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Abstract: Recently, semantic segmentation has been widely applied in various realistic scenarios.
Many semantic segmentation backbone networks use various forms of dense connection to improve
the efficiency of gradient propagation in the network. They achieve excellent segmentation accuracy
but lack inference speed. Therefore, we propose a backbone network SCDNet with a dual path
structure and higher speed and accuracy. Firstly, we propose a split connection structure, which is
a streamlined lightweight backbone with a parallel structure to increase inference speed. Secondly,
we introduce a flexible dilated convolution using different dilation rates so that the network can
have richer receptive fields to perceive objects. Then, we propose a three-level hierarchical module
to effectively balance the feature maps with multiple resolutions. Finally, a refined flexible and
lightweight decoder is utilized. Our work achieves a trade-off of accuracy and speed on the Cityscapes
and Camvid datasets. Specifically, we obtain a 36% improvement in FPS and a 0.7% improvement in
mIoU on the Cityscapes test set.

Keywords: semantic segmentation; real-time; split connection; flexible dilated convolution

1. Introduction

Semantic segmentation is a fundamental task in computer vision, which aims to per-
form pixel-level classification of a given image. The rapid development of deep learning has
improved the accuracy and speed of semantic segmentation. Many deep learning networks
have been deployed on edge devices, but the network of high-resolution segmentation is
difficult to design. The inferenc speed need to increase further. As shown in Figure 1, the
popular methods trys to get a trade-off between accuracy and speed.

A significant amount of work [1–3] has focused on designing decoders of semantic
segmentation while fully transplanting state-of-the-art backbones from the object detection
task. DeepLabV3 [4] uses ResNet-101 [5] as backbone to extract features. Many of these
approaches achieved state-of-the-art segmentation accuracy because they used a deep and
wide CNN backbone and did not limit computation costs, which creates a bottleneck in
inference speed.

Meanwhile, semantic segmentation has its own requirements for feature extraction, as
the specialized backbone networks have the advantage of segmentation accuracy. To further
improve segmentation accuracy, much real-time semantic segmentation [6–9] work has
focused on redesigning backbone networks for the task. These backbones all pay attention
to the balance between spatial information and large receptive fields. Most of them contain
various forms of feature aggregation modules or structures to make up for the loss of low-
level information. FCN [10] proposed a skip connection and then PSPNet [11] proposed
a pyramid pooling module, which preserves too many redundant features. They simply
concatenate features with different resolutions, resulting in the redundancy of feature widths
in the network. Then, some researchers propose different dense connections [1,12–14] to
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improve the efficiency of gradient propagation in the network so that more useful and
advanced features can be perceived and deeper networks can be trained. Most of these
approaches use a single-path dense connection structure and achieve a satisfactory trade-off.
However, in the inference phase, this lightweight single-path down-sampling network does
not have any space for parallel optimization. These single-path dense connection networks’
speeds are still limited. The decoder is another key element for real-time segmentation.
Multi-scale information is very helpful but very time-consuming.
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Figure 1. Speed-accuracy performance comparison on the Cityscapes test set. The red dot indicates
our work while the blue dot indicates other methods. Our approach achieves the best speed-accuracy
trade-off. The corresponding speed is measured using tensorrt acceleration if the method is marked
with asterisk.

Therefore, we propose a dual-path backbone SCDNet and a lightweight decoder to
improve the inference speed and segmentation accuracy. Specifically, we propose a split
connection (SC) and three-level hierarchical module (THM) to build a dual-path structure,
which introduces parallelism in the inference phase and preserves more low-level features
for the decoder. Secondly, we propose a flexible dilated convolution (FDC) in the high
level of the convolutional layers. It uses variable dilation rates to enrich the receptive field
size. The FDC can self-select receptive fields of different sizes to improve the segmentation
accuracy of objects of certain sizes. Finally, we refine the Flexible and Lightweight Decoder
(FLD) [15] to reduce computation cost. Our method increases inference speed by proposing
a dual path lightweight backbone that can be plugged into different frameworks while
improving segmentation accuracy significantly.

