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Abstract: Intelligent fault diagnosis of roller bearings is facing two important problems, one is
that train and test datasets have the same distribution, and the other is the installation positions
of accelerometer sensors are limited in industrial environments, and the collected signals are often
polluted by background noise. In the recent years, the discrepancy between train and test datasets
is decreased by introducing the idea of transfer learning to solve the first issue. In addition, the
non-contact sensors will replace the contact sensors. In this paper, a domain adaption residual neural
network (DA-ResNet) model using maximum mean discrepancy (MMD) and a residual connection
is constructed for cross-domain diagnosis of roller bearings based on acoustic and vibration data.
MMD is used to minimize the distribution discrepancy between the source and target domains,
thereby improving the transferability of the learned features. Acoustic and vibration signals from
three directions are simultaneously sampled to provide more complete bearing information. Two
experimental cases are conducted to test the ideas presented. The first is to verify the necessity of
multi-source data, and the second is to demonstrate that transfer operation can improve recognition
accuracy in fault diagnosis.

Keywords: intelligent fault diagnosis; roller bearings; multi-source data; domain adaption; ResNet

1. Introduction

Bearings as the transmission parts are installed in rotating machinery that will affect
the safety of the whole rotating equipment system [1,2]. The little defect of the bearing will
cause heavy disaster and even more casualties during the operation. Therefore, the safety
monitoring and fault diagnosis of the rotating equipment system has become a hot topic in
recent years.

The transformer winding defects always affect the safety of the power grid and
power equipment [3–5]. Bearing is a vital part to realize power transmission and load
in rotating machinery. Bearings have a high failure ratio compared with other moving
parts during machinery operation. To eliminate the life-threatening dangers in industrial
production in recent years, the existing methods of bearings have been developed by
many researchers and experts. For example, the time domain, frequency domain and
time—frequency domain of traditional fault diagnosis methods are effective to extract
fault-related features of vibration signals [6–9]. However, the accuracy of fault diagnosis
will be affected by the rotating machinery complexity. On the other hand, the collected
massive signals cannot be analyzed one by one as it is an extremely time-consuming
process. Intelligent fault diagnosis methods of bearings have attracted many professional
researchers’ eyes, and the development of these ways is becoming more integrated. The
nonlinear relationship between vibration signals and fault categories is characterized by the
machine learning technique, the conventional fault methods’ clustering analysis for fault
diagnosis of winding fault type [10]. For example, principal component analysis (PCA) [11],
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support vector machine (SVM) [12], and artificial neural network (ANN) [13,14]. However,
complex measurement environments and operating conditions will lead to the acquisition
of polluted data making the mentioned methods almost ineffective. Deep learning is an
enhanced machine learning method to solve the above problems. The internal correlations
and hidden details of the signal are exposed by deep learning methods with deep and
complex network structures [15,16]. In addition, the complex mapping relationship also
can be characterized. The common methods include the auto-encoder (AE) [17], long
short-term memory (LSTM) [18], generative adversarial networks (GAN) [19,20], and the
convolutional neural network (CNN) [21–23].

Nevertheless, these data-driven fault diagnosis methods are applied to single-sensor
vibration signals in constructed models [24–26]. The restriction of coverage range and
installation location meant that the accelerometer could not measure all the information of
the machinery equipment to monitor the health status. Acoustic signal analysis is usually
used to localize faults and diagnose faulty bearings. The acoustic is conducted by the
object vibration. The acoustic is another expression form of vibration. Omoregbee handled
acoustic signals as the input of the improved support vector machine (SVM) model for
fault identification [27]. In [28], vibration and acoustic signals are simultaneously sampled
to detect the liner scuffing fault in the engine system. Microphones are used to acquire
the acoustic signals, and then they are input into the 1D CNN-based networks for fault
diagnosis [29]. However, the microphone is yielded to the Doppler effect when the railway
vehicle moves very fast; thus, the sampled acoustic signal is polluted by the unrelated
components. For this phenomenon, researchers proposed an effective method to remove
the Doppler effect embedded in the acoustic signal [30].

