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Abstract: Despite significant progress in robot hardware, the number of mobile robots deployed in
public spaces remains low. One of the challenges hindering a wider deployment is that even if a robot
can build a map of the environment, for instance through the use of LiDAR sensors, it also needs to
calculate, in real time, a smooth trajectory that avoids both static and mobile obstacles. Considering
this scenario, in this paper we investigate whether genetic algorithms can play a role in real-time
obstacle avoidance. Historically, the typical use of genetic algorithms was in offline optimization.
To investigate whether an online, real-time deployment is possible, we create a family of algorithms
called GAVO that combines genetic algorithms with the velocity obstacle model. Through a series of
experiments, we show that a carefully chosen chromosome representation and parametrization can
achieve real-time performance on the obstacle avoidance problem.

Keywords: genetic algorithm; obstacle avoidance; velocity obstacles

1. Introduction

Most current-generation mobile robots are used in warehouses and factories [1–4] and
operate in areas physically separated from human workers. Future robots deployed in
public spaces will need to move reliably without colliding with humans or other obstacles.
For this, they need to solve the problem of navigation in dense dynamic environments, which
can be broadly formulated as the task of finding the set of commands that takes a mobile
robot from a start position to a desired destination in minimum time without colliding with
static or mobile obstacles. The difficulty of this problem stems from its real-time nature [5],
the uncertainty in sensing the environment [6,7], and the fact that human agents do not
follow predictable trajectories [8,9].

A tension exists between the complexity of the optimization problem and the re-
quirement of replanning the robot trajectory on a very short deadline [10,11]. In many
papers in the literature, this tension was resolved by foregoing advanced optimization
algorithms in favor of techniques that are easier to deploy under tight time constraints.
However, with the advancements in computing architectures and optimization, new classes
of algorithms might become suitable for real-time deployment. In this paper, we con-
sider genetic algorithms (GAs), optimization techniques, which historically were consid-
ered too compute-intensive for real-time decisions, although usable for path-planning in
offline scenarios.

Our objective is to investigate whether, with our current level of hardware and al-
gorithmic knowledge, GAs can be deployed for real-time path planning and obstacle
avoidance and what are the benefits and limitations of such a deployment. In particular,
we combine the improved velocity obstacle (VO) method with a GA, and explore different
data representations, parametrizations, and recombination algorithms in the search for a
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competitive real-time solution. The main contributions of this paper can be summarized
as follows:

• We propose a mobile robot path-planning algorithm with dynamic obstacle avoidance
based on a combination of genetic algorithms and velocity obstacles.

• We demonstrate that by a judicious choice of data representation, parameters, and
recombination algorithms, GAs can achieve a real-time decision speed in this setting.

• Through a set of extensive experiments we compare variants of the proposed ap-
proach with baselines, considering the running time and the executed path of the
mobile robot.

The rest of the paper is structured in the following way: Section 1 presents previous
research results considering global and local motion planning algorithms for mobile robots.
Section 3 describes the foundations of the velocity obstacles motion planning method that
forms the base of our proposed approach. Section 4 explains the steps of the introduced ge-
netic algorithm-based velocity obstacles motion planning method while Section 5 describes
the experimental study that investigates the performance and computational cost of the
proposed approach. We conclude in Section 6.

Related Work

Based on the level of knowledge about the environment, motion planning for robots
can be classified into global and local algorithms.

Offline global motion planning methods assume that complete information about
the environment exists a priori. Such information is usually only available for static
environments. Examples of global motion planning methods include a hybrid A* [12],
rapidly-exploring random tree (RRT) [13–15].

In contrast, local motion planning techniques consider only information about the
immediate neighborhood of the robot, information that is usually accessible from the
robot’s own sensors. A typical example is the artificial potential field method, where
obstacles create potential fields acting as repulsive virtual forces while the destination
generates an attractive virtual force. The vector sum of these forces allows the planner to
calculate the velocity vector of the robot at every sampling interval [16–20]. While initially
proposed for static environments, the potential field model was also extended for dynamic
obstacles, such as robot soccer [20].

The dynamic window approach (DWA) is a widely used motion planning method for
mobile agents. This motion planning method can be used to generate real-time solutions.
Non-holonomic constraints, such as limited turning ability can be considered and the
method can be used in dynamic environments to generate a collision-free path [21,22]. The
DWA algorithm was used recently for the solution of the motion planning problem of the
forklift-automated guided vehicle [23].

