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Abstract: A distributed six-degree-of-freedom (6-DOF) cooperative control for multiple spacecraft
formation is investigated considering parametric uncertainties, external disturbances, and time-varying
communication delays. Unit dual quaternions are used to describe the kinematics and dynamics models
of the 6-DOF relative motion of the spacecraft. A distributed coordinated controller based on dual
quaternions with time-varying communication delays is proposed. The unknown mass and inertia, as
well as unknown disturbances, are then taken into account. An adaptive coordinated control law is
developed by combining the coordinated control algorithm with an adaptive algorithm to compensate
for parametric uncertainties and external disturbances. The Lyapunov method is used to prove that
the tracking errors converge globally asymptotically. Numerical simulations show that the proposed
method can realize cooperative control of attitude and orbit for the multi-spacecraft formation.

Keywords: distributed coordinated control; communication delays; adaptive control; dual quaternions

1. Introduction

Einstein’s theory of general relativity was further proven when gravitational waves
were first directly detected in LIGO observatories on 14 September 2015 [1]. Space gravita-
tional wave detection has attracted more attention in detecting low-frequency gravitational
wave signals. The United States has proposed the laser interferometric space antenna
(LISA) [2], and China proposed the “Tianqin Project” [3] and the “Taiji Project” [4].

The space laser interferometer gravitational wave detector consists of three spacecraft,
forming an equilateral triangle configuration with a scale of 100,000 km to 1 million km.
By adjusting the attitude of the spacecraft, a laser link is established between the two
spacecraft to detect gravitational waves. The space gravitational wave detection program
currently has a relatively high requirement for configuration stability. However, the orbit
injection error and perturbation will lead to the deviation between the actual orbit and the
nominal orbit of the spacecraft, which will lead to the destruction of the equilateral triangle
configuration and the destruction of the laser link, seriously affecting the implementation
of scientific missions. At this time, the scientific observation of gravitational waves needs
to be suspended for spacecraft formation configuration reconstruction and attitude adjust-
ment. As is known, actuator configuration leads to dynamic coupling between rotation and
translation [5]. In order to achieve high control accuracy of the system, the translation and
the rotation of the spacecraft should be simultaneously taken into account. In recent years,
Lie group SE(3) [6–8] and dual quaternions [9–11] have been the most popular methods
to describe the coupling motion of rigid bodies. A 4 × 4 homogeneous transformation
matrix is utilized when modeling rigid bodies on SE(3), while the model is described
more compactly by dual quaternions, which have only eight parameters, and the dual
quaternions’ multiplications have lower computational cost than homogeneous transfor-
mation matrix multiplications [12]. Therefore, this paper uses dual quaternion as a tool
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to design an attitude-orbit coupling coordination controller for space gravitational wave
detection formation.

There are roughly five methods of multi-spacecraft coordination reported in the
literature: the leader-following method [13–15], the behavior-based method [16], the virtual
structure method [17], the artificial potential function method [18], and algebraic graph
method [19]. The control laws in the previous works require precise inertial parameters
of the spacecraft. However, obtaining accurate inertial parameters on fuel consumption
during several years of gravitational wave detection missions is challenging. In addition,
spacecraft working in the deep space environment are subject to unknown disturbances,
including environmental and non-environmental forces and torques. Consequently, it is
essential to design a cooperative control algorithm subject to parametric uncertainties and
external disturbances for gravitational wave detection missions.

Adaptive control technology as an effective method to deal with parametric uncertain-
ties and external disturbances has been widely used [20–23]. Wang et al. [24] proposed a
robust tracking control of unknown models to deal with the problem of model uncertainties.
In Ref. [25], a new adaptive nonsingular fast terminal sliding mode surface was developed
for the attitude synchronization and tracking control of multiple spacecraft formation
systems. Xing et al. [26] used a fuzzy logic system (FLS) to approximate the disturbance.
Lin et al. [27] designed an adaptive fast integrating terminal sliding mode control law,
which was robust to parameter uncertainties and external disturbances. The literature
mentioned above mainly investigates the problem of attitude synchronization control
for multiple spacecraft. Some scholars described spacecraft attitude and orbit motion in
the dual quaternion framework and combined adaptive control and sliding mode con-
trol to deal with parameter uncertainties and external disturbances in spacecraft tracking
control [9,28–30]. An adaptive tracking controller was designed in Ref. [10] for satellite
proximity operations, which needs no information about the mass and inertia of the chaser
spacecraft. On this basis, Gui et al. [11] improved the adaptive control law to reduce the
control energy consumption. In Ref. [31], the problem of distributed finite time 6-DOF
synchronization control for multiple spacecraft in the presence of external disturbances
and parameter uncertainty was investigated, and 6-DOF coupled motion model was the
Euler–Lagrange form. Nevertheless, to the best of our knowledge, there is little research on
the dual quaternions-based adaptive coordinated controller design for multiple spacecraft.

