoder-3DLSTM-Decoder. Its disadvantage is that it
needs to consider the voxel resolution, the size of the calculation time and the size of the
accuracy. Fan H et al. [28] used a deep network to directly generate a point cloud from a
single image, solved the problem of generating 3D geometry based on a single image object,
and created a precedent for single-view 3D reconstructed point cloud representation.

Wang N et al. [29] propose an end-to-end neural network and realized the direct
generation of 3D information of objects represented by mesh from a single color image,
without the need for point clouds, depth or other more informative data. They used graph
convolutional neural networks(GCNNs) to represent the 3D mesh information, using the
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features mentioned from the input image to gradually deform the ellipse to produce the
correct geometry, The core idea of this paper is to use an ellipsoid as the initial shape of any
object, and then gradually turn this shape into a target object.

For differentiable rendering, Chen et al. [30] propose DIB-Render, through which the
gradient can be analyzed and calculated, which can be used to solve the basic rasterization
steps of discrete allocation operations, with a non-differentiable rendering pipeline. The
key to their approach is to treat rasterization as weighted interpolation, allowing image
gradients to be back-propagated through a variety of standard vertex shaders within a
single frame, resulting in single-image 3D object prediction and 3D texture object generation,
both using specialized 2D supervision for training. Niemeyer M et al. [10] propose a
differentiable rendering formulation that can represent continuously 3D information for
implicit shape and texture representations. They can learn implicit shape and texture
representations directly from single or multiple RGB images without 3D supervision and
result in watertight meshes.

Additive manufacturing: Additive manufacturing is defined as the process of build-
ing 3D objects by joining materials layer by layer [20]. It is one of the most promising
methods, which offers clear advantages in reducing material waste, time bottlenecks, and
setup costs compared to conventional methods [31]. Due to the advancement of new tech-
nologies, the application of additive manufacturing in various industries, such as [32–34],
is increasing. As a developing technology to manufacture precise and intensified complex
objects by increasing production speed, it may offer an alternative to conventional manu-
facturing techniques in the near future [35]. Compared with traditional building material
manufacturing, additive manufacturing can be manufactured according to design [36]. It
provides strong support for personalized customization with higher customer participation.
The integration of additive and subtractive manufacturing [37,38] has enormous potential
to revolutionize how products are designed, manufactured, and delivered to customers in
the form of products.

3. A Proposed P2p Cloud Manufacturing Method

Personalized production is a promising model towards the pursuit of expressing
individual characteristics of human nature. AI and additive manufacturing can truly
transform individual needs and preferences into personalized products and services at an
affordable cost through ubiquitous connectivity, digitization, and sharing throughout the
product lifecycle. In this section, a P2P cloud manufacturing method based on a customized
business model is proposed.

As shown in Figure 1, customers are involved in the entire product life cycle from
design to manufacturing. Customers can take pictures with digital cameras, or download
screenshots on fixed and mobile terminals such as tablets and smartphones. This process
involves long-distance transmission. AI-powered reverse engineering integrates image
preprocessing and single-view reconstruction in the product, linking customer and model
production. After the model is produced, the customer participates in the customization
process of the model, which is a process of mutual feedback. The printing and production
of products is also a process that requires customers and manufacturers to communicate
their needs with each other, which is equivalent to the completion of the final product.

Two situations are considered: the object the customer wants is not local; the customer
sees the object he wants on the Internet but has no model data. In the first case, simply
take a photo of the product remotely. In the second case, just download a screenshot of the
product you like. This process is entirely based on images provided by customers based
on their needs and preferences. It provides customers with the greatest freedom of choice.
Ubiquitous connections and sharing enable long-distance transmission of pictures.

