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Abstract: An electrocardiogram (ECG) is a basic and quick test for evaluating cardiac disorders and
is crucial for remote patient monitoring equipment. An accurate ECG signal classification is critical
for real-time measurement, analysis, archiving, and transmission of clinical data. Numerous studies
have focused on accurate heartbeat classification, and deep neural networks have been suggested for
better accuracy and simplicity. We investigated a new model for ECG heartbeat classification and
found that it surpasses state-of-the-art models, achieving remarkable accuracy scores of 98.5% on the
Physionet MIT-BIH dataset and 98.28% on the PTB database. Furthermore, our model achieves an
impressive F1-score of approximately 86.71%, outperforming other models, such as MINA, CRNN,
and EXpertRF on the PhysioNet Challenge 2017 dataset.

Keywords: electrocardiogram (ECG) classification; MIT-BIH dataset; PTB dataset; deep learning

1. Introduction

Cardiovascular diseases (CVDs) have surpassed cancer as the number one killer
globally, killing approximately 17.3 million people yearly [1]. In the United States, CVDs
accounted for 874,613 deaths in 2019, as reported by the American Heart Association. An
ECG is a commonly used diagnostic tool in healthcare settings for assessing cardiovascular
function [2,3]. Figure 1 describes the construction of an ECG signal, which is important for
interpreting the results of the test.

Figure 1. The construction of an ECG signal.
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An electrocardiogram (ECG) consists of five waves: P, Q, R, S, and T. The P wave
indicates atrial contraction, and the T wave indicates ventricular repolarization. The QRS
complex, which is a key component of an ECG, is composed of Q, R, and S waves. The
QRS complex represents the electrical activity of ventricular depolarization as it spreads
through the ventricles. The T wave, which follows the QRS complex, is an indicator of
ventricular repolarization.

Electrocardiogram (ECG) monitoring shows the electrical activity of the heart, which
is recorded as an electrocardiographic signal. This signal can be used to identify abnormal
heart rhythms and other heart-related conditions, contributing significantly to the prediction
of heart diseases. Wearable devices can monitor heart conditions based on the frequency of
contractions during ECG measurements without requiring a consultation with a physician.
Arrhythmia classification is another application of ECG monitoring. This measurement con-
tributes significantly to the prediction of heart diseases [4–7], arrhythmia classification [8],
cardiovascular disease [9], stroke disease [10], and the detection of atrial fibrillation [11]. Re-
cently, the ECG has been one of the tools used for COVID-19 diagnosis [12–15]. As a result, the
ECG monitoring system is used in hospitals [16,17], smart homes [18,19], remote contexts [20],
or sports [21,22]. In reality, there are many available techniques, such as wearable and portable
devices, which make embedding ECG systems into them convenient and appropriate for
remote patient monitoring. This application not only reduces the risk of stroke or sudden
death in patients but also lowers the risk of disease transmission. Moreover, patients can
receive timely treatment and recover sooner. To achieve this goal, a low-cost ECG diagnosis
system for arrhythmic heartbeats with high accuracy is highly desirable. Such a system
reduces the workload of doctors and improves the efficiency of ECG diagnosis, as relying
solely on labor-intensive readings by doctors has a high rate of misdiagnosis and a lengthy
processing time. Many ECG datasets and research proposals have been recently published to
recognize ECG signals; however, the time-series data of the signal with different waveforms
and morphologies challenge the ECG data, leading to signal misinterpretation. Additionally,
the signals are inevitably contaminated by noise sources, such as electrical interfaces. Three
well-known datasets for ECG diagnosis are the PhysioNet MIT-BIH arrhythmia dataset [23],
the PTB diagnostics dataset [24], and the PhysioNet Challenge 2017 dataset [25]. There are
two main approaches to ECG diagnosis, namely classical and deep learning.

Some classical methods, such as the decision tree [26], were used for ECG heartbeat
classification. ECG heartbeats can be classified using support vector machines (SVM) and
the Naive Bayes Classification algorithm. Other algorithms for ECG heartbeat classification
are multimodal feature fusion and multimodal image fusion (MIF) [27]. A decision tree
also was proposed in [28] for analyzing ECG signals. Wavelet transform (WT), independent
component analysis (ICA), and interval information (RR) are three algorithms for detecting
and classifying ECG signals [29]. The discrete cosine transform (DCT) and Fisher’s linear
discriminant analysis have been the approaches to analyzing features and classifying
arrhythmias [30]. These algorithms extract features from the ECG signal, such as frequency,
temporal, statistical, and so on. These features were then used to classify ECG heartbeats.
Although these algorithms are basic and simple methods of ECG heartbeat classification,
the results must improve. An F1-score of 0.87 was achieved by the SVM algorithm.

Some deep learning models apply to heartbeat classification, such as convolutional
neural networks (CNN) [31,32], artificial neural networks (ANN) [33], long short-term
memory (LSTM) [34,35]. To classify the ECG image types in a large dataset, previous
studies have used ResNet, AlexNet, and SqueezeNet [36]. In general, deep learning models
have been found to have superior performance compared to classical methods in classifying
ECG signals. However, these models have been trained on smaller datasets of heartbeats
and have a larger number of layers, which could be a reason for this high performance.
Deep learning models are easily prone to over-fitting. In addition, a sizeable learning
model is a big problem, resulting in long processing times, high computational resources,
a large memory, and inefficient mobile solutions for long-term ECG monitoring. In this
work, we introduce a new method for distinguishing electrocardiogram (ECG) signals. The
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novel approach suggested in this study includes the use of evolving normalization, residual
block, gradient clipping, and a normalized gradient, which make it more generalizable
and computationally efficient for classifying arrhythmias. The evolving normalization is
fed into a residual block, resulting in a significant improvement in the performance of
classifying various ECG signals. The effectiveness of our method is assessed using three
publicly accessible ECG datasets. The results of the experiments demonstrate that the
proposed model significantly enhances the classification of ECG heartbeats.

