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Abstract: Cybersecurity is a growing concern in today’s interconnected world. Traditional cyber-
security approaches, such as signature-based detection and rule-based firewalls, are often limited
in their ability to effectively respond to evolving and sophisticated cyber threats. Reinforcement
learning (RL) has shown great potential in solving complex decision-making problems in various
domains, including cybersecurity. However, there are significant challenges to overcome, such as the
lack of sufficient training data and the difficulty of modeling complex and dynamic attack scenarios
hindering researchers’ ability to address real-world challenges and advance the state of the art in RL
cyber applications. In this work, we applied a deep RL (DRL) framework in adversarial cyber-attack
simulation to enhance cybersecurity. Our framework uses an agent-based model to continuously
learn from and adapt to the dynamic and uncertain environment of network security. The agent
decides on the optimal attack actions to take based on the state of the network and the rewards it
receives for its decisions. Our experiments on synthetic network security show that the DRL approach
outperforms existing methods in terms of learning optimal attack actions. Our framework represents
a promising step towards the development of more effective and dynamic cybersecurity solutions.

Keywords: deep reinforcement learning; cybersecurity; adversarial simulation; artificial intelligence

1. Introduction

To improve the security of networked systems, red team exercises are commonly used
to assess the effectiveness of their defenses by simulating different cyber-attacks. These
exercises might include adversary profiles to mimic genuine advanced persistent threats
and evaluate the system’s capability to safeguard against various tactics, techniques, and
procedures employed by advanced attackers [1]. However, red team exercises can be
time-consuming and necessitate specialized human expertise, making them an expensive
means of assessing cybersecurity.

To improve the efficiency of red teaming, tools such as emulators have emerged to
automate these exercises and streamline the attack simulation process [2]. Despite the
automation capabilities of these red teaming tools, human experts are still critical in the
planning and decision-making stages of the exercises, such as organizing tactics, techniques,
and procedures through the different stages of the attack simulation campaign. These tools,
such as staging frameworks, enabling scripts, and execution payloads, are designed to
support human experts and simplify the red teaming process.

Adversarial simulation has become increasingly important as cyber threats continue
to evolve and become more sophisticated. Traditional security systems based on prede-
fined rules and signatures are often insufficient to defend against advanced and adaptive
threats [3]. Machine learning (ML) models, on the other hand, can provide a more flexible
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and adaptive solution to cybersecurity by learning from historical data and evolving over
time to better detect and respond to new threats [4–6].

As interest in using ML for cybersecurity grows, the significance of adversarial cyber-
attacks against ML-based applications has become more prevalent. Adversarial simulation
for cybersecurity involves the use of ML techniques to model and simulate potential cyber-
attacks on a system in order to train ML models to identify and respond to these attacks in
real time. This allows organizations to better understand and prepare for potential cyber
threats and improve their overall cybersecurity posture. However, traditional ML-based
applications have limitations as they are typically trained on historical data and have
limited generalizability [7–9]. The rapid progress of artificial intelligence (AI) presents the
possibility of AI-assisted or self-governing AI red teaming, where AI can use its superior
decision-making ability, learned through AI training, to create new attack methods against
complex cybersystems that human red team experts may not have considered yet [10].

This leads to our motivation to involve teaching red agents to identify and optimize
attack operations in a network using deep reinforcement learning (DRL) algorithms, which
is an improved method over the traditional ML model to enhance adversarial cyber-attack
simulation to find more robust solutions. Reinforcement learning (RL) is a technique that
can help create autonomous agents that can make optimal sequential decisions in complex
and uncertain environments. Open-source learning environments, such as OpenAIGym
have increased the possibilities of RL research in different application domains [11]. In
recent years, the use of reinforcement learning in adversarial simulation in cybersecurity
has become more popular [12–16]. With cyber-attacks becoming more sophisticated and
the challenge of designing effective defenses against them, researchers have turned to
ML techniques such as RL to develop more resilient and adaptable security systems. RL
algorithms can learn optimal strategies for defending against attacks, adapting to changing
threats, and evolving attack techniques. By repeatedly playing a game of offense and
defense, an RL agent can learn to anticipate and defend against various types of attacks,
including zero-day exploits [17]. This approach has been shown to be effective in detecting
and mitigating cyber-attacks in a variety of settings, including web applications, network
intrusion detection, and malware analysis.