The captured pictures may contain multiple objects, and it is difficult for the current
3D reconstruction technology based on deep learning to reply to the 3D information of
each object picture. In view of this, preprocessing of the target image is necessary. YOLOv4
is used for object recognition and detection in pictures. The model output object contains
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the top, bottom, left, and right coordinates of all detected objects. Since cropping starts at
the origin of the original image, the new coordinates are defined as follows:

Topn = Max(0, topr − 4.5), (1)

Le f tn = Max(0, topr − 4.5), (2)

Bottomn = Min(W, Bottomr + 5.5), (3)

Rightn = Min(L, Rightr + 5.5), (4)

where {top/Le f t/Bottom/Right}n denote the new coordinates of the top, left, bottom,
and right, respectively. {top/Le f t/Bottom/Right}n denote the top, left, bottom, and right
coordinates returned by the YOLOv4 model, respectively. Max() denotes the max function.
Min denotes the minimum function. W and L denote the width and length of the original
image, respectively. For better calculation in the neural network, square pictures are
required. The Algorithm 1 is as follows:

Algorithm 1 Square image generator.

1: top, bottom, left, right = 0, 0, 0, 0
2: fill = round(abs(L −W) /2)
3: if The length of the original image is greater than or fixed to the width then
4: top, bottom = fill, fill
5: else
6: left, right = fill, fill
7: end if

Figure 1. A P2P cloud manufacturing method based on personalized business model.

Algorithm 1 calculates the part that needs to be filled, which is filled with white. The
3D data of the object can be recovered from this image. A digital model can be obtained
simply by determining the shape and texture of the object. DVR technology implicitly
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represents the shape fθ and texture tθ of the 3D model. The gradient from the surface
depth is:

∂d̂
∂θ

=

(
∂ fθ( p̂)

∂ p̂
· w
)−1 ∂ fθ( p̂)

∂θ
, (5)

where fθ denotes the occupancy network [39], which outputs the occupancy probability
of each point in the 3D space. θ denotes the network parameter, which only involves
computing the gradient at the point p̂ ∈ R3. w denotes the vector of the camera pointing
to a certain pixel point, and its intersection with fθ(p) is p̂. The input image i is encoded
using the ResNet18 [40] network gθ :

gθ(i) = Z, (6)

where Z is a latent vector of 256 dimensions. The shape and texture of the 3D model are
represented as:

fθ(p, z) = T, (7)

tθ(p, z) = RGB, (8)

where p ∈ R3 denotes a point in space. z ∈ Z denotes the encoder output vector. 3D
surfaces are implicitly determined by the occupancy probability T ∈ [0, 1]. The texture of
the object is given by the RGB values on the surface of the object. Five fully connected
ResNet blocks and ReLu activation functions are used to implement the combined network.
The output dimension of the last layer of the model is 4, one of which is occupancy
probability, and the three dimensions are texture.

After reverse engineering the initial 3D model, in order to design a product model
for individual needs and preferences, it is necessary to develop an effective information
recommendation strategy. Designers integrate customer preferences into product design
and continuously communicate with customers. Additive manufacturing also provides
designers with many design-assisted design tools. Generative design, for example, is
achieved through a combination of topology optimization and additive manufacturing,
while optimizing topology and material distribution [41]. A digital model of the product
(STL, Gcode, etc.) will be generated prior to additive manufacturing.

A designed 3D digital model is imported into the 3D printer. Many 3D printer
manufacturers provide specialized model slicing software, which can adjust the actual size
of the model, add suitable support structures, etc., before the model is printed. The printed
product can be combined with subtractive manufacturing technology to obtain the final
shape of the product. Likewise, the printed product is a personalized entity that interacts
with customers.

Personalized customization is a customer-centric product manufacturing process.
Introducing deep learning methods in the reverse engineering stage can reduce costs,
shorten design time, and provide customers with long-distance transmission services.
The generative design provides designers with more model styles, as well as topology-
optimized structures. In the product production stage, additive manufacturing and material
manufacturing can be combined. Manufacturers must interact and communicate with
customers in real time to ensure product visibility and build connections and trust between
customers and manufacturers. The customer-centric customized production model of
on-demand manufacturing is shown in Figure 2.
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Figure 2. Customer-centric on-demand personalized production model.

