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Abstract: IoT systems can successfully employ wireless sensor networks (WSNs) for data gathering
and fog/edge computing for processing collected data and providing services. The proximity of
edge devices to sensors improves latency, whereas cloud assets provide higher computational power
when needed. Fog networks include various heterogeneous fog nodes and end-devices, some of
which are mobile, such as vehicles, smartwatches, and cell phones, while others are static, such as
traffic cameras. Therefore, some nodes in the fog network can be randomly organized, forming
a self-organizing ad hoc structure. Moreover, fog nodes can have different resource constraints,
such as energy, security, computational power, and latency. Therefore, two major problems arise in
fog networks: ensuring optimal service (application) placement and determining the optimal path
between the user end-device and the fog node that provides the services. Both problems require
a simple and lightweight method that can rapidly identify a good solution using the constrained
resources available in the fog nodes. In this paper, a novel two-stage multi-objective path optimization
method is proposed that optimizes the data routing path between the end-device and fog node(s). A
particle swarm optimization (PSO) method is used to determine the Pareto Frontier of alternative
data paths, and then the analytical hierarchy process (AHP) is used to choose the best path alternative
according to the application-specific preference matrix. The results show that the proposed method
works with a wide range of objective functions that can be easily expanded. Moreover, the proposed
method provides a whole set of alternative solutions and evaluates each of them, allowing us to
choose the second- or third-best alternative if the first one is not suitable for some reason.

Keywords: fog computing; internet of things; path optimization; multi-objective optimization;
particle swarm optimization; analytic hierarchy process

1. Introduction

In recent years, the Internet of Things (IoT) has expanded significantly, leading to a
large amount of data being generated by IoT devices. These data are sent over various
networks to cloud-based servers and other data consumers. To cope with this large amount
of data, decentralized fog-based architectures can be used. This allows ensuring low
latency and effective resource usage since the IoT data can be processed close to the data
sources. Fog networks consist of heterogeneous fog nodes and edge devices with different
resource constraints, such as battery level, security level, central processing unit (CPU)
use, and memory use. Moreover, fog nodes as well as user end-devices can be mobile
(e.g., vehicles, smartwatches, smartphones, and mobile sensors), which means that the fog
network architecture is not static, but dynamic, with a self-organizing ad hoc structure. This
leads to the two major problems related to service provisioning in fog networks: optimal
service (application) placement in the fog node and optimal data routing between the user
end-device and the fog node that provides those services.

Each time the user end-device asks the nearest fog node to provide some services for it,
the fog-based system should decide on the best fog nodes for service placement, considering
various constraints when searching for the optimal placement, including battery level, CPU

Sensors 2023, 23, 3110. https://doi.org/10.3390/s23063110 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063110
https://doi.org/10.3390/s23063110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0604-3004
https://orcid.org/0000-0003-2767-346X
https://orcid.org/0000-0002-4567-5023
https://doi.org/10.3390/s23063110
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063110?type=check_update&version=1


Sensors 2023, 23, 3110 2 of 20

use, memory use, and security level. Recently, a lot of research effort has gone into
developing optimal application and service placement algorithms and architectures for fog
networks, which are reviewed in [1–4]. However, usually, optimal placement is solved as a
separate problem and the cases when services are placed in fog nodes not adjacent to the
user end-device are ignored. In such cases, fog systems need to route the IoT data from the
user end-device to the fog nodes where required services are placed. These data are routed
along a path starting at the user end-device (data source) passing through several fog and
edge nodes until the data reach the final node or nodes, which process the data. Fog systems
consist of heterogeneous nodes with different computational capacities and constraints, and
the routing algorithm should consider these constraints while calculating the best path to
route the data. For example, the path should exclude nodes with insufficient computational
or energy resources or nodes that have low security levels if the user application requires
a high level of data protection. Moreover, the algorithm for determining the data path
should be simple and lightweight enough to be able to run on constrained devices, such as
fog nodes, and provide a good enough path for data transfer. In such a scenario, it is not
important to locate the optimal path as long as the path found using a lightweight algorithm
addresses all the requirements and ensures good overall results. In such applications,
heuristic optimization methods are usually used.

Therefore, data routing in heterogeneous fog networks becomes a multi-objective opti-
mization task, which considers various computational, resource, and security constraints of
the fog and edge nodes, and identifies the best path in terms of optimizing latency, energy
consumption, bandwidth, etc. There are usually several alternative routing paths, which
should be evaluated in real time to achieve the lowest possible response time and latency.
Since fog network nodes (especially edge nodes) usually have limited resources, they rapidly
reach their capacity, leading to longer and more complex paths from the user end-device
to the remote fog node(s) suitable for service(s) placement. Moreover, the mobility of user
end-devices and even fog nodes adds another level of complexity, requiring the algorithm to
perform constant service replacement and, thus, constantly recalculate the best routing path.