Vibro-acoustic fault diagnosis methods of bearings have been investigated by many
researchers. Ye had detected vibro-acoustic characteristics in axial piston pumps under
varying operation conditions [31]. The new damage index is constructed to estimate the
nonlinearity of modulated signals to detect the crack width by processing vibro-acoustic
signals. The performance of the vibro-acoustic modulation method is better than the PZT-
enabled active sensing method in eliminating the saturation phenomenon [32]. In [33],
vibro-acoustic signals are used to complete information on fault characteristics for fault
diagnosis using an improved fusion algorithm. Subsequently, the features are extracted by
a one-dimension convolutional neural network (1D-CNN) from the vibration and acous-
tic signals, and then achieve 100% recognition accuracy under four speeds. Yang et al.
combined two improved projection methods for fault diagnosis, in particular the sam-
pling of vibro-acoustic signals under various operating conditions [34]. To eliminate the
frequency smearing phenomenon and expose the fault characteristic frequency in the enve-
lope spectrum, a new transient signal analysis (TSA)-based angular resampling method was
proposed for fault diagnosis under variable speed conditions by sound signal analysis [35].

However, no matter whether the data are sampled from a single-sensor or multi-
sensors, they still need to solve the insufficient labeled data problem. Massive data are
labeled manually, and this operation needs a huge manual operation and relies on knowl-
edge dependence. Furthermore, the fault diagnosis accuracy is directly affected by the
sufficient labeled data. Sometimes, the bearing fault types could be acquired by simula-
tion in a laboratory; this technique could alleviate the shortage of labeled data. Another
important factor of the diagnosis accuracy effect is that the distribution of training and
testing data is the same. The success of the intelligent fault diagnosis of rotating machinery
was demonstrated in [36], which validates the importance of the probability distribution
between training and testing sets.

Recently, a powerful tool named transfer learning has been used to solve the distribu-
tion discrepancy of intelligent fault diagnosis areas [37]. The difference between classical
intelligent fault diagnosis and transfer learning is that the latter has two datasets, source
domain and target domain. Without a doubt, source domain distribution is different
from the target domain. Reducing the distribution discrepancy is the purpose of transfer
learning, which will apply the knowledge of the labeled data to enhance the predictive
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model performance to identify the unlabeled data accurately. The feature-based method
is proposed to achieve the goal of distribution discrepancy reduction. The transferable
features can be learned by the deep hierarchical model from the cross-domain data. The
model is automatically learning features, which reduces the time cost compared with
feature mapping. In computer vision and speech recognition areas, feature-based methods
are widely employed and yielded some achievements [38,39]. The method provided a
new idea that the source domain data consists of spectrum data and partially labeled
target domain data [40]. MMD is an index to check whether two datasets are from the
same distribution. Domain adaption enhanced the deep convolution neural network to
implement fault diagnosis under different noise levels [41].

It is worth considering that accelerometer sensors, installed on flat positions of the
equipment surfaces, could obtain machine-related information for fault diagnosis. The
contact sensors are not suitable in irregular positions. Non-contact sensors are very suit-
able to sample the above working environments. An acoustic signal is sampled by the
microphone, which is a non-contact sensor. On the other hand, source and target data
distribution discrepancy is minimized by the MMD, and then high diagnosis accuracy
will be obtained by transferring the source data knowledge to the target data. MMD is
used to minimize the distribution discrepancy of the source and target domains to improve
the transferability of the bearing-related knowledge for acquiring high diagnosis accuracy.
Meanwhile, transfer learning operations can mitigate the insufficient datasets of bearings.
The common problem should be mentioned. As the network depth increases, the difficulty
of training the CNN model will gradually increase as well. Meanwhile, adding more layers
will bring more large training errors. The ResNet model could solve the problem of the
accuracy decrease as a result of the network depth increase by designing identity mappings
based on ordinary CNN. Facilitating the backpropagation of errors and optimizing model
parameters at the same time. The novelty and contributions of the paper can be concluded
as follows:

(1) Acoustic and three directions vibration signals are simultaneously sampled to be
regarded as the input of the model to reinforce the diagnosis knowledge of bearings.

(2) MMD is introduced to minimize the distribution difference between source and target
domains, thus improving the transferability of learned features. Combining the
advantages of the ResNet framework, it can guarantee high recognition accuracy from
one defect degree to another defect category.