The RL has the potential to enhance cybersecurity by enabling adaptive and automated
defense systems that can learn from experience and respond to changing cyber threats in
real time [18]. However, there are still significant challenges that need to be addressed to
effectively apply RL in the context of cybersecurity. One of the primary challenges is the
lack of training data [5,19]. Adversarial cyber-attack scenarios are often rare and complex,
making it difficult to collect sufficient data to train RL models effectively. This can result in
models that are underfit, meaning they do not capture the full complexity of the real-world
scenarios they are designed to address. Another challenge is the difficulty of modeling
complex and dynamic attack scenarios [20,21]. Cyber-attacks can be highly dynamic and
adaptive, making it challenging to develop accurate models that can effectively capture the
full range of potential attack strategies and tactics. This can lead to models that are overfit,
meaning they are too narrowly focused on specific attack scenarios and may not generalize
well to new or unexpected attack scenarios. In addition to these challenges, there is also a
shortage of open-source cybersecurity-based RL experimentation environments that can
help researchers address real-world challenges and improve the state of the art in RL cyber
applications [22]. Without access to realistic and scalable experimentation environments,
researchers may struggle to develop and test new RL-based approaches to cybersecurity.

Despite these challenges, there are efforts underway to address these issues and
advance the use of RL in cybersecurity. Elderman et al. focus on cyber-security simulations
in networks modeled as a Markov game with incomplete information and stochastic
elements [23]. They showed the resulting game that is an adversarial sequential decision-
making problem played with two agents, the attacker and the defender. Additionally,
Applebaum et al. provide an analysis of autonomous agents trained with RL through a
series of experiments examining a range of network scenarios [24]. Additionally, Microsoft
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released CyberBattleSim, which uses a Python-based OpenAIGym interface to create an
initial, abstract simulation-based experimentation research platform for training automated
agents using RL [25]. This platform can provide a baseline for researchers to conduct
experiments, test different approaches, and develop new models that can be applied
to real-world cybersecurity challenges. As technology advances, we can expect to see
more RL experimentation environments that can help enhance the state of the art in RL
cyber applications.

In this research, we aim to demonstrate the effectiveness of applying DRL to adver-
sarial simulation in cybersecurity by performing the red teaming simulation that shows
significant learning curves of the agent. We use simulations to model cyber-attacks and
evaluate the performance. The results showed that the DRL policy was able to learn and
execute effective strategies for successfully infiltrating a simulated cyber environment,
highlighting the potential for DRL algorithms to be used for both defensive and offensive
purposes in the field of cybersecurity.

The research involved the application of DRL to adversarial cyber-attack simulation.
The use of DRL in this context allows for the creation of adaptive and automated defense
systems that can learn from experience and respond to changing cyber threats in real time.
One of the key contributions of this research is the significant results achieved by DRL. By
modeling and simulating potential cyber-attacks and their effects on a system, the DRL-
based defense systems were able to identify and respond to attacks in real time, enhancing
the overall cybersecurity posture of the system. In addition to applying DRL to adversarial
cyber-attack simulation, the researchers also experimented with various parameters in
DRL, such as values of epsilon and epsilon decay. By varying these parameters and
performing several simulations on each parameter value, the researchers were able to
identify appropriate values of epsilon and epsilon decay that led to robust convergence.
This finding is significant as it allows for the development of more effective and efficient
DRL-based defense systems, with parameters that can be fine-tuned to specific cyber threat
scenarios. Overall, the research demonstrates the potential of DRL-based approaches to
enhance cybersecurity and highlights the importance of parameter tuning in achieving
robust convergence and optimal performance of DRL-based defense systems in the context
of adversarial cyber-attack simulation.

We organize our paper as follows. We cover the materials and methods, which explain
the DRL algorithm, deep Q-learning, and simulation settings in Section 2. Section 3 presents
the research results, which show the reward obtained by agents for each step. In Section 4,
we discuss the results, then present conclusions in Section 5.

2. Materials and Methods

RL methods are able to discover approximate solutions for Markov decision processes
(MDPs) by teaching policies that target the maximization of the expected reward over a
specific time horizon [26]. Similar to MDPs, RL makes use of the state, action, and reward
components, but instead of exhaustively searching the state space for the optimal policy, an
agent interacts with the environment and chooses actions based on its current state and
past rewards or penalties.

