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Abstract: We took advantage of the fluorescent features of a serotonin-derived fluorophore to develop
a simple and low-cost assay for copper in urine. The quenching-based fluorescence assay linearly
responds within the concentration range of clinical interest in buffer and in artificial urine, showing
very good reproducibility (CVav% = 4% and 3%) and low detection limits (16 ± 1 µg L−1 and
23 ± 1 µg L−1). The Cu2+ content was also estimated in human urine samples, showing excellent
analytical performances (CVav% = 1%), with a limit of detection of 59 ± 3 µg L−1 and a limit
of quantification of 97 ± 11 µg L−1, which are below the reference value for a pathological Cu2+

concentration. The assay was successfully validated through mass spectrometry measurements. To
the best of our knowledge, this is the first example of copper ion detection exploiting the fluorescence
quenching of a biopolymer, offering a potential diagnostic tool for copper-dependent diseases.

Keywords: serotonin; serotonin-derived fluorophore; urine analysis; fluorescence quenching; copper
detection; copper-dependent diseases; copper poisoning

1. Introduction

Copper ion is essential to living systems, regulating many physiological functions,
acting as a cofactor of numerous enzymes (e.g., dopamine β-hydroxylase, tyrosinase, and
cytochrome c oxidase [1]), contributing to cellular and tissue growth, and working as
an antioxidant [2]. The World Health Organization (WHO) recommends an intake of
30 µg per kilogram of body weight per day [3]. However, an excess of this heavy metal
leads to protein structure modification, interfering with the exchange of zinc in metallopro-
teins and compromising most cellular functions [4]. Recently, it was demonstrated that an
accumulation of Cu2+ affects the activity of dopaminergic neurotransmitters, potentially
leading to neurodegenerative disorders and mental issues, including anxiety, depression,
language, and cognitive impairment [5–7]. In this context, a few fluorescent methods were
developed for Cu2+ quantitative analysis in urine [8–14]. In this study, for the first time, the
fluorescent properties of a novel fluorophore derived from serotonin (SE) self-oxidation
and polymerization were exploited for sensitive Cu2+ detection in human urine without
matrix pretreatment. SE is a neurotransmitter involved in multiple important physiolog-
ical processes, such as memory, learning, anxiety, depression, cognition, vomiting, and
vasoconstriction [15]. Very few studies describe the formation of SE oligomers [16–19],
including polyserotonin (PSE) obtained using horseradish peroxidase (HRP) [19], and
serotonin-based nanoparticles (PSE-NPs) [16,17] as multifunctional material for free radical
scavenging, bioelectrical, and biomedical applications. In this paper, the highly emitting
SE-derivative fluorophore (SEDF) was obtained by heating the SE monomer at an alkaline
pH (Scheme 1a). SEDF was characterized by means of UV-Vis spectroscopy and mass spec-
trometry. The fluorescent properties of SEDF were outstanding when compared with the
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fluorescent properties of polymers obtained using other endogenous neurotransmitters, i.e.,
polydopamine (PDA) and polynorepinephrine (PNE) [20,21]. The analytical performances
of the fluorescence detection strategy were firstly evaluated by determining the Cu2+ in
buffer and in artificial urine. Then, based on these results, we proceeded to determine the
Cu2+ concentration in human urine samples (Scheme 1b) observing the reference values
sufficient to detect the early stage of diseases associated with Cu2+ accumulation, such
as chronic liver disease, acute hepatitis, and, primarily, Wilson’s disease (WD), a rare
inherited disorder that can lead to excess storage of copper in the liver, brain, and other
organs [22,23]. Patients who suffer from WD have high urinary copper values between
ca. 200 and 400 µg per day [24,25]. Values of Cu2+ higher than 100 µg per day are strongly
indicative of this disease [23]. Common diagnostic assays for WD are based on the cerulo-
plasmin (Cp) concentration and on hepatic and urinary Cu2+ detection [23,26]. However,
the Cp test is inaccurate for the estimation of free Cu2+, whereas the evaluation of hepatic
copper requires an invasive procedure and, often, the heterogeneous Cu2+ distribution
within the liver leads to false negative results. Differently, the experimental procedure here
developed for copper estimation would be noninvasive, fast, very simple, green, and low
cost if compared to the reference instrumental approach for copper quantification in urine
samples, such as inductively coupled plasma mass spectrometry (ICP-MS) [27], here used
to validate the fluorescence method. This work aims to propose a new diagnostic tool for
copper-dependent diseases, representing, to the best of our knowledge, the first example of
copper ions detection exploiting the fluorescence quenching of a biopolymer.
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Scheme 1. (a) Putative SEDF structure obtained by SE monomer polymerization upon linkage
through the benzene ring after 2 h at 60 ◦C in 10 mM TRIS buffer pH 9; (b) Cu2+ detection in a
96−well microplate by reading the SEDF fluorescence quenching upon a [Cu2+] increase in urine.