The remainder of this paper is as follows. Both ResNet and MMD backgrounds
are shown in Section 2. Then the procedure of the proposed model is given in Section 3.
Section 4 analyzes the necessity of multi-source data and experimental results of the transfer
task. Lastly, Section 5 displays the overwhelming conclusion of the article.

2. Materials and Methods
2.1. MMD Definition

Source and target domains’ dataset distribution discrepancy is measured by MMD.
In the transfer learning area, MMD frequently qualifies the similarity of source and target
domains. For example, the datasets U = {ui}ns

i=1, V = {vi}nt
i=1 follow the probability

distribution p and q, respectively. Thus, the definition of MMD can be given:

DH(U, V) := sup
ϕ∈H

(EU∼p[φ(x)])− EV∼p[φ(y)]) (1)

where H is reproducing the kernel Hilbert space, and ∅(•) represents the nonlinear map-
ping, which is from the original feature space to the reproducing kernel Hilbert space. To
acquire the maximum distance between datasets U and V, the low dimension datasets will
be mapped in a high dimension space. Based on the kernel mean embedding of distribution,
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Gaussian kernels acquire reproducing the kernel Hilbert space. The specific formula of
MMD is shown as follows:

D2
H(U, V) = ‖ 1

ns

ns

∑
i=1

φ(ui)
1
nt

nt

∑
i=1

φ(vi)‖
2

(2)

2.2. ResNet

Accuracy will maintain a certain value and degrade rapidly as the network depth
increases [42]. This phenomenon is testified by He et al. who had validated that the result
is not caused by overfitting. Meanwhile, more layers are added, which will bring larger
training errors.

The structure of the ResNet is composed of the input layer, the convolution layer fconv,
the residual block, the max-pooling layer fpool , the activation layer frelu, and the output
layer. Aiming at describing the related information of the ResNet; we assume that the
sample is X = [x1, x2,x3, . . . xN ]

T, and the sample’s mean and variance are denoted as

µ(X) =
1
D

D

∑
j=1

xj (3)

σ(X) =

√√√√ 1
D

D

∑
j=1

(x2
j − µ(D))

2 (4)

A residual block is introduced to solve the problem of the accuracy decrease as the
network depth increases. Furthermore, the residual block can keep the performance
of models with the depth of the model increasing. Figure 1 shows the basic structure
of a residual block; nowadays, many improved ResNet frameworks always change the
basic residual block. The residual block is different from most deep models in that the
convolutional layers are connected by skipping, as shown in the curve of Figure 1.
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From the above figure, x is the input layer; the output result F(x) is obtained after the
linear processing and activation of the first layer. The shortcut connection operation is to
add x before the output value of the second layer is activated.
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3. The Proposed Model of DA-ResNet

In this paper, two ideas will be validated by vibration and acoustic (vibro-acoustic)
data, and their specific processing procedures are shown in Figure 2. In Figure 2a, a
typical photograph of the test rig is provided on the left of the data. The accelerometer
sensor and microphone are installed nearest to the test bearing to acquire as much rich
machinery information as possible. The vibration and acoustic signals are described as
VS and AS, respectively. Note that the footmarks of the VSs represent three directions of
the accelerometer sensor, vertical, horizontal, and axial directions, which are connected to
channel 1, channel 2, and channel 3, respectively. The sample length is set to 4096 and the
number of datasets is 960.

In this paper, a ResNet based on domain adaption is proposed for validating the ne-
cessity of multi-source data, and the transfer operation is capable of accuracy improvement
in fault diagnosis. Commonly, this method consists of four stages: domain partition, data
feature extraction, domain adaption, and fault identification. In the first stage, the diagnosis
knowledge is obtained by labeled data from the source domain, which is used to identify
fault types of the unlabeled data in the target domain

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

Second, nonlinear feature mapping is a key processing function, thus, the transferable
features can be obtained by data from the source and target domains. It is worth stating
the same nonlinear feature mapping is simultaneously applied to the data from the source
and target domains. Next is domain adaption. MMD is used to measure the distribution
discrepancy of the learned transferable features. Subsequently, the calculated distribution
discrepancy of the learned transferable features is considered as an optimization objective
to backpropagate, and then to train the parameters of the nonlinear feature mapping. To
achieve this purpose, the cross-domain discrepancy of the features needs to be small; in
other words, the distribution discrepancy of the learned transferable features is minimized.
In the last stage, the unlabeled samples can be recognized by the domain-share classifier.
It is noted that the distribution of the learned features of data in the source domain is
mastered by the domain-share classifier. After processing by the training with domain
adaption, the distribution discrepancy of the learned transferable features from the source
and target domains is very small. Finally, the diagram of the cross-domain fault diagnosis
is given, as shown in Figure 2b.

