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Abstract: The similarity between samples is an important factor for spectral reflectance recovery. The
current way of selecting samples after dividing dataset does not take subspace merging into account.
An optimized method based on subspace merging for spectral recovery is proposed from single
RGB trichromatic values in this paper. Each training sample is equivalent to a separate subspace,
and the subspaces are merged according to the Euclidean distance. The merged center point for
each subspace is obtained through many iterations, and subspace tracking is used to determine the
subspace where each testing sample is located for spectral recovery. After obtaining the center points,
these center points are not the actual points in the training samples. The nearest distance principle
is used to replace the center points with the point in the training samples, which is the process of
representative sample selection. Finally, these representative samples are used for spectral recovery.
The effectiveness of the proposed method is tested by comparing it with the existing methods under
different illuminants and cameras. Through the experiments, the results show that the proposed
method not only shows good results in terms of spectral and colorimetric accuracy, but also in the
selection representative samples.

Keywords: spectral recovery; camera responses; representative samples; subspace merging

1. Introduction

Spectral reflectance is an inherent nature of matter itself, which can be regarded as
the ‘fingerprint’ of an object [1]. Due to its unique properties, it can be used to charac-
terize the color of materials and the surface properties of materials in art [2–4], remote
sensing [5,6], medicine [7–9], textiles [7,10] and so on [11,12]. In real life, it is difficult to
directly obtain the surface spectral reflectance of an object; researchers mostly obtain the
surface spectral reflectance by indirectly obtaining the response value of a digital camera [9].
The response values are usually obtained by using digital devices, which saves time and
effort. Therefore, there are many kinds of spectral recovery methods, such as the most
common pseudo-inverse method [13,14], principal component analysis method [15], com-
pressive sensing [16,17], Wiener estimation method [8,18], and so on [19–25]. In the above
description, the pseudo-inverse method is more common in the process of spectral recovery.

The similarity of samples is one of the methods to improve the accuracy of spectral
recovery. The selection of samples has two major directions: the first is extensive, which
mainly selects several fixed representative samples from significant data. Hardeberg [26]
proposed a method based on the minimum condition number. Mohammadi [27] proposed
a method based on hierarchical clustering. Cheung [28] proposed four optimal sample
selection rules based on different criteria between subsequent samples and representative
sample subsets. Shen [29] proposed a representative sample selection method based on
representative vectors and virtual imaging. Liang [30] proposed representative samples
based on the minimum of the defined simulated spectral recovery error. The second is the
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partition acquisition: the training samples are divided into subspaces, and the test sample
is used to select the training sample. The methods proposed above can be simply defined as
dynamic partitioning and stationary partitioning. For example, Zhang [31] divided Munsell
data into 11 regions, which is stationary partitioning. Zhang [32] selected testing samples
by distance, and Liang [1] used the nearest training sample as the training subspace, which
are examples of dynamic partitioning. Xiong [33] used dynamic partitional clustering to
recover the spectral reflectance from camera response values.

Although the above methods all consider the selection of training samples and reduce
the redundancy of data, they do not consider that the sample subsets can also be merged
and optimized.

Their limitation is that they only use the differences between the samples, which is
often referred to as the competition among the samples, and they do not consider the
merging of the sample. Additionally, these methods do not consider the problem of data
redundancy. This will increase the amount of computation and increase the cost. Our
method takes both cases into account and conducts separate experiments.

In this paper, a novel spectral recovery method based on the merging of subspace is
proposed. In this method, each testing sample is taken as an independent sample subspace,
which is merged according to the distance between sample subspaces to obtain the final
partition information. Similarly, we use the nearest training sample to substitute virtual
points as the representative samples to recover the spectral reflectance. The approach can
be divided into two parts:

1. Firstly, the training samples are divided into independent classes. We use the subspace
concept to treat each class as a subspace, and the subspaces are merged according
to the set distance. Secondly, the distance of the first subspace is calculated from
the second subspace. If the distance is less than the set distance, then the average
between the first subspace and the second subspace is calculated as the first subspace.
If the distance is greater than the set distance, then the relationship between the first
point and the third point is calculated, which will reduce the number of subspaces
and yield partition information. Thirdly, the final merged center points are obtained
through many iterations, which are used to determine the subspace. Finally, subspace
tracking is used to determine the subspace where each testing sample is located for
spectral recovery.