Over the years, various researchers have solved the optimal routing or path-finding
problem. Most of these works in the field of wireless sensor networks (WSNs), fog, and IoT
systems focus on optimal routing protocols and data forwarding techniques, which in most
cases have a single objective, e.g., optimize energy usage [5–7]. As concluded in [5], one
of the drawbacks of existing routing techniques is fixed static routing and the reliability
of decision-making nodes. The survey dedicated solely to nature-inspired algorithms
for WSNs [8] concluded that these algorithms are well-suited for solving multi-objective
real-world optimization problems, while traditional algorithms fail to provide satisfactory
results because the problem is complex. Nature-inspired algorithms, including particle
swarm optimization (PSO), are used for energy-efficient clustering and routing, optimal
coverage, data aggregation, and sensor localization, as classified in [8]. The systematic
study of topology control methods and routing techniques in wireless sensor networks [7]
reviewed recent articles, including topology-aware PSO and ant colony optimization
(ACO)-based routing techniques in static and mobile wireless sensor networks, and stated
that these techniques do not incorporate delay-sensitive routing or timely data delivery.
According to [7], the latest routing algorithms based on PSO and ACO techniques lag
where the topology and routing requirement are delay-sensitive and concerned with data
delivery ratio, throughput, and quality of service (QoS). Although several real-time routing
techniques attempt to satisfy minimum latency and maximum throughput, the study [7]
concluded that the research in this field is in an early stage and limited to some well-known
protocols. These findings are further supported by swarm-intelligence-based optimization
techniques for the WSN survey [9], which concluded that there are still some open research
challenges, including weighing the energy consumption, QoS, security, and reliability of
the network. In the survey in [9] also, the authors found that most of the previous work
optimized the performance of WSNs only from a single perspective (a single objective).
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In [10], the authors reviewed the multi-objective optimization techniques and chal-
lenges in WSNs, stating that in WSNs, routing is an essential factor that should be per-
formed optimally, though there are various routing challenges, including scalability, energy
consumption, connectivity, deployment, security, and coverage. According to [10], multi-
objective routing algorithms should consider coverage, throughput, end-to-end delay,
capacity, collision, etc. Existing routing algorithms usually avoid security, though it is an
essential factor in WSNs [10]. In [11], the authors reviewed path optimization techniques
and noted that most path optimization techniques use performance measures, including
packet delivery rate, network lifetime, energy consumption, delay, and distance, but do not
consider the analysis of messages and the time complexity of their techniques. Therefore,
real-world implementations of the proposed techniques pose a significant challenge as
well [11]. Finally, the survey on path planning for mobile sink in IoT-enabled WSNs [12]
paid attention to the fact that most research assumes an obstacle-free network environment,
while in a real environment, obstacles are usually present.

To counter the aforementioned problems, we propose a multi-objective PSO-based
path optimization method that can identify the best routing path from the user end-node
to the fog node(s) where services for the user device are placed. Our method not only
considers multiple constraints of the fog nodes along the path (CPU, memory, battery,
security, etc.), but also supports the mobility of the user and fog nodes, as well as failures
of the nodes, constantly reconfiguring the fog network and path. Instead of routing the
IoT data dynamically, until it reaches the suitable fog node for further processing (which
does not guarantee the optimal path), our method calculates the optimal path each time
a change occurs in the fog network, such as user end-node movement, computational
resource changes in the fog nodes, and fog node failures. This algorithm selects the best
of all possible paths and forwards the data directly to the processing fog node(s). As a
result, latency and response time are low and bandwidth and energy usage are minimized,
achieved by combining the distributed orchestrator model, proposed by us in [13], and
the PSO-based optimization method, which locates the best path from the user end-node
to the fog node(s), where the distributed orchestrator places the services for that user
device. The distributed orchestrator constantly synchronizes the computational resources
and constraints of each fog node, which allows the PSO-based algorithm to straightaway
identify the optimal (suboptimal) path, instead of using various dynamic or evolutionary
approaches, which achieve good results only after some time. Therefore, we propose a
method that is able to simultaneously cope with two major problems in fog networks:
optimal service (application) placement and optimal routing.

Heuristic nature-inspired algorithms, such as PSO [14], genetic algorithm (GA) [15],
and ACO [16], or even the cuckoo search algorithm (CS) [17], help identify the optimal
path in similar applications. The objective functions used in these methods vary from
maximization of the packet delivery rate to data transmission latency, overall power
consumption, delay time, and minimization of bandwidth consumption. Most methods
tend to identify an optimal path for data flow based on one, most important, parameter
of the IoT system or by combining several characteristics, such as latency, bandwidth, or
energy, into one composite criterion using a simple linear combining objective function.
However, using a composite of many criteria is not always the ideal solution to this issue
because it is challenging to correctly determine the weights of the individual criterion. The
authors of [18] recommend the use of simulation and trial and error to adjust the weights
of the criteria for constructing the linear combined function. One of the possible solutions
to this problem is to use multi-objective optimization to identify all nondominated data
paths, that is, the Pareto Frontier of the problem solutions [19]. The final challenge in such
cases is to choose the best solution from all nondominated candidates. Several different
approaches may be used to compare the alternatives. If the application area is fixed, well
defined, and extensively investigated in advance, some form of aggregation function of
several competing factors can be constructed using mathematically calculated decision
matrices [20]. As the final step in the optimization process for selecting the best path from
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all alternatives, we propose using the analytic hierarchy process (AHP) [21]. AHP uses
only simple pairwise comparisons of all alternatives using all objective functions and can
be easily adapted for use by machine-based decision making [22–24]. The values of all
criteria are normalized, allowing us to use heterogeneous measurement scales for different
objective functions. The importance of the criteria used to construct the decision matrix is
also evaluated using the same methodology, allowing us to skip the most controversial step,
that is, manual weight assignment to different criteria. The decision matrix is prepared
in advance by the experts in the application area and used during the execution of the
algorithm. Being deterministic and easy to implement, the AHP fits the constrained nature
of the fog nodes well.

Our main contribution to the field of data path optimization in fog architectures is
a novel two-stage optimal-path-finding algorithm based on the multi-objective particle
swarm optimization and the analytical hierarchy process. During the first stage of the pro-
posed method, a Pareto set of nondominated alternative paths is found. Then, AHP is used
to choose the best path according to the provided application-specific judgment matrix.