This study employs a simulated virtual environment for the agent to interact with,
rather than a real network, resulting in quicker policy learning. Nonetheless, using a
simulation necessitates certain simplifications that should be taken into account when
implementing the learned policy on a real network.

2.1. Environment Settings for Simulation

The purpose of the experiment was to verify the applicability of reinforcement learn-
ing algorithms for simulating adversarial attacks in cybersecurity. We utilized the Cyber-
BattleSim library to implement the nodes in the virtual environment to simulate attack
scenarios, then apply a reinforcement learning algorithm to derive the results.
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To achieve this, we set our environment as a company with computers to attack, then
the following steps were taken:

1. Investigation of vulnerabilities that may exist in virtual company computers.
2. Configuration of nodes based on the findings from the investigation.
3. Creation of a virtual environment to simulate the acquisition of confidential docu-

ments hidden within the company’s computers.
4. Implementation of reinforcement learning to determine the effectiveness of the simu-

lated environment.

2.2. Deep Q-Learning (DQL)

In cases where the transition function or probability distribution of a state variable
is known, Q-learning is capable of determining the best course of action. Q-learning is
based on the estimation of a value function, which is a set of Q-values. The Q-learning
method [27] calculates Q-values for each state–action combination (st, at). Once the final
Q-values have been determined, the state of the environment can be used to select the
optimal action. At the start of the process, Q-values are initialized to an arbitrary real
number. In iteration t, the agent evaluates the reward in each (st, at) combination. The
algorithm updates the Q-values iteratively based on the immediate reward rt and the
Q-values of the next state–action combination Q(st+1, at+1), as shown in Equation (1). The
discount factor, γ, which has a range of 0 to 1, regulates the effect of future rewards on
current rewards.

Q(st, at)← rt + γmax
at+1
{Q(st+1, at+1)} (1)

Regardless of the policy being followed, the Q-values are adjusted so that they even-
tually reach an optimal action-value function Q* [28]. One of the interesting features of
Q-learning is that it can produce state–action pairs using various sampling techniques. A
common sampling method is the ε-greedy action selection, as shown in Equation (2), where
ε is a value in the range (0, 1].

at =

{
argmax

a∈A
Q(st, a)

a ∼ A
with probability 1− ε,

otherwise.
(2)

The function approximator, such as a deep neural network, can be utilized to estimate
the Q-values, instead of using a Q-table [29,30]. The parameter set for the approximator is
denoted as θ and the network is represented as Q(s, a; θ). The network is then optimized to
estimate the Q-values, as defined in Equation (1) [30,31]. In DQL, there are two networks
involved, the Q-network (Q(s, a; θ)) and a target Q-network (Q̂(s, a; θ−)) [29,32]. The Q-
network is used to determine the optimal action and the target Q-network is used to
generate the target value for updating the parameters (θ) of the Q-network. The Q-network
is updated at each iteration by minimizing the mean-square error between the target
Q-network (Q̂(s′, a′; θ−)) and the current Q-network (Q(s, a; θ)) using a loss function, as
described in Equation (3).

Li(θi) = E
[
(r + γargmax

a′
Q̂
(
s′, a′; θ−

)
−Q(s, a; θi))

2
]

(3)

The exploration and exploitation trade-off must be carefully considered in a DQL as
exploration evaluates potential actions while exploitation utilizes previous experience. The
DQL also utilizes replay memory, which is a database storing the agent’s experiences [32].
To update the Q-networks, experiences are randomly selected from the replay memory [33].

2.2.1. States

In our research, the state is composed of various values such as the node’s name, infor-
mation, and vulnerability. These values provide the agent with a complete understanding
of the current state of the environment. Additionally, there is a reward associated with
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occupying the node, which serves as a motivation for the agent to take specific actions.
The reward can be seen as a reinforcement signal that guides the agent towards optimal
behavior. The state, along with the available actions and their corresponding rewards,
forms the basis for decision-making in DQL.

2.2.2. Actions

The attacker has three options for actions: (1) exploiting a vulnerability that is local to
the system, (2) exploiting a vulnerability that is remotely accessible, or (3) connecting to
another host through lateral movement. The actions require different parameters, such as
specifying which vulnerability to use or which user credentials to access. There are also
specific requirements that must be met before each action can be taken, such as discovering
the target host or having knowledge of the necessary credentials. The consequences of
each action can include discovering new hosts, obtaining sensitive information, or gaining
control of another host.