2. After obtaining the center points, these center points are not actual points in the
training samples. The nearest distance principle is used to replace the center points
with the points in training samples, which is the process of representative sample
selection. Finally, these representative samples are used for spectral recovery.

Mathematic Background and Method

In this section, the imaging function of digital devices is introduced. When the light
source distribution function I(λ), camera sensitivity function q(λ) and spectral reflectance
r(λ) are determined, the integral process can be expressed as:

T =
∫ max

min
I(λ)q(λ)r(λ)dλ + γ, (1)

where T = [R, G, B] + is the RGB response values; + means transpose; min and max represent
the visible wavelength range (400 nm–700 nm); the system noise is normally represented
by γ, which is omitted in this study [34]; Equation (1) can be further simplified in matrix
vector form.

T = MR, (2)

where M represents the integral matrix of the light source distribution function and the
camera sensitivity function; R denotes the spectral reflectance. The inverse solution yields
the spectral reflectance recovery to be obtained by Equation (3)

R = QT, (3)
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where Q is the transpose matrix, and we can easily obtain the spectral reflectance by
knowing Q.

2. The Proposed Method

In this section, we first show the schematic illustration of the proposed method for
spectral reflectance recovery in Figure 1, and formulate the spectral reflectance recovery
process based on subspace merging.
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Figure 1. Schematic illustration of the proposed method for spectral reflectance recovery.

As can be seen in Figure 1, firstly, the response values and spectral reflectance infor-
mation of the color samples are obtained. Secondly, after obtaining the corresponding
response value information, subspace merging is carried out according to the distance.
Finally, after the merging points are obtained, we can divide it into two categories. The
first type is directly partitioned for spectral recovery, and the second type is used in the
latest training sample data to replace virtual points in order to directly obtain the restored
spectral reflectance.

2.1. Spectral Reflectance Recovery Based on Subspace Merging

For the response values, the obtained response values will change due to the difference
of spectral sensitivity function and light source. So, the obtained raw response values need
to be normalized. The process of standardization is shown in Equations (4) and (5)

H = argmax(T), (4)

T = (T/H)× 255, (5)

where argmax describes the function to determine the maximum value of response values.
When the maximum value is known, the response values are divided by the maximum and
multiplied by 255.

Given the training sample (x1...xm) ∈ TTrain, where m represents the number of training
samples, let x1= (r1, g1, b1), since each samples represents a subspace, which is based on
the Euclidean distance as the standard to start merging. The initial distance k is given. The
distance is calculated in Equation (6)

sj =
√
(rj − ri)

2 +
(

gj − gi
)2

+ bj − bi
2 , (6)

where j is the initial value of the jth sample; i is the remaining sample points; when k < sj,
proceed to the next step; when k > sj the two samples are combined and used as the starting
samples of the jth point to repeat Equation (6).

rj = (rj + ri)/2
gj =

(
gj + gi

)
/2

bj =
(
bj + bi

)
/2,

(7)
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At the end of the process of comparing the distance with k and continuously fusing,
all the samples are gathered in a new set J. The number of points in J varies depending on
the value of k. We set the number of J to n. The partition information of the subspaces C is
found by the division of clustering centers.

W (C, J) = minC ∑a
J=1 ∑xi∈Ca

‖xi − Ja‖2
2 (i = 1, 2, . . . m, a = 1, 2, . . . n), (8)

where the W (C, J) defines the partitioning of the samples and the generation of new
clustering centers; ‖·‖2

2 represents the Euclidean distance. Let (p1 . . . p f )∈ TTest be the
testing samples. When the testing samples are input into Equation (8), the partition of the
training sample set of the test sample is determined.

After the training sample subspace of the testing sample is selected, the distance
information between the testing sample and the training sample is used to calculate the
weight of the training sample.

wi = ‖Ttest − Ca‖2
2, (9)

where Ca represents the corresponding training sample partition of the testing sample.
Since the distance is far away, the weight is small. Therefore, its reciprocal is used as the
new weighted function. The new weighted function can be expressed as:

wi =
1

wi + ε
, (10)

Just to make sure the denominator does not equal zero, ffl = 0.001.

W =


w1 0 · · · 0
0 w2 0 0
... 0

. . .
...