The communication delay caused by the distance between neighboring spacecraft is
another issue that deserves special attention. The current research on spacecraft formation
control with communication delay mainly focuses on attitude coordination control [32–34].
In [7], the decentralized leaderless spacecraft consensus was studied considering a constant
time delay between two spacecraft. Zhang et al. [8] proposed a nonsingular fast terminal
sliding mode scheme to solve the consensus control problem of spacecraft formation flying
in the presence of parametric uncertainties, external disturbances, and communication
delays. Note that the relative position and attitude in the above works are represented
on the Lie group SE(3). However, few studies in the literature discuss the attitude and
orbit coupling coordinated control of multiple spacecraft considering parametric uncertain-
ties, external disturbances, and time-varying communication delays in the framework of
dual quaternions.

Inspired by this motivation, this paper mainly focuses on discussing the 6-DOF coordi-
nated control problem for multiple spacecraft based on dual quaternions with consideration
of parametric uncertainties, external disturbance, and time-varying communication delays.
The main contributions in this paper can be summarized as follows:

(1) Dual quaternion is employed to describe the 6-DOF relative motion of the spacecraft.
The gravitational force and torque, the perturbations due to the Earth’s J2 oblateness,
the solar pressure perturbation, and the constant external disturbances are considered;

(2) In the absence of modeling uncertainties and external disturbances, time-delay terms
are added to the controller, which guarantees that the controller is effective to solve
the cooperative control problem with communication delays;
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(3) In the presence of modeling uncertainties and external disturbances, the cooperation
controller with communication delays is developed into an adaptive controller, which
can estimate the unknown parameters and external disturbances.

The rest of the paper is organized as follows: In Section 2, quaternions and dual
quaternions are introduced. Then, a dual quaternion-based 6-DOF relative motion model is
derived. Section 3 presents the proposed control laws and stability analysis. Finally, the
simulation results verify the effectiveness of the proposed method in Section 4 followed by
conclusions in Section 5.

2. Material Background and Relative Coupled Dynamics
2.1. Quaternions and Dual Quaternions

A quaternion is defined as q = [ξ, η̄], where ξ ∈ R and η̄ ∈ R3 are the scalar and
vector part of the quaternion, respectively. The set of quaternions is defined as H = {q :
q = (ξ, η̄)}. Let Hv = {q ∈ H : ξ = 0} and Hs = {q ∈ H : η̄ = 0} denote the set of vector
quaternions and scalar quaternions, respectively. Given two quaternions q1 = (ξ1, q̄1)
and q2 = (ξ2, q̄2) in H. The addition, multiplication, conjugation, dot product, and cross
product are defined, respectively, by

q1 + q2 = (ξ1 + ξ2, q̄1 + q̄2) ∈ H (1)

q1 ⊗ q2 = (ξ1ξ2 − q̄1 · q̄2, ξ1q̄2 + ξ2q̄1 + q̄1 × q̄2) ∈ H (2)

q∗ = (ξ,−q̄) ∈ H (3)

q1 · q2 = (ξ1ξ2 + q̄1 · q̄2, 0̄) ∈ Hs (4)

q1 × q2 = (0, ξ1q̄2 + ξ2q̄1 + q̄1 × q̄2) ∈ Hv (5)

A dual quaternion is defined as q̂ = qr + εqd, where qr ∈ H and qd ∈ H are the
real and dual parts, respectively. ε is the dual unit that satisfies the property ε2 = 0 but
ε 6= 0. The set of dual quaternions, dual vectors, and dual scalar quaternions are defined
as DQ = {q̂ : q̂ = qr + εqd : qr, qd ∈ H}, DQv = {q̂ : q̂ = qr + εqd : qr, qd ∈ Hv},
DQs = {q̂ : q̂ = qr + εqd : qr, qd ∈ Hs}, respectively. The set of dual scalar quaternions
with zero dual part is denoted by DQr = {q̂ : q̂ = q + ε0 : q ∈ Hs}.

Given two dual quaternions q̂1 = q1r + εq1d and q̂2 = q2r + εq2d in DQ with q1r, q1d,
q2r, and q2d in H. The addition, multiplication, conjugation, dot product, and cross product
are defined, respectively, by

q̂1 + q̂2 = (q1r + q2r) + ε(q1d + q2d) ∈ DQ (6)

q̂1 ⊗ q̂2 = (q1r ⊗ q2r) + ε(q1r ⊗ q2d + q1d ⊗ q2r) ∈ DQ (7)

q̂∗ = qr
∗ + εqd

∗ ∈ DQ (8)

q̂1 · q̂2 = q1r · q2r + ε(q1d · q2r + q1r · q2d) ∈ DQs (9)

q̂1 × q̂2 = q1r × q2r + ε(q1d × q2r + q1r × q2d) ∈ DQv (10)

The swap product of a dual quaternion is q̂s = qd + εqr ∈ DQ. The � product of
a dual quaternion is ĉ� q̂ = (cr + εcd)� (qr + εqd) = crqr + εcdqd, q̂ ∈ DQ. The circle
product of two dual quaternions is q̂1 ◦ q̂2 = q1r · q2r + q1d · q2d, q̂1, q̂2 ∈ DQv.