Our work contributions can be summarized as follows:

- We propose a split connection structure to complement more low-level features for the
output while introducing parallelism to improve the inference speed. We also propose
a three-level hierarchical module to fuse the features of three resolutions;

- We propose a flexible dilated convolution to adjust the receptive field of the network
and enrich the size of the receptive field of the output;

- We refine the flexible and lightweight decoder to improve computation speed and
segmentation accuracy by utilizing multi-scale information fusing with a lightweight
structure;

- We verify the effectiveness of the method on the Cityscapes and Camvid datasets.
Specifically, we achieve a 36% improvement in FPS and a 0.7% improvement in mIoU
on the Cityscapes test set.

(A preliminary version of the segmentation algorithm in this work appeared in the
International Conference on Ubiquitous Intelligence and Computing 2022 by Yao et al. In
this paper, we utilize a refined flexible and lightweight decoder to improve the performance
of the method. Furthermore, we update the information of the experiments).
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2. Related Work

Since semantic segmentation training is highly dependent on a high-precision anno-
tated dataset, the unsupervised domain adaptation (UDA) semantic segmentation task
has attracted significant attention. The recent UDA work DecoupleNet [16] introduces an
auxiliary classifier to learn more discriminative target domain features. The over-fitting of
the source domain is alleviated so that the segmentation model can be more focused on the
segmentation task. However, in this paper, we do not focus on the unsupervised domain
adaptation (UDA) semantic segmentation task.

There have generally been two types of semantic segmentation methods in recent
years. One is semantic segmentation, which does not care about the computational cost.
It often uses deeper and wider backbone networks and multi-scale methods, often using
attention mechanisms or other ways to connect the output of multiple backbone networks.
The other is real-time semantic segmentation, which makes a trade-off between accuracy
and real-time speed in the mobile device. Lightweight backbone networks designed for
semantic segmentation are often used, and the inference speed can reach several times that
of ordinary semantic segmentation without much impact on the accuracy. In our method,
the decoder is an important module; therefore, we introduce some related decoders besides
the semantic segmentation method.

2.1. Semantic Segmentation

Since FCN [10] used CNN and a skip connection to solve the semantic segmentation
task, various deep neural networks have emerged one after another. SegNet [17] adopted
the FCN encoding–decoding architecture and used the unpooling operation in the up-
sampling process. UNet [18] introduced a U-shaped down-sampling and up-sampling
structure. DeepLabV2 [4] proposed the Atrous Spatial Pyramid Pooling (ASPP) module to
replace the pooling and convolution in PPM. HRNet [3] maintained a large resolution with
three-scale branches and achieved state-of-the-art results in semantic segmentation despite
being designed for human pose estimation. HMAS [2], which arranged three HRNet using
the attention mechanism, pushed the accuracy of semantic segmentation to a new level.

2.2. Real-Time Semantic Segmentation

ENet [9] and some other works were the earliest to address real-time semantic segmen-
tation. They began by reducing the number of down-samples, changing the convolution
method, and introducing dilated convolution and asymmetric convolution to real-time
semantic segmentation. The decoder–encoder architecture of ENet is unsymmetrical. The
encoder is evidently larger than the decoder. ENet [9] achieved excellent results at that time.
In recent years, the promising semantic segmentation neural architecture search (NAS)
method breaks through the limitations of manual design. Auto-DeepLab [19] completely
designed the search space of the network structure for the semantic segmentation task.
Fasterseg [8] went further in the use of operators. Under the condition of a certain search
space or hardware constraints, the design of network connection paths by NAS is far better
than manual work. However, in network module design and complex topology design,
manual design is temporarily difficult to be replaced. There are many manual networks
that perform better than NAS.

RegSeg [20] proposes D block, and uses grouped convolution and dilated convolution
at the same time to achieve state-of-the-art performance with a one-way encoder and
simplified decoder. DDRNet [21] proposed the idea of bilateral fusion, using two resolution
branches and only 23 layers of convolution layers to achieve high accuracy. Furthermore,
the decoder of DDRNet is composed of numerous basic residual modules. At the same
time, it is easy for these two works to infer high-definition video in real-time on 1080Ti.
These two networks, respectively, illustrate the necessity of feature aggregation of high and
low levels and enriching the receptive field.