0 0 · · · wi


i×i

, (11)

The spectral recovery function can be expressed as:

Q = RTrain W(TTrainW)−1, (12)

R = QTTest, (13)

The superscript ‘−1’ indicates the pseudo-inverse matrix operator; RTrain represents
the selected optimal local training sample; TTest represents the standardized response values
of the testing sample; TTrain represents the standardized response values of the training
sample; R is the corresponding recovered spectral reflectance.

2.2. Representative Samples for Spectral Reflectance Recovery

The center point set J can be obtained by using Equation (9) in this section, but
the obtained center points are virtual points. The nearest distance principle is used to
replace the virtual points with the points in the training samples, which is the process of
representative sample selection. The proximate similar substitution principle is used in
this section.

V = ‖xi − Ja‖2
2(i = 1, 2, . . . m, a = 1, 2, . . . n), (14)

where V represents the distance. Firstly, the distance between the first point of J and the
training sample is calculated, replace the first virtual points of J by determining the closest
training samples. Then, the selected point is removed from the training samples, and the
2nd to the nth point are also replaced.
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After obtaining the representative samples set J, the final recovered equation can be
expressed as:

Q = Rtrain(Ttrain)
−1, (15)

R = QTTest, (16)

where Rtrain represents the selected optimal local training sample; Ttrain is the response
values of training samples. TTest is the response values of testing samples.

3. Experiment

The experiment is divided into two parts: partitioning the acquisition to recover
spectral reflectance and selecting the representative samples to recover spectral reflectance.
The color difference of CIE DE76 under the CIE 1964 standard observation system and CIE
A light source is calculated. The root mean square (RMSE) and goodness-of-fit coefficient
(GFC) also as a precision standard. These three parameters are selected as the evaluation
standard for spectral recovery.

∆E∗ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2, (17)

RMSE =

√
1
m
(Rtest − R)T(Rtest − R), (18)

GFC =
Rtest

T R
‖RtestT Rtest‖·‖RR‖ , (19)

The calculation method of color difference is introduced in Equation (17), where
∆L∗ represents the difference in brightness; ∆a∗ represents the difference in redness and
greenness; ∆b∗ represents the difference in yellowness and blueness. So, color difference
represents the colorimetric accuracy. For Equations (18) and (19), where Rtest represents
the recovery spectral reflectance, R represents the original spectral reflectance; in this
work, m = 31. The root of mean square shows the distance between the original and
recovered spectral reflectance. The goodness-of-fit coefficient shows the similarity between
the original and recovered spectral reflectance.

3.1. Simulation Experiment

The 1269 Munsell Matt chips [27], 140 ColorChecker SG [35] and 354 Vrhel spectral
datasets [36] are used in the simulation experiment. Firstly, The Munsell Matt chips are
used as the training samples. The Munsell Matt chips have 1269 color chips, which are
mostly used in spectral recovery, and there are corresponding color blocks for each hue
in this training sample. Therefore, the Munsell Matt chips are more convincing as the
training sample. Using only one type of color chip undoubtedly affects the universality
and effectiveness of the experiment. So, other color chips and Munsell Matt chips are used
together to verify the proposed method.

The simulated environment is described in this section. The NokiaN900(Nokia Corpo-
ration, Espoo, Finland) is selected as the spectral sensitivity function, and the CIE D65 is
selected as the light source environment in Figure 2.

All the spectral reflectance data from in the experiment are presented in Figure 3.
Figure 3 shows that our experiment involves three kinds of color chips. Figure 3a shows
the Munsell Matt chips with 1269 color chips. Figure 3b shows the 140 ColorChecker SG.
Figure 3c shows the 354 Vrhel spectral dataset. The spectral reflectance ranges from 400 to
700 at a 10 nm interval.
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After analyzing the spectral information data, the response value information is also
analyzed. The equipment that obtains the response values greatly depends on the real
environment. The camera response value depends a lot on the equipment, which is not a
uniform space. In order to facilitate better observation and description of the color, the CIE
Lab space with good spatial uniformity is selected as the description background. The full
name of Lab is CIELAB, sometimes written as CIE L *a*b*. It is a color pattern developed by
the CIE (International Commission on Illumination). Therefore, in Figure 4a, it can be easily
seen that the data are distributed uniformly in space, which describes the LAB information
of Munsell Matt chips. From Figure 4b,c, it is also easy to see that since the color chips
selected are ColorChecker SG and Vrhel spectral dataset, the number is obviously smaller.
The LAB is calculated under CIE D65 illuminants.