The following properties with the above definitions can be shown:

â ◦ (b̂⊗ ĉ) = b̂
s ◦ (âs ⊗ ĉ∗) = ĉs ◦ (b̂∗ ⊗ âs) ∈ R, â, b̂, ĉ ∈ DQ (11)

â ◦ (b̂× ĉ) = b̂
s ◦ (ĉ× âs) = ĉs ◦ (âs × b̂) ∈ R, â, b̂, ĉ ∈ DQv (12)

âs ◦ b̂
s
= â ◦ b̂, â, b̂ ∈ DQ (13)

||â||2 = â ◦ â, â ∈ DQr (14)
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2.2. Equations of 6-DOF Relative Motion Based on Dual Quaternions

The 6-DOF relative motion model of spacecraft based on dual quaternions is estab-
lished in this subsection. Let FI represent the Earth-centered-inertial frame with the origin
at the center of the Earth. The body-fixed coordinate system Fi (i means the i-th spacecraft)
is defined with the origin at the center of mass.

The kinematics equation of the i-th spacecraft is given by [35]

˙̂qi =
1
2

q̂i ⊗ ω̂i
i (15)

where q̂i = qi + ε 1
2 qi ⊗ ri

i. ri
i = [0, r̄i

i], r̄i
i ∈ R3 is the translation vector from the origin of the

frame FI to the origin of the frame Fi expressed in the frame Fi. qi denotes the orientation
of the frame Fi relative to the frame FI in terms of unit quaternion. ω̂i

i denotes the dual
velocity of the i-th spacecraft, given in the body-fixed frame Fi, which is defined as

ω̂i
i = ωi

i + ε(ṙi
i + ωi

i × ri
i) (16)

where ωi
i = [0, ω̄i

i], ω̄i
i ∈ R3 is the angular velocity of the i-th spacecraft expressed in the

frame Fi. M̂i is the dual inertia matrix, which is defined as [11]

M̂i = mi
d
dε

I3 + εJi

=

mi
d
dε + εJi11 εJi12 εJi13
εJi21 mi

d
dε + εJi22 εJi23

εJi31 εJi32 mi
d
dε + εJi33

 (17)

where mi and Ji are the mass and inertia matrix of the i-th spacecraft. The operator d
dε is

defined by d
dε â = d

dε (ar + εad) = ad and ( d
dε )

2 = 0. I3 is the identity in dimension 3. The

inverse of M̂i is defined as M̂−1
i = J−1

i
d
dε + ε 1

mi
I3 [36].

The dual quaternion representation of the i-th spacecraft dynamics equation is given
by [35]

M̂i ˙̂ωi
i = F̂ i

i − ω̂i
i × M̂iω̂

i
i (18)

For the case of gravitational wave detection in Earth orbit, the total dual force acting
on the spacecraft will be decomposed as follows:

F̂ i
i = f̂

i
gi + f̂

i
srpi + f̂

i
J2i + f̂

i
5gi + f̂

i
di + f̂

i
ui (19)

where f̂
i
gi = M̂i âi

gi, âi
gi = 0 + ε[0, āi

gi], āi
gi is the gravitational acceleration, including the

Earth, Moon, and Sun, given by

āi
gi = −

µe r̄i
i

‖r̄i
i‖3
− µm

(
r̄i

i − r̄i
m

‖r̄i
i − r̄i

m‖3
+

r̄i
m

‖r̄i
m‖3

)
− µs

(
r̄i

i − r̄i
s

‖r̄i
i − r̄i

s‖3
+

r̄i
s

‖r̄i
s‖3

)
(20)

where µe = 398, 600.44190 km3/s2, µm = 4902.800076 km3/s2 and
µs = 132, 712, 440, 040.94400 km3/s2 are the gravitational parameter of the Earth, Moon,
and Sun, respectively. r̄i

m and r̄i
s denote the position vector of the Moon and Sun relative

to the Earth expressed in Fi. f̂
i
srpi = M̂i âi

srpi, âi
srpi = 0 + ε[0, āi

srpi], the acceleration āi
srpi

caused by solar radiation pressure can be approximately expressed as

āi
srpi = −P�

A
mi

r�
r3
�

AU2(1 + ε) (21)
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where P� = 4.56× 10−6 Nm2 is the solar radiation pressure at 1AU (Astronomical Unit),
A the occulted segment of the Sun, r� the position vector from the Sun to the spacecraft, ε

the reflectivity of the surface. f̂
i
J2i = M̂i âi

J2i, âi
J2i = 0 + εai

J2i, ai
J2i = [0, āi

J2i] = q∗i ⊗ aI
J2i ⊗ qi,

and aI
J2i = [0, āI

J2i], āI
J2i is the perturbing acceleration due to Earth’s oblateness given by

āI
J2i = −

3
2

µe J2R2
e

‖r̄ I
i ‖5

(
D− 5

(
rz

i
‖r̄ I

i ‖

)2

I3

)
r̄ I

i (22)

where Re = 6378.137 km is the Earth’s mean equatorial radius, J2 = 0.0010826267,
D = diag{1,1,3}; r̄ I

i = [rx
i , ry

i , rz
i ]

T represents the coordinates of r̄i expressed in the iner-

tial coordinate system. The f̂
i
5gi is the dual force due to the gravity-gradient torque,

defined as

f̂
i
5gi = 3µe

r̂i
i × M̂i r̂i

i
‖ri

i‖5
(23)

where r̂i
i = ri

i + ε0. f̂
i
di = f i

di + ετi
di and f̂

i
ui = f i

ui + ετi
ui are the dual disturbance force and

the dual control force, with the disturbance force f i
di, the disturbance torque τi

di, the control
force f i

ui and the control torque τi
ui given in the body-fixed frame Fi, respectively.