4. The Case Studies of the Proposed Cloud Manufacturing Method

Two case studies are utilized to verify the feasibility of the proposed method. Assume
that the customer finds the entity he wants while browsing the web or watching a video,
but the customer cannot obtain the 3D scanning data of the object, only a screenshot of
the website containing the object. Or if the customer sees the object he wants in the real
world, he only needs to take a photo containing the object with a digital device to get the
object model. The following is to produce the real small objects required by customers from
online images and real photos.

4.1. Hardware and Software Environment

All procedures are coded in Python 3.8 with Pycharm IDE on a computer of Ubuntu
OS with 2.2 GHz Intel i7 CPU, NVIDIA GeForce GTX 1070 GPU, and 16 GB DDR4 RAM.
The real-life photos are taken with an iPhone12 with 3.0 GHz CPU, A14 Bionic chip, and
12 million front pixels. The 3D printer model used in the production of the entity is DF3,
which is produced by Zhejiang Hangzhou DediBot Intelligent Technology Co., Ltd. [42] in
China. Its printing method is FDM (Fused Deposition Modeling), the printing accuracy is
0.1 mm, and the printing speed is 30–100 mm/s. It supports digital model printing such as
stl and obj. The specific parameters of the printer are shown in Table 1.

Table 1. DF3 printer parameter table.

Parameters Values

Printer model MOIRA DF3
Forming size Φ150 × 175 mm

Printer weight 7.2 kg
Printing material PLA
Printing method FDM
Printing accuracy 0.1 mm

Printing speed 30–100 mm/s

4.2. Generating Small Solid Models from the Images

A picture from a webpage [43] is downloaded with a resolution of 960× 1440 and
is named Picture1. A photo with a resolution of 4032× 3024 is taken by iphone12 in the
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real world and is named Picture2. Other information of the pictures are shown in Table 2.
Picture1 is a four-seater sofa, as shown in Figure 3a, and Picture2 contains two cars of
different shapes, as shown in Figure 3b. After detection and identification by the YOLOv4
network, a small sofa is extracted from Picture1. A new 819 pixel × 819 pixel size sofa
picture is generated, as shown in Figure 4a. The picture is input into the YOLOv4 network
for detection and recognition. The outputs of YOLOv4 are shown in Table 3. The probability
of being identified as a sofa in the original image is 59%. The generated new picture is used
as the input of the DVR network to construct the 3D model of the modified sofa, and the
produced 3D model is shown in Figure 4(b1). Designers get the size and shape of the sofa,
as well as personalized custom design. As shown in Figure 4(b2), a four-seater sofa can
be turned into a single sofa. This one-seater sofa has the feature of being more portable.
Two small sofas of different shapes have been produced. Figure 4(c1) is the sofa without
any modification from the original picture Figure 4a, which is longer; Figure 4(c2) is the
sofa modified by modeling customization, which is shorter. The printing parameters of the
small solid model are shown in Table 4.

Figure 3. The images used for cloud manufacturing.

Figure 4. Two small sofa models with different shapes are manufactured using the proposed method.

Similarly, the Picture2 is input into the YOLOv4 network, and the output results
are shown in Table 3. Since two cars were detected in the original picture, two new car
pictures are generated. The resolutions of the new pictures are 1591× 1591 and 1881× 1881
respectively. The new images are fed into the DVR network, which generates 3D models of
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the two cars. The 3D models are imported into the DF3 printer to produce two small cars.
The manufacturing process of the two cars is shown in Figure 5.