Another well-known local motion planning algorithm is the velocity obstacle (VO)
algorithm [24]. The VO calculated by the algorithm is the locus of the velocity vectors
that would cause a collision between the agent and the obstacles in a future step. At
every sampling step, the robot selects a velocity vector that would result in a collision-free
motion, following a specific strategy. In the ’to goal’ (TG) strategy, the agent selects the
largest velocity vector in the line between the agent and the goal. The maximum velocity
(MV) strategy selects the maximum velocity within a certain angle to the path to the goal.
Various other strategies are possible, including strategies that temporarily move away from
the goal in order to avoid collisions. The VO technique had been extended to a range of
scenarios including differential-driven robots [25,26], ships [27], UAVs (unmanned aerial
vehicles) [28], and multi-robot collision avoidance [29–31]. Although the VO method is
basically developed for mobile robots, it can also be applied to robotic manipulators [32].
An energy-efficient algorithm was also introduced for UAVs with limited battery capacity
in multi-robot scenarios [33,34].

One of the first methods that proposed the use of GAs in path planning was [35], where
the objective was to reach a goal in an environment with no obstacles. Ref. [36] used GAs
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in a global path planning setting to find an optimal path in a large-scale grid environment.
Reference [37] combined GAs with a probabilistic roadmap model for path planning in
a static environment. Multi-objective genetic algorithms, such as NSGA (non-dominated
sorting genetic algorithm) can also be used for these tasks [38]. Reference [39] used the GA
for multiple agent tasks. GA was combined with recurrent neural networks in [40]. Most
of these research projects assumed a static environment. While projects such as [41,42]
demonstrated that the GA model can be adapted to dynamic environments with moving
obstacles, it was not possible to run the algorithms in real time.

2. Problem Formulation

Consider the following problem: Given a disk-shaped robot A that moves in a 2D
workspace, its position is defined as the center of the circle, and it is denoted by a vector
pA = (xA, yA)

T . The radius of A is rA. Its velocity vector is denoted by vA = (ẋA, ẏA)
T .

The agent is modeled as an omnidirectional robot such that its motion capabilities are
restricted by some constraints (e.g., maximal velocity vmax).

The environment contains m obstacles. They are denoted by Bi, i = 1 . . . m. The
obstacles are also modeled by circles with radius rBi. The position of Bi is the position of
its center pBi = (xBi, yBi)

T . The obstacles move with velocity vBi = (ẋBi, ẏBi)
T . (Note that a

static obstacle is modeled as a moving obstacle such that vB = 0T).
An often-used technique is to model robot A by a single point by enlarging the radius

of the obstacles by rA. The task is to plan the motion for this point such that it does not
touch the enlarged obstacles.

The robot has a target. The position of this target is denoted by pg = (xg, yg)T . During
the navigation of the robot, in each sampling time moment, the task is to select such a
velocity vector vA, which ensures collision-free motion, such that the robot is able to reach
its goal pg as fast as possible.

3. Background

Our approach builds on the velocity obstacle (VO) algorithm [24], whose objective
is to select a velocity vector that generates no collision for the agent if the position and
velocity data of the obstacles are known or measurable at the time of decision making.

The velocity obstacle cone VOi is the set of all velocity vectors of agent A that would
result in a collision with the obstacle Bi at a later time:

VOi = { vA | ∃ t : A(pA + vAt) ∩ Bi(pBi + vBit) 6= 0} (1)

In this equation, A(p) and Bi(p) are the set of points in the workspace which are occupied
by the robot (respectively obstacle i) if its position is p. (1) says that applying a robot
velocity vector vA ∈ VOi will result in a collision between A and Bi at time t. (As an
assumption, the velocities of the obstacles and the robot are unchanged until t). On the
other hand, the vA /∈ VOi velocity selection ensures that A and Bi will not collide until they
do not change their velocities vA and respectively vBi.

Considering all the obstacles, the complete velocity obstacle VO is the union of the
VOi sets:

VO = ∪m
i=1 VOi (2)

The reachable velocities set RV is the set of all feasible velocity vectors vA that can be
reached by the robot by the sampling time considering its motion capabilities (e.g., bounded
inputs). The key step in the VO method is the calculation of the reachable avoidance
velocities (RAV) set, which can be calculated by subtracting from RV the VO set, i.e.,
determining the robot velocities that are feasible and will not cause any collision. These are
the velocities from which the robot can choose to obtain a collision-free path. A frequent
approach is to discretize the RAV set by overlaying a grid on the RAV area.