2. Materials and Methods
2.1. Chemicals

Serotonin (C10H12N2O, 98% pure), tris(hydroxymethyl)aminomethane (C4H11NO3,
99% pure), sodium hydroxide (NaOH, ≥99% pure), hydrochloric acid (HCl, 37% w/w,
≥99% pure), sodium chloride (NaCl, ≥99% pure), potassium chloride (KCl, ≥99% pure),
lithium chloride (LiCl, 99% pure), and magnesium chloride (MgCl2, 98% pure) were ob-
tained from Thermo Fisher Scientific (Parma, Italy). Barium chloride (BaCl2, ≥99% pure),
copper sulfate (CuSO4, ≥99% pure), bismuth (III) nitrate (Bi(NO3)3·5H2O, 98% pure), alu-
minum chloride (AlCl3, 98% pure), zinc (II) sulphate (ZnSO4·7H2O, 98% pure), cadmium
(II) sulfate (CdSO4·8H2O, ≥99% pure), mercury (II) chloride (HgCl2, 98% pure), silver
chloride (AgCl, 99% pure), gold (III) chloride (HAuCl4·3H2O, 99% pure), nickel (II) chlo-
ride (NiCl2·6H2O, 99% pure), chloroplatinic acid solution (H2PtCl6, 99% pure), palladium
(II) oxide (PdO, 99% pure), iron (III) chloride (FeCl3 × 6H2O, 97% pure), potassium per-
manganate (KMnO4, 98% pure), potassium chromate (K2Cr2O7, ≥99% pure), cobalt (II)
chloride (CoCl2·6H2O, 98% pure), ruthenium (IV) oxide (RuO2, ≥99% pure), acetonitrile
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(C2H3N, ≥99% pure), DHB (2,5-dihydroxy benzoic acid, C7H6O4, 98% pure), glutamic
acid (1 µM, C5H9NO4, 99% pure), glucose (2 µM, C6H12O6, 99% pure), ascorbic acid
(2 µM,C6H8O6, ≥99% pure), hypoxanthine (9 µM, C5H4N4O, ≥99% pure), uric acid
(4.5 µM, C5H4N4O3, ≥99% pure), creatinine (4 µM, C4H7N3O, ≥99% pure), urea (0.5 M,
CH4N2O, ≥99% pure), sodium citrate (2 µM, Na3C6H5O7, ≥99% pure), trifluoroacetic
acid (TFA, C2HF3O2, 98% pure), quinine sulfate (C20H26N2O6S, 99% pure, C40H50N4O8S),
sulfuric acid (H2SO4 ≥ 98% pure), 1-butanol (C4H10, HPLC purity reagent grade), water
(H2O, HPLC purity reagent grade), Triton™ X100 (C14H22O(C2H4O)n, 98% purity reagent
grade BioXtra), and tetramethylammonium hydroxide solution (TMAH, 25 wt% in H2O,
99% pure) were purchased from Merck (Milan, Italy). The artificial urine (AU) was from
LCTech GmbH (Obertaufkirchen, Germany).

Human urine samples were collected from those destined for destruction at the Clinical
Pathology Laboratory of the University Hospital in Pisa. Spiked samples were obtained
and tested. Fluorescence measurements and ICP-MS experiments on the urine samples
were performed in the Clinical Pathology Laboratory of the University Hospital in Pisa.