Under the dual quaternion algebra, the motion between the body-fixed frame and its
desired frame can be expressed in the Fi as the relative dual quaternion described by

q̂ei = q̂∗di ⊗ q̂i = qei + ε
1
2

qei ⊗ ri
ei (24)

where q̂∗di is the conjugate of q̂di. q̂di denotes the dual quaternion of the frame Fi relative to
the frame FI . qei denotes the orientation of the frame Fi relative to the frame Fdi in terms
of unit quaternion. ri

ei is the relative position between the i-th spacecraft and its desired
position, given in the Fi. The relative kinematic and dynamic equations are given by

˙̂qei =
1
2

q̂ei ⊗ ω̂i
ei (25)

M̂i ˙̂ωi
ei = F̂ i

i − ω̂i
i × M̂iω̂

i
i + M̂i

(
ω̂i

ei × ω̂i
di
)
− M̂i

(
q̂∗ei ⊗ ˙̂ωdi

di ⊗ q̂ei
)

(26)

where ω̂i
ei is the dual velocity between the Fi and Fdi, expressed in the Fi. The kinemat-

ics and dynamic models of the desired i-th spacecraft are similar to the i-th spacecraft,
which corresponds to (15), (16), and (18), where the notations ’•i’ and ’•i

i’ are replaced by
’•di’ and ’•di

di’. The total dual force applied to the desired i-th spacecraft is independent of

the dual disturbance and dual control force, i.e., F̂di
di = f̂

di
gdi + f̂

di
J2di + f̂

di
5gdi.

2.3. Control Objective

In this paper, (q̂di(t), ω̂di
di(t)) denotes the desired state information of the i-th spacecraft

to meet the requirements of gravitational wave detection. (q̂i(t), ω̂i
i(t)) denotes the actual

state information of the i-th spacecraft. The objective of this paper is to design an adaptive
cooperation control scheme based on dual quaternions such that the state (q̂i(t), ω̂i

i(t)) can
track its desired state (q̂di(t), ω̂di

di(t)) in the presence of parametric uncertainties, external
disturbances, and time-varying communication delays. In other words, the error state
(q̂ei(t), ω̂i

ei(t)) can converge to an arbitrarily small neighborhood of the origin. That is,
when t→ ∞,

q̂ei(t)→ ±1̂

ω̂i
ei(t)→ 0̂

(27)

where 1̂ = 1 + ε0 ∈ DQ, 0̂ = 0 + ε0 ∈ DQ, 1 = (1, 0̄) ∈ H and 0 = (0, 0̄) ∈ H, respectively.
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3. Control Law Design

In this section, a distributed coordinated formation control law is designed to solve
the 6-DOF coordination control problem with the time-varying communication delays.
Then, an adaptive controller is developed to provide the estimations of the parametric
uncertainties and external disturbances.

3.1. 6-DOF Coordinated Control Law with Communication Delays

This subsection considers the time-varying communication delays between spacecraft,
regardless of parametric uncertainties and external disturbances. An auxiliary state ŝi is
first defined as

ŝi = ω̂i
ei + ĉ� p̂i

ei (28)

where ĉ = cr + εcd with cr and cd are all positive constants. p̂i
ei is defined as

p̂i
ei = vec(qei) + ε 1

2 ri
ei, vec(qei) is the vector part of qei. When the system dynamics are ex-

actly known, a distributed coordinated controller with communication delays is proposed
in the following form:

f̂
i
ui =− k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij)

)s
+ M̂iY i − f̂

i
di (29)

Y i =M̂−1
i (ω̂i

i × M̂iω̂
i
i)− ω̂i

ei × ω̂i
di + q̂∗ei ⊗ ˙̂ωdi

di ⊗ q̂ei − âi
gi

− âi
srpi − âi

J2i − âi
5gi − ĉ� ˙̂pi

ei

(30)

where k̂1 = k1r + εk1d and k̂2 = k2r + εk2d, with k1r, k1d, k2r, k2d all being positive constants.
It assumed that the communication topology between the i-th and the j-th spacecraft
is undirected. Therefore, aij = 1, i 6= j. Otherwise, aij = 0. Tij is the time-varying
communication delay from the j-th to i-th spacecraft.