Figure 1 shows the application of the VO method for the case of a robot navigating
an environment with a static and a mobile obstacle. In the case of the static disk-shaped
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obstacle B2, the VO2 is a cone in the plane, such that its vertex is at pA and its sides are
tangent to the obstacle’s circle. For the moving obstacle B1, the cone has to be translated by
the velocity vector vB1 of the obstacle to obtain the corresponding VO2 set.

pB1

pB2

vB1
pA

B1

B2

VO1

VO2

vB1

Figure 1. An example of the VO method for a robot at position pA navigating an environment
consisting of a moving obstacle B1 at position pB1 with velocity vB1 and a static obstacle B2 at pB2.
The gray area illustrates VO = VO1 ∪VO2.

4. Genetic Algorithm-Based Velocity Obstacle Method

The primary challenge of techniques derived from the VO model is the selection of the
velocity vector. All the vectors from the RAV set can be part of a collision-free trajectory,
but they are not equally useful for the robot in its goal to reach the destination. The original
VO paper [24] proposed two simple single-shot heuristics for selecting the velocity vector
in real-time settings: the To-Goal and the Maximum Velocity strategies. These strategies
might not choose the optimal velocity vector for reaching the destination, especially in
crowded environments, but they are computationally inexpensive and provide satisfactory
solutions in many scenarios.

The idea for our genetic algorithm-based velocity-obstacle (GAVO) model is to calcu-
late the VO and RAV areas and use a GA to evolve a solution that is feasible (i.e., it is part
of the RAV) while aiming to optimize the performance criteria desirable for the user.

The search space of the possible solutions is infinitely large. While this can be dis-
cretized by applying a grid to the RAV area, performing a high-resolution grid search can
make the process prohibitively expensive. The GA algorithm allows us to search areas
outside the grid and direct the search toward promising areas. However, GAs can also be
computationally expensive. To achieve a good performance in the limited time allotted
to the robot, the GAVO algorithm needs to make intelligent decisions about pre-filtering
solutions, the choice of the encoding as well as the recombination and mutation operators.

4.1. Filtering Obstacles

One way to improve the performance of the GAVO algorithm is by simplifying the
calculations involving the sampling. Let us consider that the robot is planning ahead for a
time window Tmax. There are two types of obstacles that the robot can ignore in its path
planning: (a) the obstacles which cannot be reached in time Tmax and (b) the obstacles
which are going to be sufficiently far away even when the robot is at the closest distance
to them.

To filter out these obstacles from consideration we start by calculating the time when
the robot and the obstacle will be closest to each other

tminA,Bi =
−(pA − pBi)(vA − vBi)

||vA − vBi||
, (3)

and the minimum distance at that moment:

dminA,Bi = ||(pA + vAtminA,Bi )− (pBi + vBitminA,Bi )||, (4)
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Having these values we can ignore those obstacles Bi for which tminA,Bi is larger than Tmax
or dminA,Bi is larger than a predefined safe distance dmax.

4.2. Fitness Value

In GAVO, the individuals subject to selection are a representation of a velocity vector,
while their fitness must reflect the performance of the given vector in fulfilling the objectives
of the robot of staying safe and moving toward the destination. Accordingly, the fitness
function we designed reflects the two components of speed and safety.

The speed component measures the progress toward the target position:

GO(vi) =
ri cos ∆θi

vmax
(5)

where vmax is the maximum velocity that the agent can reach considering the kinematic
constraints. ri = ||p(vi) − pA|| is the length of the velocity vector (||vi||) while ∆θi =
θrg − θrvi is the difference between the angle of the goal (θrg) and the angle of the velocity
vector (θrvi ).

The safety component of the fitness measures whether there is a risk of collision. It is
sufficient to consider only the closest VO. Furthermore, a situation where the robot cannot
reach even the closest obstacle during the considered time interval is considered perfectly
safe, and keeping farther away would not improve safety. These considerations lead us to
the following expression:

SA(vi) = min

1,
min

vVO∈VO
||vi − vVO||

vmaxTmax

 (6)

Finally, we combine the speed and safety components of the fitness function as a weighted
average, with the parameter β capturing the importance of the progress toward the destina-
tion. For velocity vectors that are not in the RAV set, we artificially set the fitness to zero:

f (vi) =

{
(1− β) SA(vi) + β GO(vi) if vi ∈ RAV
0 otherwise

(7)

4.3. Recombination Method

In implementing the genetic algorithm component of GAVO, we experimented with
three different recombination methods, all of them designed to take advantage of the
problem domain and the chosen representation model. For all three techniques, the selection
of the chromosomes chosen for recombination is performed using stochastic universal
sampling [43].