2.2. Instrumentation

The temperature-controlled synthesis reaction of SEDF was performed using a Ther-
momixer comfort (Eppendorf, VWR International, Milan, Italy). The fluorescence ex-
periments were performed with fluorimeter FP-6500 (Jasco, Easton, PA, USA) using an
excitation and emission wavelength of λex = 350 nm and λem = 450 nm, respectively (emis-
sion bandwidth: 10 nm; excitation bandwidth: 5 nm; data pitch: 1 nm; scanning speed:
100 nm min−1; sensitivity: low) and microplate readers Fluoroskan Ascent (Thermo Fisher
Scientific, Milan, Italy) by selecting as filter pairs λex = 390 nm and λem = 460 nm, cor-
responding to the excitation and emission wavelengths, respectively. The absorbance
measurements were obtained using a SPECTROstar Nano UV-Visible Spectrophotometer
(Ortenberg, Germany) in 1.0 cm quartz cells at 20 ◦C. The mass spectrometry measurements,
acquired in the positive-ion mode, were performed with a MALDI-TOF/TOF Ultraflex
III (Bruker Daltonics, Milan, Italy) (matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry) by mixing the samples in a 1:1 ratio with 20 ng µL−1 DHB
(2,5-dihydroxy benzoic acid) as matrix dissolved in 70% of acetonitrile, 25% trifluoroacetic
acid, and 5% ethanol. The mass spectra were acquired in the positive-ion mode.

2.3. Assay Protocol
2.3.1. Synthesis of Serotonin-Derived Fluorophore

A total of 2 g L−1 of serotonin solution was dissolved in a 10 mM TRIS buffer pH 9.00
and heated at 60 ◦C for 2 h. Subsequently, the sample was left for 10 min at room tem-
perature, then centrifuged 2 times for 10 min at 10,000 rpm. Finally, the supernatant was
collected and stored at 4 ◦C after the addition of 5 mM HCl.

2.3.2. Quantum Yield Calculation

The fluorescence quantum yield (Q) of the SEDF was estimated using quinine sulfate
dissolved in 0.1 M H2SO4 as the fluorescence reference standard of the known quantum
yield (QR), as reported by Lakowicz [28]. The quantum yield of the SEDF was calculated
using the following equation:

Q = QR × I/IR × ODR/OD × n2/n2
R

where I is the integrated fluorescence intensity, OD is the optical density at the excitation
wavelength, and n is the refractive index of the solvent. The subscript R indicates the same
parameters for the reference fluorophore, in this case quinine sulfate. The absorbances
at the wavelength of excitation (λex = 350 nm) were kept at A = 0.05 to avoid the inner
filter effect [28], thus ensuring a linear dependence of the fluorescence signals to the
sample concentration.
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2.3.3. Copper Determination via the Fluorescence Quenching-Based Method

Stock Cu2+ solutions were prepared in 10 mM Tris pH 9.00 and in artificial urine. The
different volumes of copper solution were mixed with solutions of previously synthesized
SEDF (see above), immediately recording the fluorescence signal. The decrease in the
fluorescence in dependence on the copper concentration was expressed as F0/F, where F0 is
the fluorescence of the SEDF without any metal addition, and F is the fluorescence recorded
after the copper addition in buffer, artificial urine, and real urine samples. All measure-
ments were performed at 25 ◦C in quadruplicates, at least. The limit of detection (LOD)
and limit of quantification (LOQ) were calculated by applying the following equations:
LOD = 3 × SDblank/slope and LOQ = 10 × SDblank/slope, where the standard deviation of
the blanks (SDblank) was divided by the slope of the relative calibration plots.