Theorem 1. Consider the relative kinematic and dynamic equations given by Equations (25)
and (26), and the undirected communication graph is connected. If the time derivative of Tij
satisfies Ṫij ≤ 0, the distributed coordinated formation control law in Equation (29) can ensure
lim
t→∞

(q̂ei, ω̂i
ei)(t) = (±1̂, 0̂) for all initial conditions.

Proof of Theorem 1. Consider the Lyapunov function candidate V1 = V1a + V1b, where

V1a =
1
2

n

∑
i=1

(ŝi)
s ◦ (M̂i ŝi) (31)

V1b =
1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij

∫ t

t−Tij

ŝj(τ) ◦ ŝj(τ)dτ (32)

It can be verified that V1 ≥ 0 for all ŝi and V1 = 0 if and only if ŝi = 0̂.
Taking the time derivative of V1a and V1b along the trajectories of the formation

system (25) and (26), we can obtain

V̇1a =
n

∑
i=1

(ŝi)
s ◦ (M̂i ˙̂si) (33)

V̇1b =
1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
ŝj(t) ◦ ŝj(t)− (1− Ṫij)ŝj(t− Tij) ◦ ŝj(t− Tij)

)
(34)
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By taking a derivative of (28), substituting it into (33) yields

V̇1a =
n

∑
i=1

(ŝi)
s ◦ M̂i( ˙̂ωi

ei + ĉ� ˙̂pi
ei)

=
n

∑
i=1

(ŝi)
s ◦
(
− k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij)

)s) (35)

Then,

V̇1 =V̇1a + V̇1b

=
n

∑
i=1

(ŝi)
s ◦
(
− k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij)

)s)
+

1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
(ŝj)

s ◦ (ŝj)
s)

−
(1− Ṫij)

2
k̂2 �

n

∑
i=1

n

∑
j=1

aij
((

ŝj(t− Tij)
)s ◦

(
ŝj(t− Tij)

)s)
(36)

Note that the undirected topology is balanced, meaning that
n
∑

j=1
aij =

n
∑

j=1
aji for

i = 1, . . . n; then, it follows that

n

∑
i=1

n

∑
j=1

aij ŝi =
n

∑
j=1

n

∑
i=1

aji ŝi =
n

∑
i=1

n

∑
j=1

aij ŝj (37)

Then,

V̇1 =− k̂1 �
n

∑
i=1

(ŝi)
s ◦ (ŝi)

s + Ṫij k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
ŝj(t− Tij)

)s ◦
(
ŝj(t− Tij)

)s

− k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
ŝi − ŝj(t− Tij)

)s ◦
(
ŝi − ŝj(t− Tij)

)s
(38)

Therefore, if Ṫij < 0, it follows that V̇1(t) ≤ 0. Since V1(t) ≥ 0 and V̇1(t) ≤ 0, ŝi is
bounded. According to Equation (28), the boundedness of ŝi means that p̂i

ei and ω̂i
ei are

bounded. In addition, the boundedness of p̂i
ei and ω̂i

ei means that f̂
i
ui and thus ˙̂ωi

ei are
bounded. Hence, ω̂i

ei and V̇1 are uniformly continuous. It follows from Barbalat’s lemma
that lim

t→∞
V̇1(t) = 0 and thus lim

t→∞
˙̂ωi

ei(t) = 0̂. Furthermore, since ¨̂ωi
ei is bounded and thus

˙̂ωi
ei is uniformly continuous, it follows from Barbalat’s lemma that lim

t→∞
ω̂i

ei(t) = 0̂ and thus

lim
t→∞

p̂i
ei(t) = 0̂, which implies lim

t→∞
(q̂ei, ω̂i

ei)(t) = (±1̂, 0̂). (Note that q̂ei = 1̂ and q̂ei = −1̂

are the same pose.) Thus, the control objective is achieved.

3.2. Adaptive 6-DOF Coordinated Control Law with Communication Delays

In this subsection, let us consider the delayed 6-DOF coordination control problem
with model and disturbances uncertainties and propose an adaptive coordinated controller
in the following form:

f̂
i
ui = −k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij)

)s
+ M̃iY i − f̃

i
di (39)

Y i =M̃
−1
i (ω̂i

i × M̃iω̂
i
i)− ω̂i

ei × ω̂i
di + q̂∗ei ⊗ ˙̂ωdi

di ⊗ q̂ei − âi
gi

− âi
srpi − âi

J2i − âi
5gi − ĉ� ˙̂pi

ei

(40)
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where M̃i and f̃
i
di are the estimation of M̂i and f̂

i
di, respectively. All gains are the same as

the ones in the last subsection. To simplify notation, the following is introduced as

â ◦ (M̂ib̂) = hT(â, b̂)Γ(M̂i) (41)

where â = ar + εad, b̂ = br + εbd are dual quaternions, with ar = [ar0, ar1, ar2, ar3],
ad = [ad0, ad1, ad2, ad3], br = [br0, br1, br2, br3], bd = [bd0, bd1, bd2, bd3]. The function h is de-
fined as h(â, b̂) = [ad1br1, ad2br1 + ad1br2, ad3br1 + ad1br3, ad2br2, ad3br2 + ad2br3, ad3ar3, ar1bd1
+ar2bd2 + ar3bd3]