In the linear recombination method, the new velocity vector is a random linear combina-
tion of the odd and even parents v1 and v2

vnew = v1 + κ (v2 − v1) (8)

where κ is a random parameter with a pre-defined range and it is the same for all of the
alleles in the recombination.

In the intermediate recombination method, we use two different random parameters κx
and κy for the two components of the new vectors:

vnewX = v1x + κx (v2x − v1x) (9)

vnewY = v1y + κy (v2y − v1y) (10)
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Finally, in the polar coordinate recombination method, the recombined vector is a result of a
separate combination of the angle and radius in a polar coordinate representation of the
two parent vectors:

vnewX = (min(r1, r2) + κ1 |r1 − r2|) · cos(min(θ1, θ2) + κ2 |θ1 − θ2|) (11)

vnewY = (min(r1, r2) + κ1 |r1 − r2|) · sin(min(θ1, θ2) + κ2 |θ1 − θ2|), (12)

where, |r1 − r2| and |θ1 − θ2| are the absolute values of the differences.
Figure 2 illustrates the three recombination methods.

Figure 2. Illustrating the three recombination techniques for the velocity vectors v1 and v2. The
green line shows the possible outcomes of the linear recombination, the blue area shows the possible
endpoints of the intermediate recombination, while the orange area shows the possible endpoints of
the polar coordinate recombination method.

4.4. Mutation

The mutation technique we use is based on adding random values γ1 and γ2 drawn
from a predefined range to the two components of the velocity vector representing
the chromosome.

vnewX = v1x + γ1 (13)

vnewY = v1x + γ2 (14)

In scenarios where recombination is being used, the mutation is applied to a small random
fraction of the resulting vectors. In the scenario where no recombination is used, the
mutation is applied to every phenotype.

5. Experiments and Results

In this section, we describe experiments that compare variations of the GAVO approach
along the dimensions of the quality of the solution found and computational cost. We are
particularly interested in whether the approach can reach the optimal solution (or come
very close to it) and whether the technique is suitable for real-time operation. For our
purposes, we define as real-time a path planner which can reach decisions faster than the
sensors’ acquisition rate, which, in the case of the robot architecture we are considering is
10 Hz corresponding to a 100 ms time left for the computation.

The variations of the GAVO algorithm we consider are as follows:

• GAVO-1D: uses the 1D recombination method with κ ∼ [−0.25, 1.25] and mutation
rate 1/N.

• GAVO-2D: uses a 2D recombination method with κx ∼ [−0.25, 1.5], κy ∼ [−1, 1] and
mutation rate 1/N.
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• GAVO-POLAR: uses the polar recombination method with κ1 ∼ [−0.15,+0.15], κ2 ∼
[−5◦, 5◦] and mutation rate 1/N.

• GAVO-MUT: mutation only—uses the mutation at a rate of 100% and does not perform
recombination.

These variants have been tested with different parameters. The number of individuals
in each generation N was chosen from the range of [20 . . . 200]. The generation gap parame-
ter GAP describing the level of elitism in the strategy was chosen from the range [5 . . . 10].
To ensure a consistent comparison between the GAVO variants, in every experiment, every
variation was started with the same initial population. For the sake of consistency, in all
our experiments, we run the experiment for 100 generations, although only a subset of
these generations would usually fit into the available time of 100 ms.

These algorithms were compared with two variations of the original velocity-obstacle
algorithm: VO-GridSearch [44] performs grid search over the various locations outside the
VO areas in the pursuit of the same fitness function, while VO-RandomSearch performs a
random search.

For all algorithms, the experimental methodology involved (a) presenting the algo-
rithm with a specific scenario (b) running the algorithm up to a specific point and (c)
evaluating the best movement solution found by the algorithm up to that point. For the
single shot algorithms VO-GridSearch and VO-Random, there is a single value; while for
the GAVO approaches, we record the best available solution at every generation.

The algorithms were implemented in MATLAB 2021a. To keep the computational
time measurements consistent, all the experiments were run on a computer with an Intel
i5-3320M CPU with 8GB of memory. The memory was found sufficient for the computation
making the experiments CPU-limited. No significant disk activity was observed during
the experiment and no GPU acceleration was used. The capabilities of this system are
comparable with a typical onboard computer of mobile robots.