2.2.3. Rewards

The reward is the feedback that the environment provides in response to the agent’s
actions, and it plays a crucial role in shaping the interaction between the agent and the
environment. This research considers both the cost of the attacker’s actions and the impact
of action utilization on the penetration testing process when designing the reward system.
The cost of an action and its variation are used to calculate the environmental reward value
for the agent’s current action, determining the reward or penalty associated with its use.
Specifically, this study provides a positive reward when the attacker successfully acquires
the node and a negative reward otherwise.

2.3. Simulation Procedure

The simulations in the system take place as attacker games, played over a specific
network structure. Each game has a set number of turns or iterations, which end either
when the attacker has successfully completed their objective or when the maximum number
of turns has been reached. During each turn, the attacker takes an action and receives
updated information about the environment as well as a reward based on pre-defined
values linked to the action taken, the outcome, and the importance of the target host. If
the attacker accomplishes their objective, they receive a significant reward and the episode
comes to an end.

Here is the simulation scenario:

1. The first entry point is allowing remote connection to a conference room PC for a
meeting.

2. It is assumed that the administrators have uploaded passwords and credential tokens
related to sudo permissions in a GitHub private repository.

3. A GitHub token is found in the bash history of the conference room PC and can be
used to access the GitHub private repository.

4. Using the obtained sudo permissions from GitHub, the attacker tries to access files.
5. Using the sudo permissions, the attacker accesses the internet browser’s cookie history

and retrieves the administrator’s session ID.
6. The obtained session information is used to access the company PC as an administrator

and obtain confidential information in the confidential folder.

The terminal condition is that the execution stops if the attacker obtains the confidential
information or if the iteration exceeds 500 steps.

3. Results

In this section, we present the cumulative reward outcomes of our DQL agent in
comparison to random search. The results demonstrate that utilizing DRL methods enabled
the agent to acquire an efficient attack technique within a short learning period. The
findings indicate that the RL policy managed to acquire and execute effective tactics for
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accomplishing the goal of infiltrating a simulated cyber environment, underscoring the
potential of RL algorithms to be utilized for both offensive and defensive purposes in the
field of cybersecurity. The graphs presented in this section will show the reward obtained
by agents for each step. As the step progresses, the agent will learn in the direction of
obtaining a higher reward, and the interesting part to observe here is the difference in
reward between DQL and random search as the step progresses.

3.1. DQL vs. Random Search

Our research aimed to evaluate the performance of two policies, the random policy
and the DQL policy. In Figure 1, the results of the experiment are shown in a graph, where
the blue line represents the reward obtained using the random policy, and the orange line
represents the reward obtained using the DQL policy. The agent’s objective was to reach
the terminal condition, a single path, while maximizing the reward within 500 iteration
steps. It is clear from the graph that the DQL policy outperforms the random policy, as the
orange line gradually increases as step progresses, indicating a continual improvement in
the decision-making abilities of the agent.
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Figure 1. Reward of random search and DQL with fixed epsilon and epsilon Decay.

Table 1 provides statistics of the number of iteration steps taken by each method
to reach the terminal condition, which signifies convergence to the optimal solution. By
analyzing the table, we can assess the speed at which each method meets the convergence
condition. On average, DQL takes only 146.14 steps to converge, while random search takes
an average of 425.30 steps. Moreover, DQL has demonstrated a minimum of only 24 steps
to reach the convergence condition, whereas random search took 238 steps. Therefore, the
table highlights the superiority of DQL over random search in terms of convergence speed,
which is a critical factor in achieving efficient and effective learning in RL applications.

Table 1. Iteration steps taken to convergence for each method.

Methods
Iteration Steps

Average Std Max Min

DQL 146.14 107.88 500 24
Random search 425.30 101.26 500 238

Std—Standard deviation.
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This result demonstrates that the DQL policy is a more effective approach compared
to the random policy. The DQL policy’s ability to continually improve its decision-making
over time results in a more efficient and effective agent that is able to reach the terminal
condition while maximizing the reward.