2.3.4. ICP-MS Measurements

The method here developed was validated using an Agilent Technologies 7900 ICP-MS
(Santa Clara, CA, USA) equipped with an ASX-500 Series autosampler and a peristaltic
pump for the sample injection. The analyses were performed with the following acqui-
sitions parameters: carrier gas flow rate of 0.80 L min−1 (Ar), aerosol dilution flow rate
of 0.50 L min−1 (Ar), plasma gas flow rate of 15 L min−1 (Ar), collision gas flow rate of
4.3 × 10−3 L min−1 (He), RF power of 1550 W, stabilization time of 20 s, peak pattern of
3 point, 3 replicates, 100 sweeps per replicate, and a peristaltic pump speed of 0.1 rps. The
system control and data acquisition and processing were carried out using the ICP-MS
MassHunter Workstation® software, version 5.1. For the pre-analytical procedure, the
Agilent environmental calibration standard mix, including copper (63Cu) at a concentration
of 10,000 µg L−1, was diluted in deionized water to prepare an initial calibration curve
ranging from 0 to 2500 µg L−1. The calibration points at 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20,
50, 100, 200, and 250 µg L−1 were obtained by dilution with water:1-butanol = 98.5:1.5
(v/v) added with Triton X100, 10 µL L−1, and Tetramethylammonium hydroxide solution
(TMAH 25% in H2O), 100 µL L−1. Each calibration point was added with the appropriate
amount of germanium (72Ge) as the internal standard. Two quality control points were
added to attest the accuracy of the analysis. The urine samples, previously centrifuged at
1230 rpm for 15 min to remove the sediment, were analyzed after a dilution of 1:100 with
water: 1-butanol solution with the appropriate amount of the internal standard.

3. Results and Discussion
3.1. Synthesis and Characterization of Serotonin-Derived Fluorophore (SEDF)

Recently, Jeon et al. reported the synthesis of insoluble polyserotonin nanoparti-
cles from the self-oxidation of the SE monomer heated for 2 h at 60 ◦C in TRIS buffer at
pH 9.00 [16]. Repeating the same procedure, we collected the supernatant solution instead
of the precipitated nanoparticles, thus obtaining the serotonin-derived fluorophore (SEDF).
The SEDF solution was brown in color with a λmax = 470 nm, indicative of a larger con-
jugated system with respect to the serotonin monomer showing the spectrum typical of
a colorless indole derivative with maximum absorbance values at 280 nm and 300 nm
(Figure 1a). Analogously, the fluorescence spectra of the SEDF showed a large emission
band of approximately 450 nm, whereas in the same conditions the SE monomer was not
fluorescent (Figure 1b).

Previous works refer to an SE dimer [29,30], while others describe an oligomer ob-
tained through the electrochemical oxidation of serotonin [31–33]. To better understand
the nature of the serotonin derivative obtained here, we performed mass spectrometry
experiments by MALDI-TOF/TOF instrumentation. The peaks highlighted in Figure 2 (m/z
176.689, 350.978, 502.098, and 672.180) are compatible with monomeric, dimeric, trimeric,
and tetrameric structures, possibly obtained upon the linkage through the benzene ring
(Scheme 1) [19]. However, the determination of the SEDF structure is out of the scope of
this study and requires a much deeper analysis.
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Figure 2. MALDI-TOF/TOF mass spectrum of the SE-derivative fluorophore (SEDF) obtained by
heating 2 g L−1 serotonin at 60 ◦C for 2 h in 10 mM TRIS at pH 9.00. The m/z values compatible with
SE monomer (a), dimer (b), trimer (c), and tetramer (d) molecules are reported.

The influence of the synthetic parameters, such as pH, reaction time, and starting
monomer concentration, on the fluorescent properties of the SEDF were tested (Figure 3)
and, notably, the best fluorescence performances of the supernatant coincide with the best
conditions for the size-controlled synthesis of polyserotonin nanoparticles [16].

In detail, the influence of the pH on the fluorescence of the SEDF was evaluated
between 2.00 and 12.00. The solutions of the SEDF when excited at 350 nm showed emission
spectra with a λmax of approximately 400 nm at pH 2.00–4.00, 425 nm at pH 6.00–7.00, and
450–475 nm at pH 8.00–12.00 (Figure 3a,b). The intensity of the fluorescence emission was
strongly reduced at a pH below 6.00 or above 11.00. Moreover, highly basic conditions led
to heterogeneous mixtures with large scattering phenomena (data not shown). As shown
in Figure 3b, the buffer at pH 9.00 resulted in the best fluorescence reproducibility with
good fluorescence intensity, and this condition was used for the subsequent studies.