The diagnosis procedure of the DA-ResNet model is introduced in the above parts.
Then we will introduce the structure of the ResNet framework. The model specification
includes an input layer, a convolutional layer, three max-pooling layers, and three residual
blocks, the following are flattened and dropout layers. The input of the network is the
multi-source signal which includes vibration and acoustics signals. The purpose of the
convolutional layer is to get the feature maps, and the weights of the convolutional kernels
are allocated over the input. Thus, the number of the required train parameters is signifi-
cantly deduced. The residual block includes two convolutional operations, ReLU activation
functions, and one identity shortcut, as shown in Figure 1. We show the improved ResNet
structure in Figure 2c.
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4. Experimental Verification
4.1. Datasets Introduction

This experiment was conducted in the Precision Metrology Laboratory, at the Mechan-
ical Engineering Department of Sant Longowal Institute of Engineering and Technology
Longowal, India. In this case, we try to identify fault types for testifying the property of
the DA-ResNet model using the laboratory cylindrical roller bearings with different defect
sizes. The test rig is shown in Figure 3, and the shaft speed is measured by the proximity
sensor. The power is provided by a 346-Watt AC motor and then is transferred to the shaft;
a 2 kg disc is mounted in the middle of the shaft. A device named a lever arrangement is
applied to load a roller bearing in the vertical direction. The load cell is installed below
the bearing housing to measure the applied load. The accelerometer is set on the top of
the bearing housing to decrease the effect of the transferring path. At the same time, the
microphone is set to the nearest of the test bearing. The experiment was conducted under
the conditions: shaft speed and vertical load are 2050 rpm and 200 N, respectively, and the
signals acquired in this work were recorded at a sampling rate of 70,000 Hz.
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Tables 1 and 2, respectively, describe the size parameters of the roller bearings and
the four failure degrees of inner race, outer race, and roller. The four failure degrees are
used to testify the proposed ideas, and the data are divided into four datasets. We labeled
the different failure degrees with different numbers for constructing the source and target
domains. The figures of the failure elements’ degrees are displayed in Figure 4.

Table 1. Parameters of roller bearings.

Bearing Type Ball Number Z Pitch Diameter
D

Ball Diameter
d

Contact Angle
θ

Inner Race
Diameter

Outer Race
Diameter

NU205E 13 38.9 mm 7.5 mm 0o 25 mm 52 mm

Table 2. Defect sizes of inner race, outer race, and roller.

Dataset Fault Types Defect
Width (mm) Labels Dataset Fault Types Defect

Width (mm) Labels

A

N 0 0

C

N 0 0
IR-I 0.43 1 IR-III 1.56 7
OR-I 0.42 2 OR-III 1.55 8
RO-I 0.49 3 RO-III 1.73 9

B

N 0 0

D

N 0 0
IR-II 1.01 4 IR-IV 2.03 10
OR-II 0.86 5 OR-IV 1.97 11
RO-II 1.16 6 OR-IV 2.12 12
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The waveform of vibration and acoustic signals is shown in Figure 5. The x axis
represents the number of sampled points, and the vertical direction is the amplitude of
the vibration and acoustic signals. It is noted that, from top to bottom, are the exhibited
subfigures of Figure 5a, named VS1, VS2, VS3 (vertical, horizontal, and axial directions of
the tested bearings), and AS signals. The faulty vibration signals have transient impulses,
and an inner race and roller cases; the acoustic signals could match the impulses’ locations



Sensors 2023, 23, 3068 9 of 18

sometimes. There are two ideas verified by the above signals, the first idea is to check
that the DA-ResNet is superior to the other intelligent diagnosis methods. Then, the
effectiveness of vibro-acoustic multi-source signal is testified by a transfer task.
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fault; (d) roller fault.