In Figure 1, we demonstrate that the DQL policy outperformed compared to random
policy in terms of cumulative reward by reaching the terminal condition. In Figure 2, we
experiment with the exploiting (pre-trained) DQL compared with random search. The
terminal condition of the experiment was to reach a single path and achieve the highest
possible reward within 500 iteration steps. As we can observe in Figure 2, the agent trained
with the exploiting DQL policy was able to reach this terminal condition within the allotted
steps and achieve a higher reward compared to the random policy. In contrast, the agent
using the random policy was not able to satisfy the terminal condition and achieved a
lower reward. This supports the conclusion that the agent trained with the DQL policy was
able to effectively learn and improve its decision-making capabilities.
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Additionally, we found that the iteration step comes to an end faster in the exploiting
DQL policy compared to the random search policy, as shown in Figure 3. The results of the
iteration step in a shorter period of time in the DQL policy indicate that it has the ability to
identify and reach the terminal condition more efficiently. The ability to reach the terminal
condition faster in the DQL policy is an important factor to consider, as it provides evidence
that the training process has effectively improved the policy’s decision-making capabilities.
In other words, the policy has learned to make the right decisions more quickly and with
greater accuracy, resulting in a faster resolution of the episode.

Table 2 presents statistical information on the number of iteration steps taken by each
method to reach the terminal condition, indicating convergence to the optimal solution. The
results show that exploiting DQL takes an average of only 77.90 steps to converge, which is
significantly faster than normal DQL, while random search takes an average of 425.30 steps.
Additionally, DQL has demonstrated a minimum of 34 steps to reach the convergence
condition, whereas random search took 238 steps. Thus, Table 2 emphasizes the outstanding
performance of exploiting DQL over random search in terms of convergence speed. These
results highlight the importance of exploring novel techniques, such as exploiting DQL, to
enhance the performance of RL algorithms.
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Table 2. Comparison of iteration steps to convergence between DQL and random search.

Policy Iteration Steps
Average Std Max Min

Exploiting DQL 77.90 28.09 117 34
Random search 425.30 101.26 500 238

Std—Standard deviation.

Furthermore, this ability to reach the terminal condition more efficiently also suggests
that the policy is more capable of navigating the environment in a more optimized way,
reducing the number of iteration steps required to complete an episode. This not only leads
to a faster resolution of the episode but also results in a more efficient use of resources and
a reduction in computational costs.

In conclusion, the results of the experiment provide valuable insights into the ef-
fectiveness of the training process, demonstrating the improvement in decision-making
capabilities and efficiency in reaching the terminal condition in the trained policy. These
findings highlight the importance of using training methods to improve the performance
of an agent in an RL environment.

3.2. Comparison of Learning Rates Based on Epsilon

In this experiment, we investigated the effect of epsilon in DQL on the learning rate
of the agent. By comparing the learning rate for different epsilon values, we were able to
observe how the exploration–exploitation trade-off impacted the overall performance of
the agent. The results of this comparison provide insights into how the choice of epsilon
value can impact the learning process and inform future design decisions.

In Figure 4, we compared the results of cumulative rewards by varying the initial
value of epsilon. The values used were 0.1, 0.3, and 0.9, which are blue, orange, and
green, respectively. The objective of the agent was to reach the terminal condition while
maximizing the reward within 500 iteration steps. The comparison of the results based
on the epsilon value was conducted to determine the impact on the agent’s learning rate
and decision-making abilities. The initial value of epsilon determines the exploration–
exploitation trade-off in the reinforcement learning process. A higher initial value of
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epsilon would result in more exploration and less exploitation, while a lower initial value
of epsilon would result in more exploitation and less exploration. The results show that a
suitable initial value of epsilon is essential for fast convergence of the agent towards an
optimal policy.
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In Figure 4, the green graph indicates that the agent with a high initial value of epsilon
takes longer to converge and shows a lot of fluctuations in its reward trajectory. This can be
attributed to the high exploration rate, which leads to inefficient exploitation of the learned
policy. On the other hand, the blue and orange graphs show faster convergence and less
fluctuation, indicating that the agents with lower initial values of epsilon are better able
to exploit the learned policy. Therefore, it can be concluded that selecting an appropriate
initial value of epsilon is important for efficient and stable learning of a good policy. A
suitable initial value of epsilon ensures that the agent converges quickly and performs
optimally, without being too unstable.