T , and Γ(M̂i) = [Ji11, Ji12, Ji13, Ji22, Ji23, Ji33, mi]
T . The updating law for M̃i

and f̃
i
di can be designed as

d
dt

Γ(M̃i) =W M
[
h
(
(ŝi)

s, ω̂i
ei × ω̂i

di − q̂∗ei ⊗ ˙̂ωdi
di ⊗ q̂ei + âi

gi + âi
srpi + âi

J2i + ĉ� ˙̂pi
ei
)

− h
(
(ŝi × ω̂i

i)
s, ω̂i

i
)
+ h

((
ŝi ×

3µe r̂i
i

‖ri
i‖5

)s, r̂i
i
)] (42)

d
dt

f̃
i
di = Ŵd(ŝi)

s (43)

where W M ∈ R7×7 is a positive definite matrix. Ŵd = Wd2
d
dε + εWd1 with Wd1 and

Wd2 ∈ R3×3 being positive definite matrices.

Theorem 2. Consider the relative kinematic and dynamic equations given by Equations (25) and (26),
and the undirected communication graph is connected. If the time derivative of Tij satisfies Ṫij ≤ 0,
the distributed coordinated formation control law in Equations (39) and (40), with the adaptive
law (42) and (43) can ensure lim

t→∞
(q̂ei, ω̂i

ei)(t) = (±1̂, 0̂) for all initial conditions.

Proof of Theorem 2. The dual inertia matrix and dual disturbance force estimation errors
are defined as ∆M̂i = M̃i − M̂i and ∆ f̂

i
di = f̃

i
di − f̂

i
di, respectively. Consider a Lyapunov

function candidate as V2 = V2a + V2b + V2c, where

V2a =
1
2

n

∑
i=1

(ŝi)
s ◦ (M̂i ŝi)

V2b =
1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij

∫ t

t−Tij

(
ŝj(τ)

)s ◦
(
ŝj(τ)

)sdτ

V2c =
1
2

n

∑
i=1

ΓT(∆M̂i)W−1
M Γ(∆M̂i) +

1
2

n

∑
i=1

∆ f̂
i
di ◦

(
Ŵ−1

d ∆ f̂
i
di
)

(44)

V2 is a valid candidate Lyapunov function since V2 ≥ 0 for all ŝi, ΓT(∆M̂i) and ∆ f̂
i
di;

V2 = 0 if and only if ŝi = 0̂, ΓT(∆M̂i) = 07×1 and ∆ f̂
i
di = 0̂.

By taking the derivative of Formula (44), we can arrive at

V̇2a =
n

∑
i=1

(ŝi)
s ◦ (M̂i ˙̂si)

=
n

∑
i=1

(ŝi)
s ◦
(
− k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij

))s

−
n

∑
i=1

ΓT(∆M̂i)W−1
M Γ̇(∆M̂i)−

n

∑
i=1

∆ f̂
i
di ◦

(
Ŵ−1

d ∆ ˙̂f i
di
)

(45)

V̇2b =
1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
(ŝj)

s ◦ (ŝj)
s

− (1− Ṫij)
(
ŝj(t− Tij)

)s ◦
(
ŝj(t− Tij)

)s) (46)
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V̇2c =
n

∑
i=1

ΓT(∆M̂i)W−1
M Γ̇(∆M̂i) +

n

∑
i=1

∆ f̂
i
di ◦

(
Ŵ−1

d ∆ ˙̂f i
di
)

(47)

Then,

V̇2 =V̇a2 + V̇b2 + V̇c2

=
n

∑
i=1

(ŝi)
s ◦
(
− k̂1 � (ŝi)

s − k̂2 �
n

∑
j=1

aij
(
ŝi − ŝj(t− Tij

))s

+
1
2

k̂2 �
n

∑
i=1

n

∑
j=1

aij
(
(ŝj)

s ◦ (ŝj)
s)

−
(1− Ṫij)

2
k̂2 �

n

∑
i=1

n

∑
j=1

aij
((

ŝj(t− Tij)
)s ◦

(
ŝj(t− Tij)

)s)
≤ −k̂1 �

n

∑
i=1

(
ŝi
)s ◦

(
ŝi
)s

+ Ṫij k̂2 �
n

∑
i=1

n

∑
j=1

aij
((

ŝj(t− Tij)
)s ◦

(
ŝj(t− Tij)

)s)

(48)

Therefore, if Ṫij < 0, it follows that V̇2(t) ≤ 0. Since V2(t) ≥ 0 and V̇2(t) ≤ 0, ŝi, Γ(M̃i),

and f̃
i
di are bounded. Then, based on the similar analysis and proof in the previous section,

it can be concluded that lim
t→∞

(q̂ei, ω̂i
ei)(t) = (±1̂, 0̂). We complete the proof.

Remark 1. The proposed adaptive law (42) and (43) can only guarantee that ∆M̂i and ∆ ˆf i
di are

bounded. The estimates of the dual inertia matrix and the external disturbance will not be guaranteed
to converge to their actual values.