The influence of the temperature on the fluorescence of the SEDF at pH 9.00 for
2 h was evaluated between 40 ◦C and 90 ◦C (Figure 3c,d). The fluorescence emission
of the SEDF increased with the temperature, and 60 ◦C resulted in the temperature of
choice, representing a good compromise in terms of the signal intensity and reproducibility
(Figure 3d).
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The influence of the reaction time on the fluorescence of the SEDF was evaluated
between 30 min and 5 h at pH 9.00 and 60 ◦C. The fluorescent spectrum of the SEDF
was already visible after 30 min of reaction, reaching the maximum intensity after 1 h
(Figure 3e,f). However, the best reproducibility was achieved after 2 h of reaction (Figure 3f).

Finally, the influence of SE monomer concentration on the fluorescence of SEDF after
2 h at pH 9.00 and 60 ◦C (Figure 4a,b) was investigated. The largest fluorescence increase
was obtained for SE up to 0.5 g L−1, reaching a plateau at 2 g L−1 SE, which was fixed
as the monomer concentration for the following experiments. The synthetic product was
stabilized by adding 5 mM of HCl that stopped the oxidation process. The fluorescence
intensity in buffer was stable up to 4 h, decreasing to 75% of the starting value after one
month (Figure S1).
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Figure 4. Influence of the serotonin monomer concentrations (0, 0.001, 0.005, 0.010, 0.050, 0.100,
0.200, 0.300, 0.400, 0.500, 1.000, and 2.000 g L−1) on the emission signal of the serotonin−derivative
fluorophore synthesized after 2 h at 60 ◦C in alkaline conditions (pH 9.00). The fluorescence emission
spectra upon excitation at 350 nm (a) and corresponding fluorescence emission intensity at 450 nm
(b). The error bars represent the standard deviation (n = 4).

The fluorescence quantum yield (Q) of the SEDF was estimated in water, as reported
in the assay protocol, and the obtained value of 0.025 was higher than the Q reported for
the PSE obtained enzymatically (0.017) [19] and here calculated also for the PDA (0.019)
and PNE (0.008), indicating the good fluorescent properties of such conjugated serotonin.

3.2. SEDF Fluorescence Quenching by Metal Ions

The effect of several solutions (0.5 mM) of alkaline, alkaline earth (Figure 5a), and
transition metals (Figure 5b,c) on the SEDF fluorescence was evaluated, and it was found
that only the latter quenched the fluorescence of the SEDF, in particular, Au3+, Cr2O7

2−,
Fe3+, and Cu2+ species (Figure 5c), which is in agreement with literature that reports on
the fluorescence quenching of indole derivatives by copper ions and a few other met-
als [28,34,35]. The Fe3+ exhibited a prominent fluorescence quenching, as previously
observed for the fluorescent derivatives of dopamine used to quantify iron [36,37]. The
fluorescence quenching was also large for Au3+ and Cr2O7

2− ions but associated with low
data reproducibility, which is also due to the formation of gold nanoparticles. Based on
these results, and considering that, to the best of our knowledge, there are no studies on
copper ion detection exploiting the fluorescence quenching of a polymer derived by an
endogenous molecule, such as SEDF, we decided to apply this method to real urine samples,
where the presence of large amounts of copper ions would be indicative of a pathological
condition (see below), whereas the concomitant presence of the other quenching ions, in
particular Au3+ and Cr2O7

2−, is insignificant in urine [38,39], and the urinary level of iron
in healthy people (0.2 mg L−1, 0.003 mM) is approximately two orders of magnitude below
the concentration of Fe3+ here tested (0.5 mM), and one order of magnitude below the
minimum amount of Cu2+ here spiked in urine (0.05 mM, vide infra). However, there is also
the possible interference of larger urinary levels, as a consequence of other iron-overload
diseases, which could be simply minimized by using the proper sequestering buffer, as
already reported [40,41]. Moreover, we also evaluated the interference of the main organic
compounds in urine on SEDF fluorescence quenching. As shown in Figure 5d, urea, uric
acid, creatinine, and citrate, in the physiological concentration ranges [42], did not lead
to a fluorescence quenching. This was also true for glucose, hypoxanthine, glutamic acid,
and ascorbic acid at the concentration that determines the pathological state. Accordingly,
we proceeded to determine the Cu2+ concentration in buffer solution, artificial urine, and
human urine samples.
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Figure 5. Fluorescence of the SEDF in 10 mM TRIS at pH 9.00 after the addition of 0.5 mM alkaline
and alkaline earth metals (a), transition metals (b,c), and organic compounds occurring in urine (d).
The error bars represent the standard deviation (n = 4).