After the spectral information and response values of the experiment are introduced,
the proposed method is tested in the following sections. Distance is used as a parameter in
the experiment, and the number of merging iterations between subspaces becomes more
and more with the increase in distance. The number of center points is also less and less
with the increase in distance, but this does not mean that the center point can directly
determine whether the recovery accuracy is good or bad, due to the complex relationship
inside. Therefore, the relationship between parameters and accuracy is explored through
experiments. In Figure 5, the Munsell Matt chips are used as the training samples. It can
be easily seen that both the self-recovery and the recovery of the ColorChecker SG and
Vrhel spectral datasets have the best results under the distance of 40. As can be seen from
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Figure 5, when the Munsell Matt chips are used to recover the other three kinds of data, the
results all have the same trend of change. So, the distance is set to 40.
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As we can see from Table 1, the proposed method, PI, PCA and Wang’s [37] and
Zhang’s [32] methods recover spectral reflectance under the same conditions. The evalu-
ation of the recovery accuracy can be divided into two parts: colorimetric accuracy and
spectral accuracy. Firstly, colorimetric analysis is the analysis of color difference. For the
color difference analysis in Table 1, it can be seen that the average color difference obtained
by either self-recovery or using other samples as training samples using the proposed
method is the smallest. The smallest average color difference is self-recovery, which is
0.3063. Secondly, spectral accuracy analysis is the RMSE and GFC. The RMSE and GFC
show the same results. The best results are in bold.
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Table 1. Results of recovered spectral reflectance for different testing samples using different spectral
recovery methods.

RMSE GFC ∆ Eab

Testing Sample Methods Mean Max Mean Max Mean Max

Munsell PI 0.0212 0.1387 0.9942 0.9999 0.8142 6.8360

PCA 0.0218 0.1310 0.9942 0.9999 1.8844 16.9725

Wang [37] 0.0341 0.1688 0.9844 0.9999 1.5788 5.9162

Zhang [32] 0.0192 0.1234 0.9950 1.0000 0.7617 5.8412

Proposed 0.0103 0.1028 0.9985 1.0000 0.3063 2.1240

ColorChecker SG PI 0.0344 0.1590 0.9883 0.9997 1.4405 7.8373

PCA 0.0332 0.1503 0.9886 0.9997 2.7231 19.3066

Wang [37] 0.0267 0.1163 0.9765 0.9998 1.4212 8.1198

Zhang [32] 0.0312 0.1393 0.9897 0.9999 1.3053 6.4735

Proposed 0.0236 0.0955 0.9932 0.9998 0.9743 3.1183

Vrhel PI 0.0383 0.1882 0.9841 0.9997 1.7829 7.7830

PCA 0.0379 0.1870 0.9843 0.9997 3.2865 20.4141

Wang [37] 0.0341 0.1688 0.9843 0.9999 1.5775 5.9369

Zhang [32] 0.0350 0.1837 0.9851 0.9999 1.5588 6.5949

Proposed 0.0316 0.1706 0.9866 0.9999 1.1885 6.7224

To visualize the recovery accuracy, a boxplot is used in Figure 6. Munsell Matt chips
are used as training samples and ColorChecker SG is used as the testing sample. Figure 6a
represents CIE DE76 color difference and Figure 6b represents CIE DE2000 color difference.
Figure 6c represents RMSE and Figure 6b represents GFC. The more compact the box,
the better the precision. It is not difficult to conclude that the proposed method shows
better performance. In Figure 6a–c, it can be seen that the distance between the red dots
is relatively close, and the accuracy of recovery is more stable than other methods. There
are six important data points related to a boxplot: upper edge, lower edge, upper quartile,
lower quartile, the median, and outlier. The upper and lower solid black lines represent
the upper and lower edge values. The top and bottom of the blue box line indicate the top
and bottom quartiles. The red color inside the box indicates the median, and red circles
represent outliers.

In Figure 7, Munsell Matt chips are used as training samples and ColorChecker SG
is used as the testing sample. Four random samples are selected for comparison. It can
be easily seen that the proposed method is closer to the original sample, so the proposed
method shows better performance.

In Figure 7, different colors represent different methods. Correspond to the color of
the method in the Figure 7d. After simple verification of the proposed method, in order to
show the good performance of the method, which is applied to the spectral images [27],
the spectral images ColorChecker and fruitandflowers are used.