The article is organized as follows: Section 2 presents the conceptual model of the fog
system and a formal definition of the best data routing path finding problem. Section 3
presents the proposed two-stage multi-objective optimization method to determine the best
data routing path. Section 4 covers the experimental evaluation and discusses the results
obtained. Section 5 concludes the article.

2. Problem Definition
2.1. Conceptual Fog System Model

In this section, we present the fog architecture model that was used to formulate
the path optimization problem and define its properties and constraints. Modern fog
architectures are multilayered systems usually based on the fog computing model defined
by the OpenFog Reference Architecture and adopted in the IEEE 1934-2018 standard [25].
Such architectures have three layers: the IoT device layer (end layer), the layer of fog nodes
(fog layer), and the cloud layer (containing at least one cloud data center):

• The bottom layer of IoT devices is widely distributed geographically and closest to
end-users. It contains various user end-devices, such as cameras, mobile phones, smart
cars, and smartwatches. The IoT data and various user service requests generated in
this layer are forwarded to the middle fog layer for further processing and storage.

• The middle fog layer contains heterogeneous devices that are able to process user
requests and provide services for the users. These devices include various access
points, routers, gateways, switches, base stations, fog servers, etc. They are connected
to the cloud servers and can offload computationally demanding tasks to the cloud.
Fog nodes can be static (e.g., traffic cameras) or mobile (e.g., vehicles and drones).

• The upper cloud layer usually consists of several servers and is used for resource-
intensive computations and the storage of large volumes of data.

Figure 1a shows a sample fog architecture of the smart campus of a university. It is
made up of heterogeneous mobile user end-devices (smartphones, smartwatches, smart
cars, etc.), various static and mobile fog nodes (access points, routers, gateways, moving
vehicles, etc.), and cloud servers to which fog nodes can send data. The solid red arrows in
Figure 1a represent the data paths between the fog nodes, while the black dotted arrows
show the connections between the user end-devices and the fog network. The user devices
(the smartphones, the smartwatch, the bus, and the yellow car), as well as some fog nodes
(a blue car), are constantly moving. Therefore, the user end-devices and fog nodes form a
dynamically changing ad hoc network with frequent reconnections and service relocation,
requiring the calculation of new routing paths. Each time the user device requests services
from the nearest fog node, or the user device moves between fog nodes, or a fog node fails
to provide services, the requested services are moved (placed) to the most suitable fog
nodes to meet the user application requirements and optimize system performance. Since
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it is not necessary that the services be placed in the adjacent fog nodes, the best path should
be found from the user end-device to the fog node(s) where the services were placed.
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Figure 1. A heterogeneous ad hoc fog network architecture with mobile user devices and static and
mobile fog nodes: (a) a conceptual model of the fog architecture of the smart campus of a university.
The arrows represent the data routing paths between the fog nodes, user end-devices, and cloud
servers. (b) A graph representation of the fog architecture. The graph nodes represent the fog nodes
and user devices, and the graph edges represent the communication paths.

Each fog node (shown as a wireless antenna in Figure 1a) has constantly changing
computational resources, such as the CPU use level, the memory use level, the remaining
battery level, and the security level. These parameters are used as optimization constraints
for both placing services and finding the best route. Furthermore, each communication
path segment (shown as an arrow in Figure 1a) has its own constraints, such as bandwidth,
latency, and security. These constraints should also be considered when finding the best
route. Usually, there are several alternative routes, one of which should be chosen according
to the selected optimization objectives, for example, overall network energy consumption,
latency, and bandwidth usage.

Therefore, finding the best route in heterogeneous fog networks, considering various
fog node and communication channel constraints, becomes the multi-objective optimiza-
tion task. The most popular way to describe this problem is the application of graph
theory, where fog nodes and end-devices become the graph nodes, while communication
connections become the directed edges of the graph, as shown in Figure 1b. Depending on
its computational and communication constraints, each node and edge of the graph adds
some cost (weight) to the transfer of the data. Therefore, the best path to route data is one
with the smallest overall cost and may not be the shortest one.

2.2. Application of PSO to Identify an Optimal Path

The particle swarm optimization (PSO) algorithm was originally intended for optimiz-
ing continuous problems. Some modifications [26,27] allow it to be used to solve discrete
problems, including both discrete objective function and discrete area of definition. In the
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case of multi-objective optimization, the PSO algorithm may be adapted to determine a
Pareto optimal set of solutions [28,29].

The main challenge of using PSO (as well as GA) as the algorithm to identify the optimal
route is encoding the route (or path in the graph) into a particle (or chromosome in the case of
GA). Four required properties of such mappings are discussed in [15]. Such encoding is not
trivial and affects the overall performance of the whole path search process. After evaluating the
different encoding schemes [30,31], two classes of encoding approaches can be distinguished:
direct representation of the particle path and indirect representation of the particle path.

If direct representation is used, then the particle in PSO is composed of a sequence
of node IDs that form the path that starts at a source node and ends at the destination
node [15,32]. The main disadvantage of this approach is that the particles are of different
lengths as the paths in the graph may include different numbers of nodes. Moreover, a
random sequence of node IDs may not correspond to a valid path, may not terminate at
the destination node, or may form a loop, considerably increasing the number of invalid
particles. In this case, a discrete version of PSO should be used, which causes problems in
forming the area of definition because the particles are of different dimensions.