Table 3 provides statistics on the number of iteration steps taken by each epsilon
value and random search method to reach the terminal condition. The results reveal that
the epsilon value of 0.1, 0.3, and 0.9 took an average of 123.30, 134.10, and 112.60 steps,
respectively, while random search took 473.10 steps. Although DQL outperforms random
search, it is crucial to select appropriate epsilon values depending on the training priority
in balancing the exploration and exploitation trade-off to achieve optimal performance in
RL applications. Higher epsilon values are associated with a high exploration rate, which
can result in less exploitation of the learned policy. On the other hand, lower epsilon values
indicate faster convergence and less fluctuation, suggesting that the agent can exploit the
learned policy effectively.
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Table 3. Comparison of iteration steps to convergence for varying epsilon values and random search.

Epsilon Iteration Steps
Average Std Max Min

ε = 0.1 123.30 83.90 333 47
ε = 0.3 134.10 62.50 255 65
ε = 0.9 112.60 90.70 370 37

Random search 473.10 80.70 500 231
Std—Standard deviation.

3.3. Cumulative Reward vs. Step with Fixed Epsilon and Variable Epsilon Decay

In this section, we aimed to investigate the impact of epsilon decay on the performance
of the DQL algorithm. We adjusted the degree of decay, which regulates the rate at which
epsilon decreases. The results of this adjustment were recorded and analyzed to determine
the optimal decay rate for the DQL algorithm.

The impact of the epsilon decay rate on the convergence rate and stability of the
learned policy is analyzed in Figure 5. We experimented with epsilon decay of 500, 2000,
and 10,000, which are the blue, orange, and green lines in Figure 5, respectively. The results
showed that a lower decay rate resulted in a slower convergence rate and a more unstable
policy, while a higher epsilon decay rate resulted in a faster convergence rate and a more
stable policy. This highlights the importance of carefully choosing the epsilon decay rate to
ensure that the DQL algorithm could learn the optimal policy effectively.
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We investigated the impact of epsilon decay on the rate of epsilon value in Figure 6.
Our findings showed that as decay increased, epsilon decreased at a slower rate. This
resulted in a model that tended to exhibit greater randomness in its actions even when the
episode number was sufficiently high, and the agent had learned enough. This highlights
the importance of considering the decay rate when training the agent to ensure it does not
exhibit random behavior at the end of the training process.
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The statistics of the number of iteration steps taken by each epsilon decay to reach
the terminal condition shown in Table 4. The epsilon decay of 500, 2000, and 10,000 takes
an average of 67.90, 152.70, and 161.90 steps, respectively, while random search takes
472.2 steps. A lower epsilon decay resulted in a suboptimal policy, while a higher epsilon
decay resulted in a poorly converged policy. Therefore, it is important to carefully choose
the decay rate to ensure that the DQL algorithm is able to learn the optimal policy.

Table 4. Comparison of iteration steps to convergence for varying epsilon decay and random search.

ε-Decay Iteration Steps
Average Std Max Min

500 67.90 35.36 138 25
2000 152.70 139.20 500 36

10,000 161.90 123.70 500 41
Random search 472.20 67.10 500 277

Std—Standard deviation.

4. Discussion

The findings from our experiment clearly demonstrate the effectiveness of utilizing
DRL methods over random search in the task of infiltrating a simulated cyber environment.
As the number of iterations increased, the DQL policy displayed a remarkable improvement
in decision-making, which resulted in a higher reward compared to the random policy.
This can be observed from Section 3.1, where the DQL policy consistently outperformed the
random policy in terms of convergence speed, with an average of 146.14 steps to reach the
terminal condition compared to 425.30 steps for random search. The efficiency of the DQL
policy in reaching the terminal condition is reflected in the faster resolution of the episode,
more efficient use of resources, and reduction in computational costs. Exploiting DQL
further improved the performance of the algorithm, with an average of only 77.90 steps to
reach the terminal condition. This result highlights the potential of novel techniques, such as
exploiting DQL, to enhance the performance of RL algorithms in the field of cybersecurity.