The encoder–decoder architecture is a popular segmentation method. For the purpose
to run in real time, the decoder is often a computationally efficient module, such as ENet [9]
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or DDRNet [21], as mentioned above. In this paper, we also adopt this architecture. We
propose a split connection structure and a three-level hierarchical module to introduce a
parallel structure and complement more low-level features for the output. In addition, we
also introduce flexible dilated convolution into high-level convolutional layers to enrich the
receptive field of the network. At last, a refined flexible and lightweight decoder is used.

3. Methods
3.1. Network Overview

The overview of the network is shown in Figure 2. The backbone consists of two
branches, the main branch, and the auxiliary branch. The main branch structure is shown in
Figure 3. The decoder is a refined, flexible, and lightweight decoder. The detailed guidance
from STDC-Seg [12] is applied to improve the edge features extraction. First, we introduce
the detail of the split connection structure and three-level hierarchical module (THM).
Then, we present the whole architecture of our SCDNet backbone and the flexible dilated
convolution. At last, a refined, flexible, and lightweight decoder is introduced.
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Figure 2. Overview of the network.
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Figure 3. Main branch of backbone. It demonstrates the cascaded STDC blocks and FDC blocks. The
three digits besides the FDC indicate the dilation rates of three ConvXD. The detailed information of
FDC is shown in Figure 4.
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Figure 4. Structure diagram of flexible dilated convolution. ConvXD denotes ConvX with dilated
convolution.

3.2. Split Connection

The inside connection structure of the STDC backbone is shown in Figure 5a. In the
main branch, to down-sample rapidly and ensure that the extracted semantic information
is deep enough, it uses single-path deep convolutional layers. This concatenated structure
leaves no room for optimization in inference acceleration. Meanwhile, in order to increase
the fusion of high-level and low-level feature maps, the convolutional layers inside the
STDC block are densely connected. Most of the single-path backbone outputs are features
from high levels with large receptive fields and a lack of detailed information. Their
perception of detailed information is poor.

Based on these two thoughts, we found that stages of different resolutions are only
connected adjacently. Then, we attempted to connect Stage 1 and Stage 3 directly by
dividing the feature maps channel-wise as shown in Figure 5b, and while the segmentation
accuracy becomes worse under different ratios of channel concatenation, we believe that
dividing channels results in losing important feature information, and them being unable
to complement each other after concatenation. Directly adding features together is also
unsatisfactory.

Therefore, we propose the split connection to connect Stage 1 and Stage 3 together
to further enrich the connections. In order to ensure the low-level convolution depth and
increase parallelism, the split connection method divides Stage 1 into two parts as shown
in Figure 5c. The implementation process of our method is clearly shown in Figure 6. We
first reduced the depth of Stage 2; then, we divided Stage 1 into two identical parts, and
used the second part to connect Stage 1 and Stage 3. The following is an introduction to
split connection implementation details.

Stage 1 Stage 2 Stage 3

(b)……

(a)……

?

Stage 1 Stage 2 Stage 3

(c)……

Figure 5. (a) STDC-Seg backbone, (b) split connection motivation, (c) our backbone. The orange
circle denotes the convolutional layer, the blue rectangles denote the individual STDC blocks, and the
yellow connection denotes the split connection.
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Stage 1, r = 4

Stage 2, r = 2

Stage 3, r = 4

Stage 1, r = 2

Stage 2, r = 2

Stage 3, r = 4

Stage 4, r = 2

(b) STDC-Seg (424) (c) Split Connection

Stage 1, r = 4

Stage 2, r = 5

Stage 3, r = 3

(a) STDC-Seg (453)

Figure 6. (a) Original STDC-Seg backbone, (b) backbone with simplified network depth, (c) split
connection backbone. r denotes STDC block repeat time.

The main branch consists of one stem and three-stage parts. The stem consists of two
ConvX. ConvX is a basic convolutional unit, consisting of a convolutional layer, a batch
norm layer, and a relu activation layer. The convolution kernels of the two ConvX here
are both 3 × 3 and the stride is 2. The input image is first down-sampled by two layers
of ConvX, and then fed into cascaded STDC blocks. This short densely connected blocks
enhance the feature richness and maintain the network width to reduce computation costs.
In the main branch, we use eight blocks. They are divided into three stages, which have
two, two, and four blocks, respectively. Only the first block of each stage contains 1/2
down-sampling.