An indirect encoding scheme was proposed by Gen et al. [33]. In this case, the particle
encodes some kind of “guiding information” about the nodes that corresponds to the path.
This guiding information can be about the priority in which the network nodes should be
included in the path. The particle is initialized by assigning random priorities. Then, the
path is generated by sequentially appending the nodes starting from the beginning node.
During each step, the subsequent node with highest priority is chosen from all possible
nodes according to the graph. The process stops when the destination node is reached. This
approach has some advantages over direct encoding schemes. All particles have the same
dimensions, and these dimensions are equal to the number of nodes in the network. The
continuous space version of PSO may be used, which is more responsible for fine-tuning
the optimization parameters. Compared with direct encoding, the probability of valid path
generation is greatly increased, causing fewer (but not fully eliminating) invalid particles
that form paths with loops or do not reach the final node.

2.3. Formalization of the Path Finding Problem

The main objective is to determine an optimal data path from the sensor to the data
processing node (the service) on the basis of multiple criteria, such as the lowest possible la-
tency, energy consumption, random-access memory (RAM), and CPU use. We describe this
path in terms of graph theory and the shortest path problem. The entire IoT infrastructure
is represented as a directed graph G = (V, E), which comprises a set of nodes V = {vi}
and a set of edges E ∈ V × V connecting nodes vi, i = 1, 2, . . . , n. The non-negative
number wij is assigned to each edge-connecting node vi and vj and represents the cost of
data transfer between these nodes expressed in units (e.g., ms for latency and percent or
kbps for bandwidth use) corresponding to the objective function used for optimization. The
first node (v1) is the data source and the last node (vn) is the data destination node. A valid
path π for data transfer is a sequence of edges (v1, vx),

(
vx, vy

)
, . . . , (vz, vn) from set E

in which no node appears more than once. For simplicity, this path can be equivalently
expressed as an enumeration of nodes

(
v1, vx, vy, . . . , vn

)
. For example, the valid path for

the graph presented in Figure 2 may be expressed as (v1, v3), (v3, v7), (v7, v10), (v10, v11)
or, in brief, as π = (v1, v3, v7, v10, v11). The total cost of this path is 31+ 51+ 20+ 13 = 115.

For practical reasons, the costs of the edges are represented by the n× n matrix W,
where elements wij ∈ W, i, j = 1, 2, . . . , n represent the cost (or weight) of the edge(

vi, vj
)
. Figure 3b presents an example of an edge matrix, which shows the weights of

the edges for the graph in Figure 2. If the upload and download capabilities of some
nodes are asymmetrical, then this matrix is nonsymmetrical (wij 6= wji). Strictly speaking,
in some cases, a situation where the edge

(
vi, vj

)
exists but

(
vj, vi

)
is absent, i.e., some

client–server IoT protocol is used between the nodes, is also possible and all data transfers
should be initiated only from the client side (e.g., CoAP protocol). For practical reasons,
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matrix W is complemented by edge matrix W ′ (Figure 3a), w′ij ∈ W ′, i, j = 1, 2, . . . , n,

where w′ij =
{

1, if edge (i, j) exists
0, otherwise

.
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Figure 3. The matrices corresponding to the graph presented in Figure 2: (a) edge matrix W ′ showing
the edges of the graph and (b) edge weight matrix W showing the edge weights.

The objective was to find an optimal data path from node v1 to node vn according
to multiple criteria. We needed a multi-objective optimization method suitable for de-
termining the shortest path according to m objective functions f j(π), j = 1, 2, . . . , m and
the given constraints and conditions. The QoS parameters of the i-th possible data trans-
fer path πi are expressed by the values of the objective functions f j(πi), j = 1, 2, . . . , m.
The result of function F(πi) = ( f1(πi), f2(πi), . . . , fm(πi)) is the vector representing the
length of the path πi according to all objective functions. All constraints are given by the
following equation: {

gk(πi) ≥ 0, k = 1, 2, . . . , ng
hl(πi) = 0, l = 1, 2, . . . , nh

. (1)

Then, the main objective of the optimization process is to find the optimal path πopt
that minimizes all objective functions f j:

πopt = argmin
i

F(πi). (2)

The objective functions may include the overall security of the whole system fsec(π),
CPU usage fCPU(π), RAM usage fRAM(π), network bandwidth usage fbw(π), ), network
latency flt(π), power usage fpw(π), energy usage fen(π), etc. Table 1 summarizes all the
key notations used in this paper.
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Table 1. The key notations used in this paper.

Notation Description

G = (V, E) Graph representing the IoT infrastructure. V = {vi} is a set of nodes and E ∈ V ×V is
a set of edges.

πi = (vi1, vi2, . . . , vik) The i-th path for data transfer from the source to final node.

W Edge weight matrix representing capabilities of corresponding IoT infrastructure links
(bandwidth, latency, etc.).

n Total number of nodes; also the dimensionality of the objective function definition area.
np Total number of particles.

Pi = (p1, p2, . . . , pn),
pj ∈ R, pj ≥ 0, j = 1, 2, . . . , n Position of the i-th particle in the n-dimensional definition area.

D, πi = D(Pi) Path decoding function used to decode a particle into a path.
m Total number of evaluation criteria; also the number of objective functions.

f j(π), j = 1, 2, . . . , m The j-th evaluation criterion; also the objective function.
F(πi) = ( f1(πi), f2(πi), . . . , fm(πi)) Score vector of the i-th path or i-th particle.

Ui, Ui ∈ Rn Velocity of the i-th particle.
pBesti The best score of the i-th particle.
pBPosi The best position of the i-th particle.
gBest The best global score of all the particles.
gBPos Position of the particle with the best global score.