5.1. A sparse Environment

The first set of experiments was performed in a comparatively easy scenario that takes
place in a sparse environment with only two obstacles. We assume that the robot uses LiDAR-
based sensing as shown in Figure 3, with a particle filter-based estimator [45]. Figure 4 shows
the scenario, the VOs, and the initial population used by the GAVO variants.

-10 -5 0 5 10
x [m]

-10

-5

0

5

10

y 
[m

]

Figure 3. LiDAR sensor data simulation from the workspace of the agent. The agent is in the origin,
represented by the red circle, there are two obstacles in the workspace, represented by black circles,
and the estimated positions of the obstacles are shown by black x−s. The maximum range of the
LiDAR sensor is 12 m, and the resolution is 0.5◦.
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Figure 4. VO−type diagram of the sparse scenario. The robot is positioned in the origin and is
denoted by a red circle. The yellow area represents the reachable available velocities, with the red
arrow being the optimal velocity corresponding to the fastest solution. The blue disks represent the
obstacles with their velocities, while the gray triangles are the corresponding VOs. The x-marks
distributed within the area of reachable velocities are the initial population of the GAVO variants.
The fact that the area of reachable velocities only minimally overlaps with any VO shows that this is
an “easy” scenario.

One of the first considerations for a genetic algorithm is the evolution of fitness with
the generations. While the use of elitism in the population guarantees that the maximum
fitness will not decrease, there is no guarantee that an optimal solution will be reached
in a finite time. Figure 5-left compares the fitness values for different GAVO variants for
a scenario using a population size of N = 20 and GAP = 10. The algorithms started
from the same population (the one in Figure 4), and were run for 100 generations. The
figure also contains the fitness reached by VO-RandomSearch, which serves as a baseline,
and the VO-GridSearch which, due to its exhaustive search nature, will serve as our
optimal baseline. We find that there is a significant difference between the different GAVO
variations. Except for GAVO-1D which did not find the optimum in the experiment, all
the other algorithms find the optimal solution within 33 generations. The best-performing
algorithm was GAVO-2D, which reached the best solution in 23 generations.
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Figure 5. Results of experiments with the sparse scenario for the variations of GAVO with N = 20
and GAP = 10. VO-RandomSearch and VO-GridSearch serve as baselines that do not change with
the generation. (left) Evolution of the fitness value with the generations, (center) time for a specific
number of generations, (right) the trade-off between wall clock time and cost defined as 1-fitness

As the robot needs to make movement decisions in real time, counting the generations
in the GAVO optimization provides only part of the answer. We also need to investigate
how long a certain number of generations take. This number obviously varies with the
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speed of the computer and the size of the population. We also speculate that it also varies
for the different GAVO variants. Figure 5 describes the time at different generation points
for the optimization. The figure also shows the important time point of the maximum
cycle time which in our current setup is 0.1 s (corresponding to the 10 Hz sampling rate).
In general, it is not practical to run the algorithm longer than this time. As expected, we
find that the time spent increases roughly linearly with the number of generations. The
fastest versions are GAVO-1D and GAVO-Polar, which are essentially indistinguishable,
with GAVO-2D being slightly slower and GAVO-MUT being significantly slower. A way to
interpret these results is that to remain in real-time we can run 98 generations of GAVO-1D
and GAVO-Polar, about 93 for GAVO-2D and about 56 for GAVO-MUT. Note that this is
sufficient for GAVO-Polar, GAVO-MUT, and GAVO-2D to reach the optimal values.

Finally, another perspective is to consider the time spent in optimizing versus the
cost defined as 1.0-fitness. In a real-time system, a system might often prefer a satisfying
(suboptimal, but “good enough”) solution that can be obtained quickly to an optimal
solution that requires significantly more computation. Figure 5 shows the trade-off between
the wall clock time and the cost. We notice that the optimal result can be reached by GAVO-
2D and GAVO-Polar in roughly the same time (about 26 ms), while GAVO-MUT requested
about 55.4 ms to reach the same result. The figure also shows that very close results, of cost
of about 0.04 can be reached even faster, in about 10 ms using GAVO-2D or GAVO-Polar.

The second series of experiments repeated the same experiments for a larger pop-
ulation of N = 100 with the results shown in Figure 6. We find that the overall shape
and trends in the results are the same, however, the concrete values shifted, which has
significant implications for the real-time performance of the system. Due to the larger
population, all the GAVO variants needed a smaller number of generations to reach the
optimal solution. The most significant shift occurred for GAVO-1D which in the smaller
population could not reach the optimum in 100 generations, but in this case, it reached
it in 22 generations, a better value than GAVO-MUT. The variant that required the low-
est number of generations to reach the optimum remained GAVO-2D. The ordering for
the time needed for a given number of generations (Figure 6-center) remained the same,
however, the times are significantly longer, corresponding to the larger population. This
means that we can run a much smaller number of generations before we run into the
real-time constraint. For the mutation-only strategy GAVO-MUT, the system cannot reach
the optimum before the time runs out. The other three variants can reach the optimum
before the maximum cycle time expires.