The output features of Stage 1 are fed into the auxiliary branch of the backbone. The
auxiliary branch is composed of two blocks. The resolution of input and output features is
1/8, and the number of channels is 256. The output of the auxiliary branch is down-sampled
by convolution with stride = 2 and added to the output of Stage 2. They are used as the
input of Stage 3 together.

3.3. Three-Level Hierarchical Module

The three-level hierarchical module is inspired by DeepLabv3+ [22]. It can be under-
stood as a small decoder to restore some detailed information. It is designed to hierarchically
fuse features of three resolutions with little computation cost. The structure is shown in
Figure 7. The features of 1/32, 1/16, and 1/8 go through a ConvX at the same time, and the
output of 1/32 is up-sampled by bilinear interpolation and added to the output of 1/16.
Then, it goes through a 3 × 3 ConvX and is up-sampled again. Finally, it concatenates with
the output of the 1/8 feature. The feature resolution is fused in order from small to large.
The following equations show the final difference between these two backbones.

Output = S3[S2(S1 + S4)] (1)

Output = S3[S2(S1) + S4(S1)] + S2(S1) + S4(S1) (2)

Si denotes i-th stage output or i-th stage itself. The outputs of Equations (1) and (2) show
different connections of two backbones. The output of Equation (2) has richer high-level
and low-level information of three resolutions than Equation (1).

The single-path method lacks low-level features at the output and structure for parallel
inferring. We propose this dual-path backbone to improve the inference speed and preserve
the high-resolution features.
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Figure 7. Three-level hierarchical module structure.

3.4. Flexible Dilated Convolution

The receptive field (RF) refers to the range of the original image which a point in a
certain layer of the network can perceive. From the perspective of the receptive field, a good
segmentation network should preserve features with rich RF. For example, the perception
of the vehicle requires the RF with vehicle size. The backbone should self-select receptive
fields responding to its needs. Global average pooling is commonly used to obtain features
of the entire image. Although global features can perceive all objects, the perception of
objects is not accurate enough.

Therefore, we need to pursue a richer continuous receptive field and output features
with large and small receptive fields, so that the network can have scalable respective fields
and extract multi-scale information.

From the distribution of segmented objects, there are a few large objects whose size
occupies half or more of the screen size. Therefore, using global average pooling or using
too large convolution kernels to rapidly expand the receptive field will lead to the loss of
certain size features and overlapping of image information. Therefore, we use different
dilation rates of dilated convolution in Stage 3’s last three blocks to increase the receptive
field. After the experiment, the inference delay added by using dilation convolution is very
limited. However, a significant improvement can be achieved.

The formula for calculating the receptive field is as follows:

lk = lk−1 +

[
( fk − 1) ∗

k−1

∏
i=1

si

]
(3)

lk denotes the receptive field of the k-th layer, fk denotes the convolution kernel size,
and si denotes the stride of the i-th layer. The output of each block contains features with
different sizes of RF. The following calculations of the receptive field focus on the largest
receptive field.

Calculated by Equation (3), the maximum receptive field of the baseline backbone
is 1199, which is almost a quarter of the maximum value that we need in Cityscapes [23]
(4096). We hope that the maximum receptive field of the network can reach almost the
entire image.

The baseline backbone can obtain four receptive fields of 1 × 1, 3 × 3, 5 × 5, and 7 × 7
in one basic block. Based on this combination, we introduce dilated convolution in the last
stage of the backbone network, as shown in Figures 6b and 4. The dilation rates are (2, 2,
2) (2, 4, 4) (10, 14, 14) in 1024 × 2048 images in Cityscapes. The inference delay will not be
significantly increased, while the receptive field is increased to 3887 and covers almost the
entire picture.

3.5. Refined Flexible and Lightweight Decoder

In order to improve the network’s perception of objects without significantly increasing
computation costs, we use a refined flexible and lightweight decoder (RFLD), which
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combines the simple pyramid pooling module (SPPM) [15] and the unified attention fusion
module (UAFM) [15]. As illustrated in Figure 2, we fuse three scales of features with the
feature outputs by SPPM. Different from the original flexible and lightweight decoder [15],
RFLD uses three UAFMs but not only the nethermost two UAFMs. As the final output of
the encoder, the features with the down-sample ratio of 1/32 are very important. Therefore,
it is not only utilized to generate features of SPPM, but also fused together.