Remark 2. It is worth noting that the dynamic model and controller analysis in this paper is based
on continuous time. It is necessary to discretize the controller in the process of practical engineering
implementation.

4. Numerical Simulations

This section applies the proposed controller to the earth-centered orbital space gravita-
tional wave detection system. It requires that the variation of the formation arm length (the
side length of the triangle) is less than 1%, the relative speed is less than 5 m/s, and the
breathing angle (the inner angle of the triangle) is less than 0.1◦ [37]. When the position
error, velocity error, and attitude error between the actual state and the desired state of
the spacecraft should be less than 5 m, 2 mm/s, and 1 mrad, respectively, it can meet the
requirements of the gravitational wave detection mission.

The inertia matrix and masses of the spacecraft are assumed to be

J =

162.5 3 2
3 162.5 2.5
2 2.5 325

kg ·m2 (49)

and m = 650 kg, respectively. The desired orbit parameters of SC1∼3 are shown in Table 1,
assuming that the three spacecraft form an equilateral triangle. The desired attitude and the
desired angular velocity are ground orientation and orbital angular velocity, respectively.
The initial position errors rei = [reix, reiy, reiz]

T , velocity errors ṙei = [ṙeix, ṙeiy, ṙeiz]
T , angular

velocity errors ωei = [ωeix, ωeiy, ωeiz]
T , and attitude errors θei = [θeix, θeiy, θeiz]

T (i = 1, 2, 3)
for each spacecraft are presented in Table 2. Note that we use the Euler angle rather
than quaternion to describe the attitude in the simulation, which is easier to understand.
The communication time delay between the neighboring spacecraft is supposed to be
Tij = 0.6− 0.1× |sin(0.01t)| s. In this paper, the maximum control forces and torques
are set to 10−3 N and 10−4 N ·m in each axis, respectively. The minimum impulse bit is
set to 10−7 N. The position and linear velocity measurement accuracy are assumed to be
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0.1 m and 10−6 m/s, respectively. The attitude and angular velocity measurement accuracy
are assumed to be 10−6 rad and 10−7 rad/s, respectively. Those measurement errors are
assumed to be normally distributed.

Table 1. Desired orbital parameters.

Parameter Value Unit

Perigee altitude 9.999× 107 m
Eccentricity 0.00043 -
Inclination 74.5362 deg

Argument of perigee 346.5528 deg
RAAN 211.6003 deg

True anomaly (SC1) 61.3296 deg
True anomaly (SC2) 181.3296 deg
True anomaly (SC3) 301.3296 deg

Table 2. Initial conditions.

Initial Position Error
(m)

Initial Velocity Error
(m · s−1)

Initial Angular Velocity
Error (rad · s−1)

Initial Attitude Error
(rad)

SC1 [−60 80 −100]T [1.2 −0.22 0.57]T × 10−3 [0.8 −2 1] T × 10−5 [0.8727 −0.5236 0.3491]
SC2 [160 100 −40]T [1.2 −3.5 −3.9] T × 10−3 [0.7 −2 2] T × 10−5 [−0.3491 0.8727 1.0472]
SC3 [−80 120 100]T [2.2 1.7 −0.29] T × 10−3 [0.9 −1 1] T × 10−5 [0.5236 −0.8727 0.8727]

4.1. 6-DOF Coordinated Control Law with Communication Delays

Using a trial and error procedure, we select the gains for the controller (29) as
k1d = 0.05, k1r = 0.06, k2d = 0.001, k2r = 0.001, cr = 0.01, and cd = 0.035. Under
the designed 6-DOF coordination control law (29), simulation results are presented in
Figures 1–3, which validate the stability analysis of the proposed control schemes.

Figure 1 shows the time histories of the position errors and linear velocity errors of each
spacecraft with communication delays, respectively. It can be seen that the position errors
and linear velocity errors converge to the region |reiw| < 2.5 m and |ṙeiw| < 2× 10−4 m/s,
(w = x, y, z). The performance of position tracking and linear velocity tracking during the
transient phase and the final accuracy is acceptable. Figure 2 shows the time histories of
attitude errors and angular velocity errors of each spacecraft with communication delays,
respectively. It can be observed that attitude errors and angular velocity errors converge to
the region |θeiw| < 5× 10−4 rad and |ωeiw| < 5× 10−7 rad/s. Figure 3 shows the control
forces and control torques of each spacecraft.

As shown in Figures 1 and 2, it can be seen that the convergence time is about 18 h
and 12 h for the translation and rotation, respectively. These two figures indicate that the
errors of the relative position and attitude could rapidly converge and satisfy the accuracy
requirements when the time-varying communication delay is considered.

Figure 1. Cont.
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Figure 1. Position errors and velocity errors of spacecraft SC1∼3. (a) position error reix (m);
(b) velocity error ṙeix (m/s); (c) position error reiy (m); (d) velocity error ṙeiy (m/s); (e) position
error reiz (m); (f) velocity error ṙeiz (m/s).