S Set of particles (swarm).
R Set of Pareto optimal solutions.

πopt, Popt Best path and the particle with the best score.
Q Judgment matrix with the results of the pairwise criteria comparison used in the AHP.

compk

(
πi, πj

)
, k = 1, 2, . . . , m Function of the pairwise comparison of two paths using the k-th criterion.

Mk, k = 1, 2, . . . , m Weight coefficient matrix with pairwise comparisons using comparison function compk
on all paths from the Pareto set R.

3. Two-Stage Multi-Objective Optimization Method for Finding the Best Data Path

In real applications, the objective functions f j(π), j = 1, 2, . . . , m contradict each
other. For example, the highest security increases CPU and RAM usage. One of the obvious
approaches used in many solutions is to combine all objective functions into one composite
criterion using simple linear equations. In this case, it is difficult to choose the “proper”
coefficients, especially when the number of criteria increases. We propose the use of the
two-stage optimization process presented in Figure 4.

In step 1, the multi-objective particle swarm optimization (MOPSO) method was used
to determine a Pareto set of nondominated solutions to the problem. In step 2, the analytical
hierarchy process (AHP) [21,34] was used to choose the best solution from the Pareto set.
The AHP uses the application-specific judgement matrix that represents the importance
of objective functions in the specific application area. These matrices may be constructed
beforehand by experts in the field using a simple pairwise comparison of criteria.
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3.1. Multi-Objective Particle Swarm Optimization for Finding a Pareto Set of Alternative Paths

The PSO is inspired by the behavior of flocking birds. Individuals in the swarm are
called particles and have assigned velocities. The particles fly through the search space
according to personal experience and are also attracted by the best individual of the swarm.
The MOPSO method proposed by Coello et al. in [29] was used to find the optimal path.
This modification of continuous-space PSO tries to find a Pareto optimal (also called a
Pareto Frontier) set of solutions. The Pareto set includes all nondominated solutions,
meaning that each solution in this set is better than all other solutions according to at least
one optimization criterion. Figure 5 presents a generalized flowchart of the multi-objective
particle swarm optimization process used to find the Pareto set of paths.
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Figure 5. A flowchart of the multi-objective particle swarm optimization process for finding the set
of Pareto optimal paths.
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In step 4, w was an inertia weigh parameter of the PSO algorithm. Initially, its value
was 0.4. The coefficients r1 and r2 are random numbers in the range of [0, 1]; Ui is the
velocity of the i-th particle.

In step 5, the new position of the particle was calculated. If the particle was outside
the definition range (i.e., one of the elements of the particle had a negative value), it was
given an opposite direction of the speed (Ui = −Ui) and the position of the particle Pi was
set to the edge of the range of its definition (i.e., the search space).

In steps 6 and 7, the function rnd(1) generated a uniformly distributed random number
from the interval [0, 1].

For particle encoding, we used the indirect (sometimes called priority-based) encoding
approach. Each particle P, P = (p1, p2, . . . , pn), pj ∈ R, pj ≥ 0, j = 1, 2, . . . , n, represents
one possible path in the graph from the first node to the last (destination) one. The elements
of the particle are the probabilities of the corresponding nodes used during the construction
of the path from the particle. When the new particle was generated, the elements of
the particle vector were populated with random real numbers from the interval (0, 1).
Algorithm 1 describes the construction of the path corresponding to the particle:

Algorithm 1: Path construction algorithm

Input parameters: graph G = (V, E) defined using edge matrix W ′, particle P = (p1, p2, . . . , pn).

1. Include the first node in path π: π = (v1), curr = 1.
2. Initialize node availability helper vector A, A = (a1, a2, . . . , an) with all available nodes for

the path construction: A = (0, 1, . . . , 1).
3. Repeat until n-th node is included in path π or more than n steps are evaluated:

• Find the index of subsequent node : next = arg max
i=1, ...,n

(
w′curr,i·pi·ai

)
;

• Include node vnext in path π;
• Mark the included node as unavailable for further path construction : anext = 0;
• Update current node index : curr = next.

4. If the final node vn was not included in path V, mark particle P as invalid.

Result: path π corresponding to particle P (or invalid particle).

For example, consider the graphs presented in Figures 2 and 3. The construction of the
path for a random particle P = (0, 0.63, 0.3, 0.85, 0.94, 0.07, 0.73, 0.8, 0.08, 0.47, 1) begins
with the assignment of a source node to the path π = (v1). As it is already included in the path,
node v1 is marked as unavailable (red color) for further evaluation. Then, the probabilities of
all possible edges starting at the source node (according to the edge matrix W′) are compared
using element values of the particle P = (0, 0.63, 0.3, 0.85, 0.94, 0.07, 0.73, 0.8, 0.08, 0.47, 1).
Node v5 is appended to the path π = (v1, v5 ) because it has the highest probability
(0.94 vs. 0.3) among all possible edges. Node v5 is marked as unavailable for further
path construction. Then, all possible edges starting from v5 are evaluated in the same
manner: P = (0, 0.63, 0.3, 0.85, 0.94, 0.07, 0.73, 0.8, 0.08, 0.47, 1). Node v8 is added
to the path π = (v1, v5, v8) because it has the highest probability (0.8). Finally, v11 is
added to the path as it has the highest probability compared to all other nodes reachable
from node v8: P = (0, 0.63, 0.3, 0.85, 0.94, 0.07, 0.73, 0.8, 0.08, 0.47, 1). The final path
that corresponds to the given particle is π = (v1, v5, v8, v11).