Finally, the wall-clock time/cost trade-off also changed. While GAVO-POLAR and
GAVO-2D remain the best choice, the GAVO-1D strategy is quite close to them, with the
GAVO-MUT strategy achieving a significantly worse trade-off.
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Figure 6. Results of experiments with the sparse scenario for the variations of GAVO with N = 100
and GAP = 10. VO-RandomSearch and VO-GridSearch serve as baselines that do not change with
the generation. (left) Evolution of the fitness value with the generations, (center) time for a specific
number of generations, (right) the trade-off between wall clock time and cost defined as 1-fitness

The GAVO variants with different population sizes are all possible alternatives for a
real-time obstacle avoidance system. Figure 7 compares them for the time it takes for the
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system to reach the optimal solution. We found that all the combinations considered, except
the GAVO-MUT variant with N = 100 which takes longer than the maximum cycle time to
reach the optimum, and GAVO-1D with N = 20, which did not reach the optimum in our
experiments and, thus, is not present in this figure. The best time was reached by GAVO-2D
with N = 20. These values are better compared to previous GA-based algorithms for path
planning in dynamic environments, such as [41,42]); however, a direct comparison is not
possible as the computational power of typical machines had significantly increased in the
decade since the development of those algorithms.
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Figure 7. Comparison of the wall-clock time to the optimal solution for GAVO variants with different
parametrizations.

We also examined the impact of varying the number of individuals (N) on fitness
value outcomes in both GAVO-MUT and GAVO-Polar methods. Figure 8-left depicts the
fitness value outcomes of the GAVO-MUT method using different values of N. Notably,
the results demonstrate that the fitness value outcomes are not significantly influenced by
the number of individuals in use; rather, the optimal fitness value can be achieved within
approximately 20 generations. While the number of individuals does not substantially
affect the number of generations required to attain the optimal fitness value, it does play
a critical role in the overall running time of the algorithm. As depicted in Figure 7, a
real-time solution cannot be attained using 100 individuals. Thus, the GAVO-MUT method
necessitates the use of even fewer individuals to attain acceptable running time outcomes.

Figure 8-right presents the outcome of the GAVO-Polar method. In most instances,
the optimal solution can be obtained within 20 generations; however, if N is set to a smaller
value (20), it takes 38 generations to reach the optimal solution. Notably, based on the
outcomes depicted in Figures 5 and 6, the GAVO-Polar method can achieve a real-time
solution in all scenarios. Therefore, the user can define the number of individuals based on
other relevant considerations, and the optimal solution can be reached in all cases.

We conducted an investigation into the impacts of varying the GAP parameters of
[5; 10] on the fitness values using both the GAVO-MUT and GAVO-Polar methods. The
results are presented in Figure 9. The curves of the lines in the GAVO-MUT method (left
side) are similar across different GAP values; however, it is evident that the optimal fitness
value is achieved after more generations compared to the GAVO-Polar method (right
side). Therefore, the GAVO-Polar method appears to be a superior choice for the velocity
selection task.
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Figure 8. Results of experiments with the sparse scenario for the various number of individu-
als N. (left) Evolution of the fitness value with the generations using the GAVO-MUT method,
(right) Evolution of the fitness value with the generations using the GAVO-Polar method.
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Figure 9. Results of experiments with the sparse scenario for the different GAP parame-
ters. (left) Evolution of the fitness value with the generations using the GAVO-MUT method,
(right) Evolution of the fitness value with the generations using the GAVO-Polar method.

5.2. Crowded Environment

The second series of our experiments considered a “crowded” environment, as shown
in Figure 10. Note that this time there are four obstacles, with three dynamic obstacles that
are heading roughly toward the current position of the robot. As the figure shows, the
feasible set of velocities is almost completely covered by the VOs, making this a difficult
scenario. The current location of the robot actually falls within one of the VOs, thus the
robot needs to move in order to avoid colliding with one of the mobile obstacles. Finally,
the goal position, at location [8,0], is obstructed by one of the obstacles, thus in the initial
position the target is not visible to the robot.