It can easily be seen in Figure 8 that the results comparison of the spectral images
uses the different methods to recover spectral reflectance. Figure 8a represents the original
RGB image. Figure 8b–f is called the error map, which calculates the color difference of
the spectral reflectance recovered by different methods. More red means a larger color
difference, and more blue means a lesser color difference. Therefore, the proposed method
shows better performance.
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Previous research results show that so many training samples also contain sample
redundancy in the field of spectral recovery. It is not necessary to use all samples in the
database as training samples. Otherwise, it will cause a heavy workload and inconvenience
for sample collection and processing, especially in outdoor applications. Therefore, the
optimal selection of representative samples from existing databases has always been an
important aspect of spectral recovery.

According to Table 2, using different distances will select the corresponding represen-
tative samples. As the distance increases, the accuracy shows a trend of first increasing,
then decreasing.

As can be seen from Figure 9, the results show that there is an extreme value of
recovery accuracy, which is very similar to Figure 5. It is also a concave linear curve with
a small amplitude, which shows better properties at the distance of 30, and the selected
sample is 24. So, we set the distance to 30 to determine the representative samples. The
comparison of the proposed method using representative points and some current methods
is shown in Table 3.
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Table 2. The relationship between recovery accuracy and distance.

Distance Selected Samples Color Difference

10 241 0.8158

20 63 0.8037

30 24 0.7715

40 13 0.8049

50 8 1.2054
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Table 3. Compares recovery error for Optimal Selected Training Samples in difference methods.

Method Selected Samples Mean RMSE ∆Eab

The proposed 24 0.0214 0.7715

Cheung [28] 35 0.0285 1.2434

Hardeberg [26] 485 0.0230 0.8031

Liang [30] 60 0.0219 0.8099

After processing selected representative samples, Figure 10 shows the distribution of
the training samples and the representative samples selected by several methods in the xyY
space. Blue points represent training points and red points represent representative points.
Timo Eckhard [38] discussed the sample selection method proposed above, and we select
his detection results as the selection samples. Liang’s [30] selected sample used 60 in his
article. Figure 10a represents the distribution of selected samples obtained by the proposed
method. Figure 10b uses Cheung’s method to calculate the distribution of the selected
samples in the training sample. Figure 10c represents Hardburg’s method to calculate the
distribution of the selected samples in the training sample. Figure 10d uses Liang’s method
to obtain the selected samples. The red dots represent the selected representative points,
and the blue dots represent the overall data in Figures 10 and 11.
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3.2. Recovery for Different Illuminants and Cameras

Considering that different illuminants’ [24,39] and cameras’ spectral sensitivities
will affect the proposed method, the Munsell chips are used as training samples, and
different illuminants and spectral sensitivity functions are used to verify the effectiveness
of the proposed method in Tables 4–7. Then, the results are recovered according to the
ColorChecker SG data testing sample.
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Table 4. Results of recovery spectral reflectance for different illuminants using different spectral
recovery methods and NokiaN900 spectral sensitivity function.