4.2. Experimental Configuration

The common compared models are used to test the performance of the proposed
model. Multilayer perception (MLP), also named ANN, inputs and outputs layers; many
hidden layers are included between the input and output layers. The simplest network
has a hidden layer, which can learn features from the input data. BiLSTM consists of the
forward and backward LSTM, the former is to process the input data and the latter for
the reversed data, and then to splice the output of two LSTMs after processing. CNN is
a supervised learning neural network with a convolutional layer, a pooling layer, a batch
normalization layer, and activation function, commonly regarded as a feature extractor.
CNN has had great success in high dimension, such as image, video, and light fields. Low
dimension includes seismic waves, radar data, biological signals, and so on. In particular,
CNN is widely applied in fault diagnosis for feature extraction.

(1) Baseline: MLP

As a baseline model, the MLP is composed of two dense layers (called fully connected
layers). A large number of parameters in MLP results from the full connection between
the input and output of each dense layer, and the dropout layer is used to overcome the
overfitting caused by numerous trainable parameters in the MLP model. Specifically, the
structure of MLP can be described as: {Input (4096,), dense (32,), dropout (32,), dense (128,),
dropout (128,)}.

(2) BiLSTM
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For the BiLSTM model, the convolutional layer is introduced to overcome the com-
putational complexity caused by the recurrence mechanisms of LSTM and the solving
technique is to embed the row signals into a low dimensional feature vector. The structure
of BiLSTM is as follows: {Input (4096,), convolution (128, 64), BiLSTM (32,), dropout (32,),
dense (128,), dropout (128,)}.

(3) CNN

In CNN, the structure of this model is to stack in turn several convolutional and
max-pooling layers. Specifically, the details of the CNN model are as follows: {Input (4096,),
convolution (1024, 4), max-pooling (512, 4), convolution (128, 8), max pooling (64, 8), flatten
(512,), dense (128,)}.

(4) ResNet

For the ResNet, residual blocks are significant characteristics and provide a multi-
receptive field due to the skip-connection. Inspired by residual networks in computer
vision, a simple ResNet is designed to diagnose bearings’ faults. The constructed structure
of the model can be described as follows: {Input (4096,), convolution (1024, 4), residual
block (512, 8), max-pooling (256, 8), residual block (256, 16), max-pooling (128, 16), residual
block (128, 32), max-pooling (64, 32), flatten (2048,), dense (128,)}.

In this paper, the specific parameters of the DA-ResNet model are shown in Table 3,
withthe improved ResNet in Figure 2c. The specific layers’ parameters of the mentioned
four compared models are described in the above part of the table. Similarly, more informa-
tion on these models is shown in Table 4.

Table 3. Detailed parameters of the DA-ResNet model.

Layer (Type) Output Shape Param #

inputs1 (Input layer) (4096, 1) 0
c0 (Conv1D) (1024, 4) 20
c11 (Conv1D) (512, 8) 104
c12 (Conv1D) (512, 8) 200

add_1_2 (Add) (512, 8) 0
x1p (Max-pooling1D) (256, 8) 0

c21 (Conv1D) (256, 16) 400
c22 (Conv1D) (256, 16) 784

add_2_2 (Add) (256, 16) 0
x2p (Max-pooling1D) (128, 16) 0

c31 (Conv1D) (128, 32) 1568
c32 (Conv1D) (128, 32) 3104

add_3_2 (Add) (128, 32) 0
x3p (Max-pooling1D) (64, 32) 0

flatten (Flatten) (2048) 0
out (Dense) (128) 262,272

Table 4. Detailed information of four models.

Model Embedding Characteristics Params

MLP None Fully connection 528,554
BiLSTM Convolution LSTM 16,704

CNN None Convolution 65,820
ResNet None Residual block 268,452

4.3. Cross-Domain Fault Diagnosis

To further validate the property of DA-ResNet, the following methods for comparison
tests were used,. Methods include MLP, BiLSTM, CNN, ResNet, and domain adaption
CNN (DA-CNN). The first four are common deep learning methods for object detection,
object recognition, and so on. In this case, the effectiveness of the feature transfer is testified
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with four experimental tasks. Vibration and acoustic signals are collected under the same
working conditions. The difference is the defect size of the faulty elements of roller bearings,
and the training sample consists of vibration and acoustic signals.