3.5.1. Simple Pyramid Pooling Module

In order to produce the refined feature, a real-time model, SPPM, is utilized. First,
to obtain multi-scale information, three pyramid pooling modules whose bin sizes are
1 × 1, 2 × 2, and 4 × 4 are used. Then, all three features are aligned by convolution and
resize. Finally, a refined feature is produced by adding all three up-sampled features and a
convolution operation.

3.5.2. Unified Attention Fusion Module

For fusing two level features, the unified attention fusion module (UAFM), which
consists of the spatial attention module and the channel attention module, is trained to
produce the weights. When the size of features are different, up-sampling is performed to
align them.

The spatial attention module is simple and effective. As Equation (4) shows, mean
operation and max operation are applied to the high-level feature and low-level feature.
Then, these four features are concatenated. At last, convolution and sigmoid operations are
utilized to produce a weight.

Fcat = Concat(Mean(Fup), Max(Fup), Mean(Flow), Max(Flow))

αs = Sigmoid(Cov(Fcat)
(4)

As Equation (5) shows, the channel attention module is similar to the spatial attention
module. A total of four features are obtained by using average-pooling and max-pooling
operations on the high-level feature and low-level feature. Then, it concatenates these four
features and performs convolution and sigmoid operations to produce a weight.

Fcat = Concat(MeanPool(Fup), MaxPool(Fup), MeanPool(Flow), MaxPool(Flow))

αc = Sigmoid(Cov(Fcat))
(5)

Fout = α ∗ Fup + (1− α) ∗ Flow (6)

Finally, as Equation (6) shows, the fused feature is the weighted sum of Fup and Flow.
Due to the fact that there is an evident spatial relation between the objects in the image, we
exploit the inter-spatial relationship but not the inter-channel relationship. Therefore, we
use the spatial attention module to generate the weight, that is to say, α = αs.

4. Results

We use ISLVRC2012 [24] as a pre-training dataset for the downstream segmentation
task and then train on Cityscapes [23] and Camvid [25] to verify and test the effectiveness
and generalizability of our work, respectively. Next, we will introduce the dataset and
metrics, train setting, ablation study, and comparison of different methods.

4.1. Datasets and Metrics

ISLVRC2012 ISLVRC2012 [24] CLS has different sizes of images which are divided
into 1000 classes. A total of 1,281,167 images are used for training, 50,000 images are used
for validation, and 100,000 images without labels are used for testing.

Cityscapes Cityscapes [23] is one of the most commonly used semantic segmenta-
tion datasets. It contains 5000 pixel-level annotated images. Each image has a size of
3 × 2048 × 1024, with 2975 for the training set, 500 for the validation set, and 1525 for
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the test set. The annotation contains 30 categories, 19 of which are used for semantic
segmentation training (ignore label = 255).

Camvid Cambridge-driving Labeled Video Database (CamVid) [25] provides 32 ground
truth semantic labels. The size of the image is 3 × 960 × 720, and there are 701 finely
annotated images that can be used for semantic segmentation, including 367 in the train
set, 101 in the validation set, and 233 in the test set. We use both train and validation sets
for training. There are 11 categories of commonly used semantic segmentation, and the rest
are ignored labels (ignore label = 255).

Metrics In image classification, we use top-1 acc and top-5 acc as evaluation metrics.
In the semantic segmentation task, we use class-wise intersection over union (mIoU) and
frames per second (FPS) as the evaluation metrics.

4.2. Train Setting

In the image classification task, we follow the strategies proposed by HRNet [3]. We set
max-epoch as 120, except that we change the segment head into a ConvX, a global average
pooling, and a linear layer, and the whole network is used in the image classification task.

In the semantic segmentation task, we use the same hyper-parameters as STDC-
Seg [12]. The batch size sets 12 for 4 GPUs in the Cityscapes dataset, and 24 for the Camvid
dataset, respectively. We set the max iter 60,000, 10,000 for the Cityscapes dataset and
CamVid dataset.

All experiments are conducted in ubuntu 18.04, torch 1.10.1 torch vision 0.11.2 on a
docker. 4 RTX 2080Ti GPU and CUDA 10.1, CUDNN7.6.4 are used for training. One of
them is used for inference experiments.