We run a series of experiments for the four GAVO variants, with different values for
the population size N (20, 50, and 100) and the GAP parameter (5 and 10). The results are
listed in Table 1. In this table, Max Gen. is the maximum number of generations that can
be executed during the maximum cycling time of 0.1 s. Best Gen. is the first generation
from which the fitness value is not changing during the algorithm—a value marked as best
fitness. The best time is the time needed to reach this value.
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Figure 10. VO−type diagram of the crowded scenario. The robot is positioned in the origin and is
denoted by a red circle, the goal position is at [8,0]. The yellow area represents the reachable available
velocities, with the red arrow being the optimal velocity corresponding to the fastest solution. The
blue disks represent the obstacles with their velocities, while the gray triangles are the corresponding
VOs. The x-marks distributed within the area of reachable velocities are the initial population of the
GAVO variants. The fact the majority of the yellow area is covered by the VOs shows that this is a
“difficult” scenario.

Table 1. Results of experiments on the crowded scenario using different GAVO variants, population
sizes N and GAP parameters.

N GAP Variant Max Gen. Best Gen. Best Time [s] Best Fitness

20 5 GAVO-MUT 45 13 0.0621 0.7000
20 5 GAVO-2D 97 7 0.0136 0.7000
20 5 GAVO-1D 103 38 0.0427 0.6800
20 5 GAVO-Polar 100 15 0.0209 0.7000
20 10 GAVO-MUT 51 17 0.0536 0.7000
20 10 GAVO-2D 69 10 0.0257 0.7000
20 10 GAVO-1D 80 124 0.1485 0.6800
20 10 GAVO-Polar 73 16 0.0228 0.7000
50 5 GAVO-MUT 42 12 0.0402 0.7000
50 5 GAVO-2D 42 8 0.0190 0.7000
50 5 GAVO-1D 55 76 0.1526 0.6900
50 5 GAVO-Polar 49 15 0.0340 0.7000
50 10 GAVO-MUT 36 14 0.0384 0.7000
50 10 GAVO-2D 32 9 0.0190 0.7000
50 10 GAVO-1D 38 28 0.0770 0.6900
50 10 GAVO-Polar 42 16 0.0374 0.7000
100 5 GAVO-MUT 31 12 0.0369 0.7000
100 5 GAVO-2D 32 5 0.0133 0.7000
100 5 GAVO-1D 31 14 0.0457 0.6800
100 5 GAVO-Polar 32 17 0.0517 0.7000
100 10 GAVO-MUT 27 11 0.0400 0.7000
100 10 GAVO-2D 28 15 0.0140 0.7000
100 10 GAVO-1D 23 7 0.0254 0.6700
100 10 GAVO-Polar 31 18 0.0577 0.7000

The four different recombination methods were compared in this situation as well.
Table 1 represents the results using different parameters in the genetic algorithm. Strategy
means the actual recombination strategy that was executed. ’Max Gen.’ means the number
of the maximum generation that could be executed during the cycling time (0.1 s). ’Best
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Gen.’ is the first generation, from which the fitness value is not changing during the
algorithm. Best time means the time interval needed to reach the best result and the
best fitness means the best fitness value that could be reached in the algorithm using the
different strategies.

Sometimes, the GAVO-1D recombination method cannot reach the best solution in
real-time, e.g., N = 20, GAP = 10 (reaching the beast fitness value in 0.1485 s), or using
the parameters N = 50, GAP = 5 (resulting the beast fitness value in 0.1526 s). The best
solution can be reached considering the least number of generations using the GAVO-2D
recombination method with parameters of N = 100, GAP = 5, resulting in the best fitness
value in 5 generations. The fastest solution can also be reached considering the previous
parameter set, resulting in a solution of 0.0133 s. Comparing all of the methods, the best
fitness value is 0.67, which can be reached using the GAVO-1D method with parameters
of N = 100, GAP = 10. To sum up, the result of the best fitness values comparing the
different parameters in different recombination methods are quite close to each other and
usually, they can be reached in real-time (except in some cases which were presented).