RMSE GFC ∆Eab

Illuminants Methods Mean Max Mean Max Mean Max

B PI 0.0331 0.1519 0.9885 0.9997 1.1993 7.6998

PCA 0.0330 0.1441 0.9888 0.9997 1.7677 13.0748

Wang [37] 0.0261 0.1063 0.9785 0.9998 1.2564 10.5796

Zhang [32] 0.0320 0.1292 0.9990 0.9998 3.4029 37.7525

Proposed 0.0240 0.1129 0.9931 0.9998 0.8474 3.2051

C PI 0.0334 0.1570 0.9884 0.9997 1.2949 7.2480

PCA 0.0332 0.1485 0.9887 0.9997 2.4776 17.5926

Wang [37] 0.0265 0.1131 0.9767 0.9998 11.3332 8.6304

Zhang [32] 0.0311 0.1368 0.9898 0.9998 2.5704 21.3022

Proposed 0.0226 0.0938 0.9935 0.9998 0.8105 2.9903

D50 PI 0.0331 0.1535 0.9885 0.9997 1.2897 8.5185

PCA 0.0330 0.1454 0.9887 0.9997 2.0228 15.0978

Wang [37] 0.0262 0.1090 0.9783 0.9998 1.2790 10.1201

Zhang [32] 0.0318 0.1326 0.9899 0.9999 3.3789 40.5513

Proposed 0.0232 0.1126 0.9932 0.9999 0.8815 3.1797

D65 PI 0.0334 0.1590 0.9883 0.9997 1.4405 7.8373

PCA 0.0332 0.1503 0.9886 0.9997 2.7231 19.3066

Wang [37] 0.0267 0.1163 0.9765 0.9998 1.4212 8.1198

Zhang [32] 0.0312 0.1393 0.9897 0.9999 2.5217 23.0217

Proposed 0.0236 0.0955 0.9932 0.9998 0.9743 3.1183

E PI 0.0330 0.1548 0.9884 0.9997 1.6775 8.9601

PCA 0.0328 0.1467 0.9887 0.9997 2.3032 14.4599

Wang [37] 0.0263 0.1105 0.9769 0.9998 1.6316 9.1008

Zhang [32] 0.0300 0.1416 0.9895 0.9998 2.5857 24.9101

Proposed 0.0237 0.1028 0.9933 0.9998 1.1414 3.9218

F2 PI 0.0356 0.1855 0.9876 0.9997 1.6952 9.1798

PCA 0.0356 0.1752 0.9877 0.9997 2.3032 14.4599

Wang [37] 0.0290 0.1388 0.9789 0.9998 1.5170 7.9642

Zhang [32] 0.0340 0.1670 0.9888 0.9998 4.3534 47.3932

Proposed 0.0254 0.1110 0.9926 0.9998 1.0724 5.0488

Average PI 0.0336 0.1603 0.9883 0.9997 1.4329 8.2406

PCA 0.0335 0.1517 0.9885 0.9997 2.2663 15.6653

Wang [37] 0.0268 0.1157 0.9776 0.9998 3.0731 9.0858

Zhang [32] 0.0317 0.1411 0.9911 0.9998 3.1355 32.4885

Proposed 0.0238 0.1048 0.9932 0.9998 0.9546 3.5773

Table 5. The spectral recovery color difference of selected representative samples to recover total samples.

Method

Illuminants The Proposed Cheung [28] Hardeberg [26] Liang [30]

B 0.7059 1.0274 0.7378 0.7995

C 0.7380 1.1504 0.7814 0.7727

D50 0.7699 1.0492 0.7440 0.8222
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Table 5. Cont.

Method

Illuminants The Proposed Cheung [28] Hardeberg [26] Liang [30]

D65 0.7715 1.2434 0.8031 0.8099

E 0.8217 1.4588 0.9035 0.8827

F2 1.2905 1.3472 1.1153 1.1046

Table 6. Results of recovery spectral reflectance for different spectral sensitivity functions using
different spectral recovery methods.