4.3. Ablation Study

This section presents ablation experiments to verify the effectiveness of each compo-
nent in our method.

4.3.1. Effectiveness of Flexible Dilated Convolution

As shown in Table 1, we significantly improved accuracy in most classes, while
maintaining the same accuracy as the baseline in the other classes. As shown in Figure 8,
we visualize the segmentation output. The road surface and vehicles in the images are
segmented more completely.

Figure 8. Comparisons between results of our work and results of baseline. The yellow rectangles
mark the difference in segmentation accuracy between our method and baseline. (a) Denotes input
images, (b) denotes ground truth, (c) denotes baseline, and (d) denotes our method.
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Table 1. Three different receptive field networks’ per-class mIoU results on the Cityscapes val set.

Network RF mIoU Road Swalk Build. Wall Fence Pole Tlight Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike

Baseline
(1007/4096) 76.9 97.75 82.90 92.32 58.41 62.32 60.78 70.20 77.29 91.90 61.16 94.37 79.99 60.68 94.26 75.33 84.93 80.17 60.02 75.31

Ours
(3503/4096) 77.3 97.83 82.90 92.28 56.96 61.53 62.26 70.95 77.26 91.67 59.64 94.38 79.75 61.47 94.66 79.42 87.20 79.83 62.03 76.17

Ours
(3887/4096) 77.5 97.87 83.06 92.31 58.54 61.74 62.32 69.99 77.09 91.76 61.81 94.57 79.85 60.51 94.72 81.24 87.43 79.06 62.02 76.26
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Table 2 shows three groups of experiments we performed on dilatation rate com-
bination, which were, respectively, used(1,1,1)(1,1,1)(1,1,1), (2,4,10)(2,4,10)(2,4,10), and
(2,2,2)(2,4,4)(10,14,14) three dilatation rate combination. By calculating their RF, mIoU, FPS,
and other data, the experiments show that the accuracy and speed of the last group of
methods are the best.

Table 2. Comparison of the effects of different maximum receptive fields size; RF denotes recep-
tive field.

Backbone Dilatation Rate
Combination RF mIoU FPS GFLOPs

STDC1446 - 1199/4096 77.0 50.2 94.3

Ours (1,1,1)(1,1,1)(1,1,1) 1007/4096 76.9 60.0 98.2

Ours (2,4,10)(2,4,10)(2,4,10) 3503/4096 77.3 60.0 98.2

Ours (2,2,2)(2,4,4)(10,14,14) 3887/4096 77.5 60.0 98.2

4.3.2. Effectiveness of Other Modules

To verify the effectiveness of split connection, the three-level hierarchical module
(THM), and the refined flexible and lightweight decoder (RFLD), we train the networks
with different components. Table 3 shows the accuracy and speed.

Table 3. Comparison of the accuracy and speed of the networks using different components on
Cityscapes val set, the numbers behind the network denote the repetitions of STDC block, THM
denotes three-level hierarchical module. RFLD denotes refined flexible and lightweight decoder.
No RFLD means that the algorithm is in its preliminary version and the result is reported by our
conference paper.

Network w/o TensorRT FDC Split Connection THM RFLD mIoU FPS GFLOPs

STDC(424) 76.3 43.1 85.5

Ours(224)
√

76.8 44.7 76.6

Ours(224)
√ √

77.3 38.1 95.1

Ours(224)
√ √ √

77.5 35.4 98.2

Ours(224)
√ √

76.8 60.5 59.6

Ours(224)
√ √ √

77.4 50.1 78.1

Ours(224)
√ √ √ √

77.6 50.1 81.2

STDC1446(453) 77.0 37.4 94.3

We can find that the split connection in the preliminary algorithm and final algorithm
improves the mIoU by 0.5% and 0.6% respectively. Adding THM improves the mIoU by
0.2% in both versions of the algorithm.

RFLD is a lightweight decoder. However, it utilizes multi-scale information. When
using RFLD as the decoder, we can find that there is a great enhancement of FPS; meanwhile,
the accuracy is the same or slightly higher. The results show that split connection and
THM could improve performance effectively and RFLD decreases the computational cost
without performance reduction.