Finally, it is of interest to compare the trajectories generated by the different GAVO
algorithm variants. Figure 11 shows the successive locations generated by two baseline
heuristics and several GAVO variations. The paper introducing the VO concept also
introduced two heuristic techniques TG and MV, which are widely used baselines in the
literature. The TG (to goal) heuristic (in cyan in the figure) finds the safest path from the
ones that directly head toward the goal. In this scenario, the goal is obstructed by a static
obstacle, thus the robot will pick a trajectory that gradually comes to a stop in front of the
static obstacle and never reaches the goal. The MV (maximum velocity) heuristic, in green
in the figure, finds a strategy that allows the robot to move with the fastest velocity, possibly
not directly in the direction of the goal. This trajectory reaches the goal; however, it takes
a risky trajectory where the robot reaches a zero distance from the static obstacle. In this
scenario, any sensor noise can lead to a collision. The same trajectory would be obtained by
the GAVO method with parameter β = 1. By varying the β parameter, we can trade off the
speed and safety of the trajectory found by GAVO, with β = 1 (magenta) corresponding to
the safest trajectory, and β = 0.7 an intermediate solution balancing speed and safety.

Figure 11. The successive locations of the robot (starting from pA = (0m, 0m)T) and obstacles
outlining the paths taken by them during the scenario. Blue: obstacles (B1 is a static obstacle at
pB1 = (4m, 0m)T . B2 moves from (−2m, 4m)T to (−0.5m, 1m)T . B3 moves from (4m, 3m)T to
(−0.7m,−1.45m)T . B4 moves from (5m,−4m)T to (2m,−4m)T .). Cyan: the robot using VO with the
TG heuristic. Green: the robot using VO with the MV heuristic, identical with GAVO using β = 1.
Red: the robot using GAVO with β = 0.7. Magenta: robot using GAVO with β = 0. The target
position is pg = (9m, 0m)T .
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5.3. Discussion

The variations of the GAVO technique achieve good performances (in many situations
finding optimal solutions) and can also provide real-time algorithms, provided that the
hyperparameters are carefully chosen. This led us to answer in the affirmative the question
asked in the title of this paper, an answer that has changed since the original velocity
obstacle paper when, realistically, only single-shot heuristics could be considered for
real-time deployment. Our current ability to deploy techniques such as GAVO in real
time is due to two separate developments: the increase in performance of computational
devices that can be deployed in a robot (at least three to four orders of magnitude) and the
better understanding of genetic algorithms and their dependence on representation and
hyperparameters. For instance, Figure 7 shows the eight-fold computational cost difference
between the best-performing vs. worst-performing GAVO variants. Undoubtedly, there are
further possibilities for performance increase.

A possible weakness of the proposed approach is due to the fact that, as with any
stochastic search technique, it offers only probabilistic guarantees about reaching a specific
performance level in a given amount of time. Nevertheless, this weakness is partially
compensated by the anytime nature of the algorithm and the elitism in the selection
strategy that allows the algorithm to return at any given moment a good although possibly
not optimal solution.

6. Conclusions

In this paper, we investigated whether genetic algorithms can serve as real-time
path planners for obstacle avoidance for mobile robots. Historically, genetic algorithms
were considered computation-heavy techniques that are primarily suitable for offline
deployment. We proposed a technique called GAVO, which combines genetic algorithms
with the velocity obstacle method, and investigated several variants of the chromosomal
representation and parametrization. Through a series of carefully measured experiments,
we investigated both the performance of the algorithms as well as their computational
costs. We found that with a careful choice of parameters and representation, GAVO can run
in real-time on a current generation of hardware. Some of these improvements are due to
the higher computing capabilities of current hardware, which allows the genetic algorithms
to perform a wider exploration of the solution space. At the same time, we found that
the appropriate choice of representations and crossover techniques can make a very large
(eight-fold) difference in the computation time needed to reach the optimal solution.

We also believe that the technique can benefit from further research in more optimal
representations and efficient computation techniques. Our future work will include finding
more efficient representations that accelerate the search for optimal solutions. We also plan
to investigate techniques to guide the search toward more efficient solutions, by seeding the
genetic algorithms pool with solutions obtained through one-shot heuristics and balancing
the exploration/exploitation balance. Another technique we will explore is the possibility
of a parallel implementation of the GAVO model on appropriate hardware.
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Abbreviations
In this paper, we use the following notations:

VO velocity obstacle shape
p position vector
v velocity vector
vmax length of the maximum velocity vector
r length of velocity vector
Tmax maximum time interval

tminA,Bi

minimum time at the filtering method when the agent and the obstacle are at the
closest points to each other

dmax maximum distance
dminA,Bi minimum distance between the agent and the obstacle during their motion
GO speed component of the fitness function
SA safety component of the fitness function
θ angle of a vector
∆θ difference between the angle of the goal and the angle of the velocity vector
f fitness function
β parameter in the fitness function which shows the impact of the safety
κ random parameter
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