3.3. Copper Quantification via Quenching-Based Bioanalytical Assay

The SEDF fluorescence spectra and dose-response plots in the buffer and in artificial
urine (AU) samples are reported in Figure 6. The fluorescence signal was reported as F0/F,
where F0 is the fluorescence intensity of the SEDF, and F is the emission signal of the SEDF
after the copper addition. The fluorescence intensity at 450 nm after the Cu2+ addition
was plotted versus the Cu2+ concentration in the range of 0.05–0.5 mM, following a linear
trend with remarkable analytical performance (Table S1), both in the buffer and in AU
samples, as confirmed by the correlation coefficient R2 = 0.990 for both and by the linear
fitting equations F0/F = 4.68 × [Cu2+] + 0.87 used for the Cu2+ detection in buffer and
F0/F = 3.38 × [Cu2+] + 0.93 for AU. The excellent assay reproducibility was highlighted by
the low variability (CVav% = 4% for buffer and 3% for AU), with an LOD of 16 ± 1 µg L−1

and an LOQ of 54 ± 2 µg L−1 in buffer solution and an LOD of 22 ± 1 µg L−1 and LOQ
of 75 ± 3 µg L−1 in AU (Table S1). Notably, these concentrations are below the values of
copper associated to the pathological state of Wilson’s diseases [24,25], stimulating the
application of this assay to human urine samples.
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Figure 6. Fluorescence spectra and the relative calibration plots of the SEDF after copper ion addi-
tion in buffer (a,c) and in artificial urine samples (b,d). The fluorescence was recorded at 450 nm
(λex = 350 nm) and reported as a F0/F versus Cu2+ concentration (0, 0.010, 0.050, 0.100, 0.165, 0.250,
0.350, and 0.450 mM), where F0 and F represent the fluorescence intensity of the SEDF before and
after the copper addition, respectively. The error bars represent the standard deviation (n = 4). The
analytical parameters are reported in Table S1.

3.4. Copper Detection in Human Urine Samples

With the aim to design a bioassay for the urinary Cu2+ quantification for clinical
purposes, we transferred our experiments in ELISA-type 96-well microplates, allowing for
the immediate and simultaneous analysis of several human urine samples and reducing the
turnaround time for the analysis. Another advantage offered by the method here developed
is the direct analysis of the urine samples without any pretreatment.

The urine samples were preliminarily assayed by ICP-MS to determine the starting
copper physiological concentration, resulting in the nM range (Table S3). Among them, the
urine sample n. 3 was selected to be used as a calibrator in the real matrix by Cu2+ standard
additions (red line in Figure 7), since its Cu2+ level represents a mean value within the
series. The CVav% (1%) and the slope reported in Table S3 highlight the high reproducibility
and sensitivity of the method, even in the complex real matrix, with an LOD and LOQ of
59 ± 3 µg L−1 and 97 ± 11 µg L−1, respectively.

Subsequently, 100 µL of each urine sample was spiked with different known Cu2+

concentrations (0.05 mM; 0.20 mM, and 0.40 mM, see Table 1) and added to 1800 µL of
the SEDF solution. These spiked samples were analyzed in parallel by fluorescence and
ICP-MS (Table 1 and Figure 7).
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Figure 7. Calibration of Cu2+ in human urine (sample 3, red dots and fitting) and its quantification
in the four urine samples, indicated by the different colors (1—green, 2—violet, 3—black, and
4—blue). The fluorescent signal is reported as F0/F at λem = 450 nm (λex = 350 nm) versus the Cu2+

concentration, where F0 and F represent the fluorescence intensity of the SEDF before and after the
copper addition, respectively. The error bars represent the standard deviation (n = 4). The analytical
parameters of the calibration are reported in Table S2 and were obtained using the piecewise linear
fitting implemented in the OriginPro software, version 2022. OriginLab Corporation, Northampton,
MA, USA.