Figure 2. Cont.
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Figure 2. Attitude errors and angular velocity errors of spacecraft SC1∼3. (a) attitude error θeix (rad);
(b) angular velocity error ωeix (rad/s); (c) attitude error θeiy (rad); (d) angular velocity error ωeiy

(rad/s); (e) attitude error θeiz (rad); (f) angular velocity error ωeiz (rad/s).

Figure 3. Control forces and control torques of spacecraft SC1∼3. (a) control force fuix(N);
(b) control torque τuix(N ·m); (c) control force fuiy(N); (d) control torque τuiy(N ·m); (e) control force
fuiz(N); (f) control torque τuiz(N ·m).
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4.2. Adaptive 6-DOF Coordinated Control Law with Communication Delays

Considering the 6-DOF coordination adaptive control law (39), (40), (42), and (43),
selecting the adaptive gain parameter as WM = 10× diag{1, 1, 1, 1, 1, 1, 1}, Wd1 = 10−5 I3,

Wd2 = 2× 10−2 I3. The initial values of the estimated variables are set to f̃
i
di(0) = 0̂ and

Γ(M̂i)(0) = [160, 0, 0, 160, 0, 320, 640]T . Other parameters for control law (39) remain the
same as those in the previous section. The simulation figures are given in Figures 4–8.

Figure 4. Position errors and velocity errors of spacecraft SC1∼3 with adaptive control law.
(a) position error reix (m); (b) velocity error ṙeix (m/s); (c) position error reiy (m); (d) velocity er-
ror ṙeiy (m/s); (e) position error reiz (m); (f) velocity error ṙeiz (m/s).
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Figure 5. Attitude errors and angular velocity errors of spacecraft SC1∼3 with adaptive control
law. (a) attitude error θeix (rad); (b) angular velocity error ωeix (rad/s); (c) attitude error θeiy (rad);
(d) angular velocity error ωeiy (rad/s); (e) attitude error θeiz (rad); (f) angular velocity error
ωeiz (rad/s).

Figure 6. Cont.
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Figure 6. Control forces and control torques of spacecraft SC1∼3 with adaptive control law.
(a) control force fuix(N); (b) control torque τuix(N ·m); (c) control force fuiy(N); (d) control torque
τuiy(N ·m); (e) control force fuiz(N); (f) control torque τuiz(N ·m).

Figure 7. Cont.
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Figure 7. Disturbance forces and disturbance torques of spacecraft SC1∼3 with adaptive control
law. (a) disturbance force fdix(N); (b) disturbance torque τdix(N ·m); (c) disturbance force fdiy(N);
(d) disturbance torque τdiy(N ·m); (e) disturbance force fdiz(N); (f) disturbance torque τdiz(N ·m).

Figure 8. Cont.
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Time(hour)

(g)

Figure 8. Estimation of the inertia matrix and mass under the proposed adaptive controller.
(a) J11i(Kg ·m2); (b) J12i(Kg ·m2); (c) J22i(Kg ·m2); (d) J13i(Kg ·m2); (e) J33i(Kg ·m2); (f) J23i(Kg ·m2);
(g) mi(Kg).

Figures 4 and 5 show the time histories of the position errors, linear velocity errors,
attitude errors, and angular velocity errors of each spacecraft with communication de-
lays, model uncertainties, and external disturbances, respectively. It can be seen that the
spacecraft can asymptotically track their desired positions, and the tracking error can
converge to the region |reiw| < 2.5 m, |ṙeiw| < 2× 10−4 m/s, |θeiw| < 3× 10−4 rad, and
|ωeiw| < 5× 10−7 rad/s, (w = x, y, z).

Figure 6 shows the control forces and control torques of each spacecraft, respectively.
The estimation of the external disturbances, the inertia matrix, and the mass under the
proposed adaptive controller are shown in Figures 7 and 8. Although the updating laws
given by (42) and (43) do not converge to the actual values of the spacecraft, the asymptotic
convergence of the position errors and the attitude errors are still guaranteed.

The transient response of the control law (39) is less smooth than that of the control
law (29), which does not consider parametric uncertainties and external interference. This is
because it takes time for the updating law (42) and (43) to adjust the estimations of the dual
inertia and external disturbances to achieve a fine compensation. However, the settling
time for the two controllers is identical, and the accuracy of the relative position errors
and attitude errors are the same, which can meet the requirements of gravitational wave
detection for the initial pose error.

5. Conclusions

This paper has investigated the attitude and orbit coupled tracking control problem
for multiple spacecraft formation. A distributed 6-DOF coordinated control law based on
dual quaternions has been designed with time-varying communication delays. Moreover,
an adaptive control law has been further developed by consideration of parametric un-
certainties and external disturbances, where the asymptotic stability of the closed-loop
system is guaranteed. Numerical simulation results show that the controller can realize
the coordination of relative orbit and attitude, and make the formation configuration meet
the requirements of space gravitational wave detection. In future work, the distributed
attitude-orbit coordinated control with velocity-free could be studied.
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