3.2. AHP for Optimal Path Selection

AHP was used to choose the optimal path from the Pareto set. Figure 6 presents a
generalized flowchart of AHP:
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In step 1, a three-level AHP framework was constructed (Figure 7). The main objective
of the process, that is, determining the best path from the source node to the destination
node, comprised the first level. All objectives of the PSO optimization phase were for-
malized as criteria of AHP and became the second level. The weights of the criteria were
calculated on the basis of a pairwise comparison usually conducted manually by experts in
the application field. The final result of this step was the so-called judgment matrix (that is,
matrix Q in Step 2), provided to the algorithm beforehand. All alternative paths from the
Pareto set formed the third level of the AHP framework. In step 3, the weight coefficient
matrices Mk, k = 1, 2, . . . , m for each path from the Pareto set were formed by calculating
their elements using a special comparison function compk

(
πi, πj

)
. A comparison function

uses the corresponding objective functions fk(π), calculates two values fk(πi) and fk
(
πj
)
,

compares them, and transforms the result to the value from the interval (0, 9] required
by AHP. These comparison functions depend heavily on the nature of the criteria and are
defined specifically and differently for each criterion.
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Then, AHP was started (step 4 in the flowchart) and one best path was selected as the
final result (step 5 in the flowchart).

3.3. Objective Functions and Constraints

Different devices of IoT nodes have different performances, network bandwidths,
security characteristics, etc. Therefore, the objective functions f j(π), j = 1, 2, . . . , m and
constraints gk(π) and hl(π) should be defined according to the situation in the real in-
frastructure. In the experiments presented in this paper, we used the following objective
functions for the evaluation:

The total bandwidth used by the data traveling through the path π was calcu-
lated as the total weight of the graph edges, i.e., fbw(π) = wi1i2 + wi2i3 + . . ., where
π =

(
vi1 , vi2 , . . .

)
is the data path under evaluation and W =

(
wij
)

is the matrix of band-
width usage. If the matrix W carries latency values, a similar equation is also applicable for
a network-induced latency evaluation: flt(π) = wi1i2 + wi2i3 + . . ..

Some objective functions could not be expressed by the total weight of the edges
because their value depended on the nodes included in the path. For example, CPU and
RAM use should be calculated using the expression fCPU(π) = w∗i1 + w∗i2 + . . ., where the
weight vector W∗ =

(
w∗i
)
, i = 1, 2, . . . , n represents CPU use in MIPS by the data transfer

through the corresponding nodes. Similarly, fRAM(π) = w∗i1 + w∗i2 + . . ., where W∗ is the
RAM-usage vector of the corresponding nodes expressed in MB.

The security objective function fsec(π) used in this paper was calculated using yet
another expression. The security of the entire data transferred along the path π, that
is, fsec(π), was defined by the lowest security of all nodes included in the path. We
assigned security levels (expressed in security bits, according to the NIST publication [35])
to nodes on the basis of their ability to support the corresponding security protocols. In
this case, fsec(π) = min

k

(
512− w∗ik

)
, where W∗ is the vector of the security values of the

corresponding nodes. Expression 512-x was used because the PSO algorithm tried to
minimize the objective function. Thus, better security should correspond to smaller values
of the objective function.

Other application-specific objective functions may also be used, such as power require-
ments and energy consumption. The concrete definition may also vary according to the
system characteristics important in a selected scenario. The proposed optimization method
was not limited to any specific amount or nature of the objective functions, as long as they
satisfied these two simple requirements:

• The result of the objective function is a positive real number.
• Better values of the criteria are expressed by smaller numbers (i.e., the PSO method

searches for a minimum of the function).

The constraints were also specific application-dependent functions. For example, total
memory consumption or CPU use could not exceed the physical capabilities of the corre-
sponding node. If the application area required a specific level of security, then it should
be expressed as a constraint, for example, gsec(π) ≥ 128, where gsec(π) is calculated in
exactly the same manner as fsec(π) described above. During the PSO phase of optimization,
particles that violate the constraints were assigned large fines and naturally eliminated
from the optimization process.

4. Results and Discussion

In this section, we summarize the implementation results of the proposed method.
The main objective was to evaluate the characteristics of the algorithm under different
situations and to test the feasibility of using it in real-life scenarios.

The method proposed for determining the best path was implemented using MATLAB.
As input, the implementation used graph data with several weight matrices and vectors
used to calculate the values of multiple objective functions. All the concrete numbers used
here were only for illustration purposes and did not have any specific meaning. To better
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understand the context, we called the first objective function the bandwidth evaluation
function fbw, the second objective function the latency function flt, and the third objective
function the security function fsec. All these objective functions were calculated as described
in the previous section. The implemented version of the algorithm performed a multi-
objective particle swarm optimization, found a Pareto optimal set of paths, automatically
formed required comparison matrices used in AHP, and chose the best path using a
provided judgment matrix.

To illustrate the proposed optimization method, we considered the example graph
presented in Figure 2 (Graph A). Assume that the weights of the edges marked in blue
represent the bandwidth requirements. In Figure 8, the same graph is supplemented
with latency requirements marked in green near the edges and the security evaluation of the
infrastructure elements, which are marked by different colors of the corresponding graph nodes.
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security bits and indicated by nodes of different colors) of the infrastructure represented as the graph.

Suppose our objective was to determine the best route from nodes v1 to v11 that
ensured minimal total bandwidth usage and minimal total latency and also
guaranteed maximal security. In this case, the three-dimensional objective function was
F(π) = ( fbw(π), flt(πi), fsec(π)). The PSO stage of the proposed method produced a
Pareto set of nondominated solutions, as presented in Table 2.