RMSE GFC ∆Eab

Spectral Sensitivity Methods Mean Max Mean Max Mean Max

Canon5D Mark II PI 0.0352 0.1722 0.9879 0.9997 1.9339 8.7401

PCA 0.0349 0.1614 0.9882 0.9997 3.5937 30.1884

Wang [37] 0.0284 0.1171 0.9703 0.9998 3.0478 23.8372

Zhang [32] 0.0316 0.1533 0.9890 0.9998 1.7473 16.0427

Proposed 0.0248 0.1135 0.9918 0.9999 1.0844 6.2860

Canon60D PI 0.0350 0.1778 0.9880 0.9997 1.6355 15.6113

PCA 0.0347 0.1612 0.9883 0.9997 3.5937 27.5312

Wang [37] 0.0282 0.1173 0.9704 0.9998 2.8043 20.0648

Zhang [32] 0.0315 0.1536 0.9891 0.9998 1.5114 13.3564

Proposed 0.0253 0.1144 0.9918 0.9999 0.9855 5.7372

Nikon D3 PI 0.0354 0.1783 0.9877 0.9997 1.6666 14.9339

PCA 0.0354 0.1675 0.9880 0.9997 3.9613 35.1863

Wang [37] 0.0292 0.1270 0.9701 0.9998 2.9183 19.2593

Zhang [32] 0.0316 0.1601 0.9891 0.9998 1.4146 11.2617

Proposed 0.0253 0.0988 0.9921 0.9999 0.8508 5.0009

Nikon D50 PI 0.0420 0.1730 0.9882 0.9997 1.4045 9.7738

PCA 0.0341 0.1632 0.9885 0.9997 4.1587 38.4800

Wang [37] 0.0283 0.1263 0.9705 0.9998 2.6913 13.1325

Zhang [32] 0.0309 0.1556 0.9894 0.9998 1.1946 6.9526

Proposed 0.0249 0.1079 0.9921 0.9999 0.8965 3.0218

PentaxK5 PI 0.0346 0.1697 0.9881 0.9997 1.5506 15.4997

PCA 0.0345 0.1589 0.9883 0.9997 3.2065 25.2036

Wang [37] 0.0275 0.1295 0.9778 0.9998 1.3520 11.6586

Zhang [32] 0.0313 0.1553 0.9891 0.9998 1.4023 13.2577

Proposed 0.0244 0.1048 0.9922 0.9999 0.7999 5.5646

Sony Nex5N PI 0.0354 0.1861 0.9876 0.9997 1.6740 12.9780

PCA 0.0353 0.1749 0.9879 0.9997 3.2214 26.1147

Wang [37] 0.0291 0.1386 0.9705 0.9998 2.7709 17.0108

Zhang [32] 0.0326 0.1725 0.9886 0.9998 1.5564 10.7624

Proposed 0.0253 0.1083 0.9914 0.9999 1.0473 4.9687

Average PI 0.0363 0.1762 0.9879 0.9997 1.6442 12.9228

PCA 0.03482 0.1645 0.9882 0.9997 3.6226 30.4507

Wang [37] 0.02845 0.1260 0.9716 0.9998 2.5974 17.4939

Zhang [32] 0.0316 0.1584 0.9891 0.9998 1.4711 11.9389

Proposed 0.0250 0.1080 0.9919 0.9999 0.9441 5.0965
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Table 7. Results of recovery spectral reflectance for different illuminants using different spectral
recovery methods and Canon5D Mark II spectral sensitivity function.