We also examined the impact of the initial value of epsilon on the convergence and
stability of the learned policy. The epsilon value plays a critical role in balancing the
exploration and exploitation trade-off in RL applications. Our results indicate that an
epsilon value of 0.1, 0.3, and 0.9 took an average of 123.30, 134.10, and 112.60 steps,
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respectively, to reach the terminal condition, while random search took 473.10 steps. These
results showed that the initial value of epsilon is a critical factor that affects the convergence
and stability of the policy. Our results demonstrated that a slower convergence rate led to
more fluctuating behavior, while a faster convergence rate led to less fluctuating behavior.

Moreover, we also analyzed the impact of the epsilon decay rate on the performance
of the DQL algorithm. Our results indicate epsilon decay of 500, 2000, and 10,000 takes
an average of 67.90, 152.70, and 161.90 steps, respectively, while random search takes
472.2 steps. A lower epsilon decay resulted in a suboptimal policy, whereas a higher
epsilon decay resulted in a poorly converged policy. Therefore, careful selection of the
decay rate is crucial to ensure that the DQL algorithm is able to learn the optimal policy.

Additionally, the results of our experiments have shown the impact of epsilon decay.
When epsilon decay increased, epsilon decreased at a slower rate. This means that the
agent has a greater likelihood of selecting random actions, even in the later stages of
learning, when it should have learned the best policy. This phenomenon can be seen as
the agent continues to select random actions even after enough episodes have passed for it
to be considered well trained. One possible explanation for this behavior is that the agent
continues to explore its environment even after it has learned a good policy. This can be
seen as a benefit, as it allows the agent to refine its policy in response to changes in its
environment. However, it can also result in suboptimal performance if the agent becomes
too confident in its actions and fails to account for changes in its environment.

Our research highlights the significance of considering the decay rate carefully when
training reinforcement learning agents. Finding the right balance between exploration
and exploitation is crucial for optimal performance, which may vary based on the task
and environment. Our results show the superiority of the DQL policy over the random
policy in terms of reward and convergence rate, and there is room for further improvement
by optimizing the parameters and hyperparameters of the DQL algorithm or exploring
alternative reinforcement learning algorithms.

5. Conclusions

Our research findings provide clear evidence of the superiority of the DQL policy
over the random policy in terms of both reward and convergence rate. The DQL policy
exhibited a significant improvement in decision-making ability as the number of iterations
increased, resulting in a higher reward compared to the random policy.

Our analysis of the effect of the initial value of epsilon on the convergence and stability
of the learned policy revealed that the initial value of epsilon determines the speed of
convergence and stability. Additionally, our results showed that epsilon decay affects
the rate of decrease in epsilon, and a higher epsilon decay leads to a slower decrease
in epsilon. This can cause the agent to continue making random actions even after it
has been well trained. While this exploration can refine the policy, it can also result in
suboptimal performance if the agent becomes too confident in its actions. Future studies
should explore alternative decay strategies that balance the need for exploration with the
need for exploitation.

In conclusion, achieving the right balance between exploration and exploitation is cru-
cial for optimal performance and may vary depending on the specific task and environment.
There is an opportunity for further optimization of the parameters and hyperparameters of
the DQL algorithm, and exploring alternative reinforcement learning algorithms could lead
to even more effective policies and provide valuable insights into the field of reinforcement
learning. It is important to note that while our findings are promising, the proposed DQL
algorithm has limitations and may not be applicable to all scenarios. Future research should
investigate the limitations and applicability of the DQL algorithm in different contexts.

6. Limitations and Future Works

Our limitation of this research is that, since this research focused on the application of
the RL algorithm to the cybersecurity field, it was conducted in a simulated environment
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that did not capture the complexity of real-world cyber-attacks, which may include multiple
attackers and defenders, various attack vectors, and dynamic changes in the environment.
Furthermore, the impact of varying the network architecture was not investigated in this
study, and it is possible that using more complex network architectures could further
improve the performance of the algorithm.

There is a lot of scope for further exploration in the field of utilizing DRL methods
for cybersecurity tasks. One possible direction for future research is to incorporate more
complex network architectures such as convolutional neural networks (CNNs) or recurrent
neural networks (RNNs) to improve the performance of the DQL algorithm. Additionally,
different learning techniques such as actor–critic or policy gradient methods could be
explored to determine whether they outperform DQL in this application. Another direc-
tion is to examine the performance of the algorithm on real-world cybersecurity datasets
and applications.
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