Table 2. The Pareto set of the alternative paths for Graph A.

Alternative Path Total Bandwidth,
fbw(π)

Total Latency,
flt(π)

Security,
fsec(π)

π1 = (v1, v5, v8, v11) 77 197 128
π2 = (v1, v3, v7, v9, v11) 132 132 128
π3 = (v1, v5, v7, v8, v11) 56 478 128
π4 = (v1, v5, v7, v10, v11) 56 290 128
π5 = (v1, v3, v6, v9, v11) 101 290 256
π6 = (v1, v5, v7, v9, v11) 73 190 128

If we used the one-dimensional PSO method to find the best paths using all three
objective functions separately, then the results would be as follows: πopt = π3 if only
bandwidth use was considered (in this case, the minimal bandwidth use would be 56);
πopt = π2 if only latency was optimized (in this case, the best result should be 132); and
πopt = π5 with 256 bits of total security if only security was optimized. As one can see,
all optimal values of one-dimensional optimization cases are present in the Pareto set,
complemented by some additional paths, which also may be chosen during the AHP step.
The presence of the best values of one-dimensional optimization cases in the Pareto set
indicates that the multi-objective optimization method works correctly and finds all the
most important alternatives. During this step, a swarm of 20 particles was used and the
number of iterations was 50.
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The judgment matrix used during the AHP stage of optimization is:

Q =

 1 2 1/7
1/2 1 1/3

7 3 1

. (3)

This matrix means that minimal bandwidth consumption is more important than
overall latency (2 vs. 1), but the security of the data path is much more important than both
bandwidth and latency (7 and 3 vs. 1 accordingly). The results of the AHP evaluation of
alternatives are summarized in Table 3.

Table 3. The AHP scores of the alternative paths.

Alternative π1 π2 π3 π4 π5 π6

AHP score 0.144 0.113 0.088 0.098 0.450 0.106

The best path is πopt = π5 = (v1, v3, v6, v9, v11), which also means that the best
collection of values of the objective functions is (290, 101, 256).

In the second scenario, we used the graph that was evaluated by other authors [15,19,30].
We assumed that the standard edge weights used in one-dimensional optimization scenarios
were bandwidth use.

In Figure 9, the optimal path, considering only one objective function, found by
the algorithm proposed by the authors of [15] is shown by the bold lines. The total
weight of this path is 142. Moreover, other algorithms have found only suboptimal paths:
Munetomo’s [32] algorithm found a path with a total weight of 187 and Inagaki’s [36]
algorithm found one with a weight of 234.
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Figure 9. The graph used in the second scenario with bandwidth requirements near the corresponding
edges (graph B).

To use multi-objective optimization, we added a second set of weights (i.e., latency) to
the edges and defined the security levels of the nodes. Figure 10 presents the corresponding
weight matrix. For the AHP stage, we used the following judgment matrix:

Q =

(
1 5

1/5 1

)
. (4)
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Figure 10. The latency values for the edges of graph B.

Figure 11 presents a graph of the Pareto front while optimizing using only bandwidth
and latency objective functions.
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Figure 11. The Pareto front of the two-dimensional optimization of graph B.

The complete results are summarized in Table 4, with the AHP evaluation scores
added as the fifth column. We used a swarm of 40 particles and 50 iterations for the PSO
part of the optimization.

The best alternative was π7. One can easily view all the optimal and suboptimal paths
(considering only bandwidth objective function) discussed above among the members of
the Pareto set (the optimal path while using one-dimensional optimization according to
latency was 7010).

Table 4. The Pareto set of the alternative paths for graph A.

Alternative Path Total Bandwidth,
fbw(π)

Total Latency,
flt(π) AHP Score

π1 = (v1, v2, v3, v8, v14, v20) 187 10,480 0.20
π2 = (v1, v4, v9, v14, v20) 234 10,160 0.13
π3 = (v1, v4, v9, v15, v20) 342 9430 0.05
π4 = (v1, v3, v9, v14, v20) 266 9840 0.09
π5 = (v1, v3, v9, v15, v20) 374 9110 0.05
π6 = (v1, v4, v10, v15, v20) 499 7010 0.08
π7 = (v1, v3, v8, v14, v20) 142 10,580 0.30

π8 = (v1, v2, v3, v9, v15, v20) 419 10,580 0.05
π9 = (v1, v2, v3, v9, v14, v20) 311 9740 0.05



Sensors 2023, 23, 3110 16 of 20

To show the influence of the judgment matrix on the final result, we used all three
objective functions and two different judgment matrices. Matrix Q1 prioritizes security:

Q1 =

 1 2 1/7
1/2 1 1/3

7 3 1

. (5)

The second judgment matrix, that is, Q2, prioritizes bandwidth over all other objectives:

Q2 =

 1 5 2
1/5 1 1/3
1/2 3 1

. (6)

The description of graph B was complemented by the node security vector W∗ =
(512, 256, 128, 128, 256, 128, 256, 56, 128, 256, 256, 128, 64, 64, 256, 128, 64, 128, 256, 512).
During the PSO stage of optimization, we used a particle swarm of 40 particles and
50 iterations. Figure 12 presents the Pareto set of solutions.
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Figure 12. The Pareto set for graph B (three objective functions are used): (a) three-dimensional
view of the Pareto set; (b) bandwidth–latency projection of the Pareto set; (c) security–bandwidth
projection of the Pareto set; and (d) security–latency projection of the Pareto set.
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If the judgment matrix Q1 is used for the AHP step, then the best path is
π1 = (v1, v5, v11, v10, v15, v20), with the following results of the objective functions:
fbw(π1) = 706, flt(π1) = 7940, and fsec(π1) = 256. However, if the judgment matrix
J2 is used, then the best path is π2 = (v1, v3, v8, v14, v20), with the corresponding objective
functions having the following scores: (142, 10, 580, 56).