The diagnostic results of six methods are given in Table 5, and their corresponding
histogram is shown in Figure 6. The F1-scores of MLP, BiLSTM, CNN, ResNet, DA-CNN,
and DA-ResNet are shown in Table 6. The histogram of the F1-scores is shown in Figure 7.
In Table 5, the capital letters A, B, C, and D are denoted by the fault degrees (also named
datasets under the same defect size). For the detailed sizes, are refer to Table 2. For example,
the fault degree A is the source domain and B is the target domain.

Table 5. The accuracy of six methods for four transfer diagnostic tasks.

Model A→B A→C A→D D→A

MLP 64.00% 41.87% 44.62% 45.12%
BiLSTM 87.83% 59.25% 75.38% 74.62%

CNN 95.10% 73.35% 80.75% 92.50%
ResNet 96.50% 71.3% 91.62% 95.50%

DA-CNN 98.37% 76.75% 97.70% 94.50%
DA-ResNet 99.87% 83.5% 98.12% 95.40%
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Table 6. The F1-score of six methods for four transfer diagnostic tasks.

Model A→B A→C A→D D→A

MLP 60.25% 37.03% 38.22% 38.45%
BiLSTM 87.88% 54.22% 71.26% 87.49%

CNN 94.50% 73.10% 77.53% 92.34%
ResNet 96.50% 85.50% 87.10% 95.50%

DA-CNN 98.46% 70.07% 97.70% 94.40%
DA-ResNet 99.80% 83.62% 98.10% 95.70%
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The F1-score is a tool that evaluates the accuracy of predictions and takes into account
whether intelligent diagnostic methods have a preference for diagnostic performance in
different categories. The formulas of the F1-score are given as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2× Precision× Recall

Precision + Recall
(7)

in which TP is denoted as the predicted positive class, FP is the predicted positive class of
error, and FN represents the predicted negative class of error. The parameter definitions of
the above formulas are shown as follows: precision and recall represent accuracy and recall,
respectively, and F1 is the F1-score. The F1-score is introduced to evaluate the diagnostic
property of MLP, BiLSTM, CNN, ResNet, DA-CNN, and DA-ResNet in diagnostic tasks.

The key to this case is to use one defect size of the faulty element of bearings to
diagnose the other fault types. The diagnosis results of the MLP, BiLSTM, CNN, ResNet,
and DA-CNN are given in Table 5. In Table 5, the capital letters A, B, C, and D denote the
fault degrees (also named datasets under the same defect size). The detailed sizes can be
referred to in Table 2. For example, the fault degree A is a training sample, and B is used to
test the sample. The average accuracy of the compared methods is 48.9%, 74.27%, 85.43%,
88.73%, and 91.83%. However, the proposed method result is 94.22%, which is superior
to the comparison methods in four diagnostic tasks. Especially in the task from A to C,
the lowest accuracy is half of the highest diagnostic value. The result can predict the MLP,
and BiLSTM methods cannot separate the unknown label samples. CNN and ResNet can
separate parts of unknown label samples, Nevertheless, without solving the problem of
domain adaptation that model would not lead to a good result. The structure characteristic
of ResNet is residual connections; a residual block is introduced to solve the problem of the
accuracy decrease as a result of the increase of network depth. Furthermore, the residual
block can keep the performance of models while the depth of the model increases. On the
contrary, the characteristic of conventional networks is that accuracy will maintain a certain
value and degrade rapidly as the network depth increases; meanwhile, more layers are
added will bring more high training error. From Table 6, the highest F1-score values are
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used in bold font in the table. The performance of MLP in four diagnostic tasks is not good,
and the proposed method has the highest F1-score in three diagnostic tasks. Combined with
the accuracy of the DA-ResNet, it can be verified that the diagnostic property is superior to
the other diagnostic methods.