Table 1. Cu2+ concentrations in the reinforced urine samples (Figure 7).

# 1 [Cu2+] F0/F 2 [Cu2+] 3 [Cu2+] 4 Recovery (%)

1 0.05 mM 1.07 ± 0.06 0.04 mM ± 0.02 0.03 mM 133%
2 0.20 mM 1.52 ± 0.11 0.22 mM ± 0.01 0.21 mM 105%
3 0.20 mM 1.61 ± 0.03 0.25 mM ± 0.01 0.22 mM 114%
4 0.40 mM 1.81 ± 0.04 0.43 mM ± 0.01 0.49 mM 88%

1 Spiked; 2 quenching-based method; 3 ICP-MS; 4 100 × [Cu2+]Quenching/[Cu2+]ICP-MS.

Despite the complexity and the variability of the analyzed urine samples, the results
clearly highlight the very good accuracy of the assay with respect to the calibrator, even if
the urine sample n. 2 showed a slightly higher variability, likely due to the marked turbidity
and the darker color of the sample. This allows us to foresee the realistic applicability of
the method as a diagnostic tool, covering a broad range of Cu2+ concentrations expected in
this type of patient.

3.5. Assay Performance Compared to Other Fluorescence-Based Method for Copper Detection

The quenching-based assay here designed was finally compared to the recently devel-
oped fluorescence-based methods for Cu2+ detection in urine [8–11] (Table S4), i.e., carbon
dots (CDs) combined with covalent organic frameworks (COFs), chitosan/L-histidine-
stabilized silicon nanoparticles (CS/L-His–SiNPs), nitrogen-doped quantum carbon dots
(ND-CQDs), and blue CDs (bCDs) combined with green quantum dots (gQDs). These
methods offer better LODs values [8,9] (except in Li et al. and Zhang et al., in which
the LOD values were not calculated for human urine samples [10,11]). However, these
nanostructures require long and laborious synthetic procedures. Contrarily, herein, SEDF
was rapidly (2 h) synthesized and, for the first time, this novel biomaterial was applied for
diagnostic purposes.
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4. Conclusions

In this study, the fluorescent properties of a serotonin-derived fluorophore were
successfully exploited for urinary Cu2+ determination via a quenching-based bioanalytical
method. To the best of our knowledge, this is the first example of a quenching-based assay
that exploits the fluorescent properties of a polymer derived by an endogenous molecule.
The SEDF’s spectroscopic features were deeply investigated, and different techniques
were applied to characterize this novel material, including mass spectrometry confirming
its oligomeric state. The experimental conditions were optimized to obtain the highest
emission signal and to improve the assay sensitivity and reproducibility. The whole protocol
was performed within 2 h in line with clinical requirements. The Cu2+ ions were firstly
quantified in buffer and in artificial urine obtaining very low variability, high sensitivity, and
low LOD and LOQ values. Then, the assay was applied to estimate the Cu2+ concentration
in human urine samples from volunteers and, finally, validated by ICP-MS obtaining very
good recovery values and excellent analytical performances in a real matrix, namely, a
CVav% of 1%, an LOD of 59 ± 3 µg L−1, and an LOQ of 97 ± 11 µg L−1. These values are
below the concentrations of urinary Cu2+ that, for example, determine the pathological
state of Wilson’s disease (60–240 µg L−1), enabling the applicability of the method for Cu2+

measurement in routine clinical practice without the need of sample pretreatment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23063030/s1, Figure S1: Fluorescence stability over time
for serotonin-derivative fluorophore (SEDF); Table S1: Cu2+ detection in buffer and in AU. Data
are from Figure 6; Table S2: Cu2+ quantification in human urine. Data are from Figure 7; Table S3:
Physiological Cu2+ concentration of human urine samples; Table S4: Fluorescent-based assays for
Cu2+ quantitative analysis in human urine samples.
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