To test the proposed algorithm with graphs of different sizes, we generated some
random graphs with random weight values assigned to the edges (representing bandwidth
and latency) and nodes. Graphs with different numbers of nodes (from 20 to 45) are
presented in Figure 13. For example, Figure 13a presents Graph20, with 20 nodes, and
Figure 13b presents Graph25, with 25 nodes. Table 5 summarizes the results when the
proposed method is applied to all these graphs. The judgment matrix used during the
evaluation was Q2 from Equation (3).
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Figure 13. The randomly generated graphs used for evaluating the proposed method: (a) Graph20,
with 20 nodes and 62 edges; (b) Graph25, with 25 nodes and 102 edges; (c) Graph30, with 30 nodes
and 167 edges; (d) Graph35, with 35 nodes and 156 edges; (e) Graph40, with 40 nodes and 152 edges;
and (f) Graph45, with 45 nodes and 206 edges.

Table 5. The best paths found by the method proposed for the graphs presented in Figure 13.

Nodes Edges Best Path fbw(π) flt(π) fsec(π) Particles Iterations

Graph20 20 62 π = (v1, v5, v2, v4, v20) 135 908 56 40 50
Graph25 25 102 π = (v1, v2, v7, v24, v11, v25) 196 898 128 40 55
Graph30 30 167 π = (v1, v2, v21, v27, v11, v30) 153 1150 56 50 60
Graph35 35 156 π = (v1, v10, v12, v24, v18, v31, v35) 207 1361 128 50 70
Graph40 40 152 π = (v1, v8, v37, v32, v20, v35, v4, v40) 275 1560 56 60 90
Graph45 45 206 π = (v1, v41, v7, v9, v31, v29, v40, v45) 215 2170 448 65 150
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The experimental evaluation shows that the proposed method effectively finds the Pareto
front in cases with graphs containing up to 45 nodes. If the graph size increases, then the PSO
stage of the algorithm is not as effective because, in some cases, the method behaves in an
unstable manner, i.e., in some cases, it does not include optimal paths in the Pareto set.

5. Conclusions

In this paper, we proposed a novel approach for finding the optimal data path in a
heterogeneous IoT infrastructure. The proposed two-stage method used multi-objective
particle swarm optimization to find a Pareto optimal set of alternative data paths, and then
an analytical hierarchy process was applied to select the best alternative. The alternatives
were evaluated using judgment matrices created once experts evaluated the optimization
criteria used during the process. This approach had a double-fold effect: (1) it allowed us
to compare different criteria, which is always challenging because the criteria may differ
in that they may be qualitative, quantitative, use different units of measurement, etc.; and
(2) in different application areas, the objective functions may differ in terms of importance.
In such an instance, a different judgment matrix, prepared beforehand by experts in the
corresponding application area, is sufficient to modify the method to be used in different
scenarios. Moreover, the proposed method not only provided the whole set of alternative
solutions, but also evaluated each of them. It allowed us to choose the second- or third-best
alternative if the first was not suitable for some reason.

The proposed method worked with a wide range of objective functions, which can be
easily expanded. In the examples presented in this article, we used two methods to evaluate
objective functions. One can easily combine both approaches or even define more complex or
even dynamic objective functions. The proposed approach was transparent as to the nature
of the objective function, as long as two simple requirements were met: the result of the
objective function was a positive, real number and better values of the criteria were expressed
by smaller numbers (i.e., the PSO method searches for a minimum of the function).

The main advantages of the proposed method were its simplicity and the fact that it can
be adapted to limited available resources, because both algorithms used during the two stages
were well-suited to the constrained nature of fog devices. If the calculation characteristics of
the fog node are limited, then the PSO algorithm can be used with fewer particles and/or
iterations. Even in such cases, some suboptimal solutions would be found and provide “good
enough” results. In addition, the second stage of the proposed method (AHP) was a simple
deterministic method, which always chose the best alternative from the given set.

If the complexity of the graph representing the IoT infrastructure did not exceed
40 nodes and 120 edges, then the proposed algorithm produced a Pareto set of alternatives
that included all alternatives with all optimal paths while considering each objective
separately. If the complexity of the graph increased, the effectiveness of the PSO part of the
algorithm was not sufficient. This limitation was not critical, considering the nature of the
application of the proposed method, i.e., the IoT infrastructure. The graphs generated from
real IoT devices will not exceed a few dozens of nodes and edges.

It was difficult to compare the proposed method with other similar optimization meth-
ods because few of them produced the full Pareto set. Usually, some kinds of combining
functions are used during the search for an optimal solution. We tried to assess the cor-
rectness of the final Pareto set by applying the single-objective path optimization methods.
The experimental results show that all the best paths found using all objective functions
individually are also present in the set of Pareto Frontier. This shows that the proposed
method successfully finds alternatives that are known to be nondominated beforehand.

Several interesting aspects of the proposed method could be explored in the future. It
would be interesting to use it in a real IoT infrastructure and evaluate the number of resources
saved or the level to which the QoS is improved. Furthermore, the construction of objective
functions could be investigated and adapted to real measurements of real hardware.
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We believe that the results of this work will be useful in future research in the area of
IoT fog computing, data path optimization, and service orchestration, and will allow us to
develop more efficient IoT systems.
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