RMSE GFC ∆Eab

Illuminants Methods Mean Max Mean Max Mean Max

B PI 0.0343 0.1617 0.9883 0.9997 1.8985 28.3501

PCA 0.0341 0.1525 0.9886 0.9997 2.6379 22.3945

Wang [37] 0.0278 0.1048 0.9706 0.9998 3.3742 32.9993

Zhang [32] 0.0308 0.1409 0.9894 0.9998 1.6845 24.3096

Proposed 0.0238 0.1067 0.9928 0.9998 0.9643 9.2983

C PI 0.0350 0.1700 0.9880 0.9997 1.7997 16.1746

PCA 0.0348 0.1594 0.9883 0.9997 3.6777 29.4821

Wang [37] 0.0282 0.1149 0.9705 0.9998 2.9507 20.0315

Zhang [32] 0.0314 0.1509 0.9891 0.9999 1.6168 13.6400

Proposed 0.0244 0.1142 0.9920 0.9999 1.0146 6.4344

D50 PI 0.0345 0.1636 0.9882 0.9997 2.0576 30.6053

PCA 0.0343 0.1539 0.9885 0.9997 2.8458 23.8719

Wang [37] 0.0280 0.1091 0.9705 0.9985 3.4500 36.2491

Zhang [32] 0.0310 0.1435 0.9893 0.9998 1.8395 26.6381

Proposed 0.0236 0.1106 0.9927 0.9998 0.9948 8.2185

D65 PI 0.0352 0.1722 0.9879 0.9997 1.9339 8.7401

PCA 0.0349 0.1614 0.9882 0.9997 3.5937 30.1884

Wang [37] 0.0284 0.1171 0.9703 0.9998 3.0478 23.8372

Zhang [32] 0.0316 0.0284 0.1171 0.9998 1.7473 16.0427

Proposed 0.0248 0.1135 0.9918 0.9999 1.0844 6.2860

E PI 0.0344 0.1653 0.9882 0.9997 1.6211 18.5733

PCA 0.0342 0.1554 0.9885 0.9997 3.2294 27.5190

Wang [37] 0.0267 0.1154 0.9767 0.9998 1.3318 10.2925

Zhang [32] 0.0310 0.1451 0.9893 0.9998 1.4558 15.5029

Proposed 0.0237 0.1033 0.9926 0.9998 0.8468 6.0694

F2 PI 0.0375 0.2053 0.9871 0.9997 2.7060 29.6194

PCA 0.0375 0.1931 0.9872 0.9997 3.1061 19.8124

Wang [37] 0.0303 0.1526 0.9787 0.9998 2.3323 19.7941

Zhang [32] 0.0343 0.1857 0.9880 0.9998 2.6457 29.7150

Proposed 0.0248 0.1135 0.9918 0.9999 1.0844 6.2860

Average PI 0.0352 0.1730 0.9880 0.9997 2.0028 22.0105

PCA 0.0350 0.1626 0.9882 0.9997 3.1818 25.5447

Wang [37] 0.0282 0.1190 0.9729 0.9996 2.7478 23.8673

Zhang [32] 0.0317 0.1324 0.8437 0.9998 1.8316 20.9747

Proposed 0.0242 0.1103 0.9923 0.9999 0.9982 7.0988
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Table 4 shows the results of RMSE, GFC and color difference calculated by each
comparison method under different illuminants. Five kinds of illuminants are used in
Table 4, which are CIE illuminant B, CIE illuminant C, CIE illuminant D50, CIE illuminant
D65, CIE illuminant E, and CIE illuminant F2, respectively. It is easy to see that both
the mean of color difference and the average value obtained by RMSE and GFC show
better performance.

Table 5 shows the results of the whole recovery by selecting representative samples under
different illuminants. The proposed method shows better performance in more scenarios.

As can be seen from Figure 11, the distribution of representative samples with the
distance of 30 under different illuminants is shown.

The experiments are performed by using the spectral sensitivity of different com-
mercial cameras. The results are general due to different spectral sensitivities. The red,
green and blue channels of the digital camera replace the NokiaN900 sensitivity function
mentioned above, which is the database of camera sensitivity functions measured by Jiang
in 2013 [40].

The results in Table 6 are obtained using Munsell Matt chips as training samples and
ColorChecker SG data as testing samples. The spectral sensitivity functions in Figure 12
are used as the observer condition. The results are the same as those shown in Table 4, and
the proposed method shows better results in terms of mean values.
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Figure 12. The distribution of spectral sensitivity functions of four selected digital cameras:
(a) Canon5D Mark II, (b) Canon60D, (c) Nikon D3, (d) Nikon D50, (e) PentaK5 and (f) Sony Nex5N.

After the spectral sensitivities are introduced, Table 6 shows the results of several
recovery methods using different camera sensitivities. Table 7 shows the results of several
recovery methods using different illuminants under Canon5D Mark II spectral sensitivity
function after the exploration of the illuminants and spectral sensitivity. Recovery accuracy
is demonstrated by using spectral maps.
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Figures 13 and 14 both use Munsell as the training sample to obtain the response value
under the Canon5D Mark II and the illuminant CIE D65. Figure 13 shows fruitandflowers
as the testing sample and Figure 14 shows ColorChecker as the testing sample. Their error
bars are the same as in Figure 5. Figures 13 and 14 show the results obtained with six
sensitivity functions using different spectral recovery methods. The range of color from
blue to red indicates that the error ranges from small to large. The results show that the
proposed method is superior to other methods.
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4. Discussion and Conclusions

In this study, an optimized method based on subspace merging for spectral reflectance
recovery is proposed. The optimal training distance is selected to determine the subspace
where the training samples are located, and then the subspace where the testing samples are
located is selected according to the subspace tracing for spectral recovery. In this paper, the
merged points are also used to determine the representative samples from the large number
of training samples. In this experiment, three kinds of samples, six kinds of illuminants
and six kinds of camera spectral sensitivity functions are selected. The results show that
the best recovery effect is achieved when the Euclidean distance is 40. For the selection of
representative points, the recovery effect of the overall sample is better when the Euclidean
distance is 30.

The results shows whether Munsell chips recover themselves or recover ColorCheck
SG and Vrhel. The best results are obtained when using the proposed Munsell method
to recover Munsell, and the color difference is 0.3063. Under the spectral sensitivity
function of NokiaN900, the mean color difference of the changed illuminants is still the
minimum 0.9546 and the GFC reaches 0.9998, which indicates that both spectral accuracy
and colorimetric accuracy have good performance. After changing the spectral sensitivity,
a different camera sensitivity function is used. The proposed method’s average color
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difference is 0.9441 and reaches 0.9999. Canon5D Mark II spectral sensitivity function is
used under different illuminants to calculate the error. The average color difference is
0.9982. The average of GFC of 0.9999 is the largest. You can see whether it is sensitive
to different camera functions or different illuminants. All the proposed methods show
good performance.

In future research, we will conduct more tests on the method in different application
fields. In future research, we will try to explore real mineral color chips.
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