MOIRA DF3 is used for printing physical objects. The print samples of the sofa
and two cars are showed in Figures 6 and 7. The Sofa2 printing process is taken as an
example. The model is imported into a 3D printer. Model b2 in Figure 4 automatically
adds supports, see Figure 6a. The model is sliced as shown in Figure 6b. The next step
is to print (Figure 6c) and remove the supports (Figure 6d) to form the small sofa. Due
to the limitations of current 3D printing technology, the size of the sofa is scaled by 233
times, and the setting is 15.00 mm × 15.89 mm × 13.65 mm. It takes 1.24 h to print the
model. Parameters such as printing size and printing time of other models are listed in
Table 4. The time to produce a 3D model from a 2D image is shown in Table 5, where Mesh
represents the total time used to produce a 3D mesh, and other indicators represent the
reconstruction time of each part. It can be seen that it only takes about a minute to recover
the 3D structure from a picture. Due to the current limitations of our printer equipment
and technology, the small models of sofas and cars are printed, and were not put into actual
production. Nevertheless, from these two cases, it can be seen that the sofa and car models
have basically been produced. The feasibility of the proposed method is verified.

Table 2. The image parameters.

Picture Resolution Width High Horizontal
Resolution

Vertical
Resolution

Bit
Depth Size Inclusions

Picture1 960 × 1440 960 pixel 1440 pixel 96 dpi 96 dpi 24 238 KB Sofa
Picture2 4032 × 3024 4032 pixel 3024 pixel 72 dpi 72 dpi 24 6.51 MB Cars

Table 3. Probability and location of object recognition.

Object Probability Top Bottom Left Right

Sofa1 59% 507 48 902 867
Car1 100.00% 1521 216 2153 1807
Car2 100.00% 1591 1958 2164 3840

Table 4. Object print parameter settings.

Object Model Size Production Time (3D Printing)

Sofa1 15.00 mm × 3.52 mm × 13.65 mm 1.36h
Sofa2 15.00 mm × 15.89 mm × 13.65 mm 1.24h
Car1 30.00 mm × 12.45 mm × 12.86 mm 0.31h
Car2 30.00 mm × 9.80 mm × 11.82 mm 0.26h

Table 5. Time for DVR to produce object 3D model (unit: s).

Object Mesh Time (Eval
Points)

Time
(Marching

Cubes)

Time
(Refine) Time (Color)

Sofa1 64.897 10.463 0.993 50.421 2.829
Car1 62.468 8.483 0.989 50.648 2.186
Car2 61.729 8.851 0.991 49.573 2.314
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Figure 5. Two small car models with different shapes are manufactured through the proposed
method.

Figure 6. The printing process of Sofa2.
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Figure 7. The printing process of two cars. Among them, (a1,a2) respectively represent the 3D
digital models of Picture1 and Picture2 after adding supports, (b1,b2) represent their sliced models
respectively, and (c1,c2) correspond to the printed small solid models respectively.

5. Conclusions

To cope with the ever-changing product demand in personalized services, high design
costs, long product manufacturing life cycle and other issues, a P2P cloud manufacturing
method based on the personalized business model is proposed. This method inherits the
on-demand feature of personalized service. Based on the YOLOv4 algorithm and DVR
technology, we built an object detection extractor and a 3D data generator, and conducted
a case study on a 3D printing service scenario. In the case study, Internet sofa photos
and real car photos are selected; the recognition rates of sofa and car are 59% and 100%,
respectively. It takes about 60 s to retrogradely convert from 2D data to 3D data. We also
carry out a personalized transformation design on the generated digital 3D model of the
sofa. Two small sofas and two small car models are printed based on the generated 3D
digital models. Judging by the printed results, the proposed method is validated and
the prototypes of the sofa and the car were successfully produced. Among them, Sofa2 is



Sensors 2023, 23, 3129 12 of 14

transformed from the sofa in the original picture. Sofa1, Car1 and Car2 are all manufactured
in their original proportions.

Although the integration of deep learning and additive manufacturing technology
overcomes the time and cost problems of traditional reverse manufacturing, more detailed
work is required in the future, e.g., applying more powerful printing equipment and
technology to realize the value of manufactured products, enriching training data to support
the generation of more 3D data to make our method easier to market, and optimizing
algorithms to support the generation of objects with more complex structures.
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