To compare the results of six methods, t-Distributed Stochastic Neighbor Embedding
(t-SNE) [43] is introduced to visualize the operating results. Four colors represent four
healthy conditions of roller bearings. As shown in Figure 8, the four colors are completely
mixed together, which is obtained by MLP. Comparing CNN and ResNet, the blue and
red colors are mixed, which is obtained by using the CNN model, and the result is worse
than ResNet’s result. The confusion matrix of diagnostic results of MLP, BiLSTM, CNN,
ResNet, DA-CNN, and DA-ResNet is shown in Figure 9. It is obvious that the multi-layer
method MLP has not solved the domain adaption problem of source and target domains,
only in the shared part with the recognition accuracy being close to 95%. The non-shared
part from the target domain is mixed with the other classes and the average accuracy is
15%. The confusion matrix of BiLSTM is better than MLP; however, the second class is
used to predict the same class with a low diagnostic accuracy of 69.6%. Comparing CNN
with DA-CNN methods means that the MMD principle can decrease the discrepancy of the
source and target domains. The same result is obtained from ResNet and DA-ResNet. Then,
the diagnostic accuracy of DA-CNN is lower than DA-ResNet. The result indicates that
the conventional network accuracy will maintain a certain value and degrade rapidly as
the network depth increases. Meanwhile, more layers are added which will bring a higher
training error.

4.4. Transfer Diagnosis of Multi-Source Signal

To testify the multi-source data necessity in fault diagnosis, the fault degrees A and
D are applied to check the performance of the proposed model. We prepared the single
channel vibration signal of roller bearings, the acoustic signal, and the vibro-acoustic multi-
source data to train the six models. The necessity of multi-source data is verified by the
diagnostic accuracy of the six models in the fault diagnosis.

The diagnosis accuracy of six models on various signals and the multi-source signal
is exhibited in Table 6. A single vibration or acoustic signal is used to train the model
and then diagnosis fault degree D. The diagnosis accuracy of the six models on various
signals and the multi-source signal is shown in Table 6 and is visualized in Figure 10.
The accuracy of the vertical direction of vibration signals is from 44.62% to 98.12%. The
difference value is approximately 53.5%, which is bigger than the accuracy of the MLP
model. For the horizontal direction vibration signals, the difference value is 58.73%, which
is bigger than the vertical direction accuracy. In the acoustic signal case, the difference
between the highest and lowest is 46.83%, which indicates that acoustic signals include
more fault information than vibration signals. The proposed model achieves the highest
recognition accuracy in a single channel or multi-source signals. Furthermore, we can
calculate the difference values between the highest and lowest accuracy values from six
channels in Figure 10. The values range from 11.16% to 25.89%, and it can be concluded
that the multi-source data could improve the diagnosis accuracy to a certain extent.
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5. Discussion

This paper has achieved fault diagnosis under different failure degrees in one machine.
From the accuracy results of the cross-domain fault diagnosis and transfer diagnosis of
multi-source signals, the proposed model can obtain the highest recognition accuracy.
However, in some transfer tasks, the accuracy value cannot achieve a higher accuracy. For
example, in the task from A to C, the value only reaches 83.5% by DA-ResNet, which may
guess the extracted features of the failure degree C are a little similar to failure degree A,
and then the distribution between failure degree C and failure degree A has not decreased
in minimum value. Therefore, the proposed model should be changed to balance the
recognition accuracy in four transfer tasks.

6. Conclusions

In this paper, we look at the problem of the distribution of datasets being different in
obtaining bearings’ fault data, a fault diagnosis method based on MMD named DA-ResNet
is proposed. At the same time, the vibration and acoustic data are sampled synchronously
as the input term in the proposed model. The multi-source data can perfect the mechanical
equipment information of rotating machinery and the proposed method can improve
the generalization ability of the model. From the first experimental case, the comparison
results of MLP, BiLSTM, CNN, ResNet, DA-CNN, and DA-ResNet are given through the
confusion matrix. The highest diagnosis accuracy is obtained by DA-ResNet. In the last
case, the necessity of multi-source data is verified by the histogram, and the tool could
improve the diagnosis accuracy to a certain extent. Finally, the performance of the proposed
method through related experiments could further verify the effectiveness and feasibility
of this paper.

The proposed method achieves fault diagnosis from cross-domain by using vibration
and acoustic data. In future work, the more physical quantities are considered as the input
of the model, maybe the higher accuracy is acquired. The importance of this issue is to
study the relation in physical quantities for further research to get high accuracy of faulty
recognition. The research object is the roller bearing, which is a simple structure to extract
features in fault diagnosis. Therefore, the next step of this paper is to change complex
machinery parts to verify the performance of the proposed model. The proposed model
may be introduced to engineering applications rather than in experimental test rigs if the
complex machinery parts case will succeed.
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