4.4. Results
4.4.1. Comparison on Cityscapes

In Table 4, we present the accuracy and speed results of our network on Cityscapes.
Due to the fact that the model uses different Gpus for inference, the FPS in the table are
not completely comparable to each other. Our work makes a trade-off in accuracy and
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speed, which is 28.5% faster and 1.6% higher than the former SOTA FC-HarDNet-70 [1].
Our method is also 2.3% higher than BiSeNetV2 [7] in mIoU. We use full-size images and
achieve 68.1 FPS and 77.6% in mIoU on the test set. Our baseline achieves 50.2 FPS and
76.9% in mIoU. We obtain a 36% improvement in FPS and a 0.7% improvement in mIoU.

Table 4. Comparison of the accuracy and speed of different networks on Cityscapes val set. * means
using TensorRT.

Network Val mIoU Test mIoU FPS Resolution Params(M) GFLOPs GPU

CAS [26] 71.6 70.5 108 768 × 1536 - - -

FasterSeg * [8] 73.1 71.5 163.9 1024 × 2048 4.4 28.2 GTX 1080Ti

MobileNetV3 [27] 72.4 72.6 - 1024 × 2048 1.51 9.74 GTX 1080Ti

BiSeNet * [6] 69.0 68.4 105.8 768 × 1536 5.8 14.8 GTX 1080Ti

BiSeNetV2-L * [7] 75.8 75.3 47.3 512 × 1024 47.3 118.5 GTX 1080Ti

SFNet(DF1) [28] - 74.5 74 1024 × 2048 9.03 - GTX 1080Ti

SFNet(DF2) [28] - 77.8 53 1024 × 2048 10.53 - GTX 1080Ti

CSRNet-heavy [29] 77.3 76.0 36.3 1024 × 2048 - - GTX 1080Ti

MoSegNet-large [30] 78.2 - 50.1 1024 × 2048 - 42 Titan RTX

FC-HarDNet-70 * [1] 77.7 76.0 53 1024 × 2048 4.12 35.6 Titan V

STDC2-Seg100 * [12] 77.0 76.9 50.2 1024 × 2048 16.1 94.3 RTX 2080Ti

Ours * 77.7 77.6 68.1 1024 × 2048 17.8 81.2 RTX 2080Ti

Besides the typical methods, some recent works are shown in Table 4. CSRNet-heavy
was published in 2023. It proposed the selective resolution module which assigns soft
channel attentions across the feature maps and helps to remedy the problem caused by
multi-scale objects The channel-wise attention method they use is inspiring, but the poor
parallelism of the network leads to the limitation of reasoning speed. The test mIoU and
FPS of CSRNet-heavy are lower than ours. The authors of MoSegNet-large do not publish
test mIoU. As they also do not release the code, we only provide their published data. It is
evident that our method is much faster than theirs.

4.4.2. Comparison on Camvid

Table 5 below shows our work’s performance on the Camvid dataset. Our work is
effective as well on Camvid. We achieve 154.2 FPS and 74.2% mIoU on the test set, which
is better than STDC’s 123.5 FPS and 73.9%. Our method is also 3.1% ahead of the former
SOTA [8].

Table 5. Accuracy and speed results of different networks on Camvid dataset. * means using TensorRT.

Network Resolution Test mIoU FPS

ENet [9] 720 × 960 51.3 61.2

BiSeNet * [6] 720 × 960 65.6 175

CAS [26] 720 × 960 71.2 169.0

FasterSeg * [8] 720 × 960 71.1 398.1

STDC2-Seg * [12] (Baseline) 720 × 960 73.9 123.5

Ours * 720 × 960 74.2 154.2
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5. Conclusions

Since the single-path dense connect backbone is not fast enough, we propose a split
connection structure and THM to provide a parallel structure for parallel inference optimiza-
tion and supplement low-level feature information. To eliminate the accuracy limitation
of certain size objects, we introduce flexible dilated convolution to enrich the size of the
network’s RF. Finally, a refined flexible and lightweight decoder is utilized to reduce the
computational cost. Extensive experimental proofs and visualization results demonstrate
the effectiveness of our work. In the future, we will continue to simplify the encoder and
apply the networks to some specific scenes.
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