The primary advancements of this research can be summarized as follows:

• The examination of a selection of current neural network methods for the identification
of electrocardiogram signals;

• The introduction of a new model for classifying electrocardiogram (ECG) signals;
• The examination of the efficiency of the proposed model on three published ECG

datasets.

2. Related Work

Deep learning is a state-of-the-art method for extracting features, predicting, detecting,
making decisions, and classifying different classes using a set of datasets. One of the
major advantages of deep learning methods for ECG classification is that they can learn
complex relationships between the ECG signal and various cardiovascular conditions.
For instance, deep neural networks can automatically learn features of ECG signals, such
as their shape, frequency, and amplitude, that indicate specific heart conditions, thereby
improving upon traditional ECG classification methods. Another advantage of deep
learning for ECG classification is its ability to handle large and noisy datasets, which are
common in healthcare. Deep neural networks can effectively learn from ECG signals with
various noises and artifacts and generalize well to unseen data. Due to their high efficiency,
many studies have proposed using deep learning models for ECG classification. This
study reviews three types of neural networks for ECG classification: convolutional neural
networks (CNN), recurrent neural networks (RNN), and LTSM. However, interpreting the
results from these deep learning methods depends on various factors, such as the hardware
platform, the model’s architecture, and compiler optimization, which can directly impact
training the model.

2.1. Convolutional Neural Network (CNN)

Convolutional neural networks have gained widespread use in the field of computer
vision [37,38]. A CNN consists of three important layers: the input layer, multiple hidden
layers, and the output layer. The hidden layers are made up of three layer categories:
convolutional, pooling, and fully connected layers. The convolutional layers in a CNN
identify features within the input data, while the pooling layers decrease the dimensions
of the feature map. The fully connected layers classify these features. Acharya et al. [31]
used 13 layers to classify electrocardiogram (ECG) signals into three categories: normal,
preictal, and seizure, but their experiment used only a small dataset. Panda et al. [39]
applied CNN to process ECG signals and showed that their method could only classify
two classes. Other studies based on VGG-Net proposed a 2D CNN that can classify eight
classes [40]. This study used optimization techniques, such as K-fold cross-validation,
data augmentation, and regularization, to solve the overfitting problem and improve
the classification’s performance. Anwar et al. [41] presented a framework with four steps:
preprocessing, heartbeat segmentation, feature extraction, and heartbeat classification. They
used discrete wavelet transform (DWT), RR interval, and the Teager energy operator (TEO)
to extract features before the neural network classifier. Fatma et al. [42] suggested a deep-
learning model for classifying five-class electrocardiogram (ECG) datasets. Ullah et al. [43]
used a deep CNN with a pretrained ResNet-18 to identify premature ventricular contraction
(PVC) on the MIT-BIH dataset and the Institute of Cardiological Technics (INCART),
respectively. Naz et al. [44] proposed using a deep CNN with a pretrained AlexNet,
VGG19, and Inception-v3 for the diagnosis of VTA ECG signals.
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2.2. Recurrent Neural Network (RNN)

RNN is widely used in natural language processing [45]. Similar to convolutional
neural networks (CNNs), the structure of RNNs includes an input layer, a series of hidden
layers, and an output layer. However, the hidden layers in RNNs are composed of recurrent
layers and fully connected layers, as opposed to convolutional and pooling layers in CNNs.
RNNs utilize recurrent layers to identify temporal patterns in the input data by processing
the input data in a sequential manner. The fully connected layers then categorize the
features extracted from the recurrent layers. AI-Zaiti et al. [33] also introduced DNN to
analyze ECG signals. An early deep learning approach method for ECG signal classification
was found to be effective in the training dataset, as evidenced by its high performance
metrics. However, when tested on an independent dataset, the model demonstrated poor
generalizability, indicating that it may not perform well on unseen data. Xiong et al. [46]
developed RhythmNet to recognize ECGs of different rhythms. RhythmNet can help
distinguish between atrial fibrillation (AF) and normal rhythms. Additionally, the proposed
model utilizes a combination of convolutional and recurrent layers to identify patterns and
make predictions in the ECG signal. Specifically, the model includes sixteen convolutional
layers with a filter size of 15 × 1, three recurrent layers, and two fully connected layers.
This design allows for efficient feature extraction of the ECG signal. However, it is worth
highlighting that the model demonstrated an efficient performance on the training dataset
but had poor generalizability on the testing dataset. They applied softmax activation to
calculate the probability of each class. In their experiment, the margin of error between
normal rhythm and AF was limited, implying that RhythmNet was adept at distinguishing
between these two categories.

2.3. Long Short-Term Memory (LSTM)

LSTM has shown promising results in various applications, including disease prediction
and ECG signal classification [47]. Studies such as Yildirim et al. [34], Saadatnejad et al. [35],
and Hou et al. [48] have applied LSTM in different ways to improve the efficiency and
accuracy of ECG signal classification. Yildirim et al. [34] proposed the use of a new input
layer, called the wavelet sequence (WS), which improved the efficiency of the LSTM network.
Saadatnejad et al. [35] presented a lightweight model using wavelet transform and multiple
LSTM layers, while Hou et al. [48] introduced a deep learning model with an encoder and a
decoder, which used LSTM networks to extract high-level features and classify the signals into
different categories.

Overall, the previous studies have shown that recent 2DCNN methods have promising
classification performances. However, these methods require the transformation of ECG
sequence data to the two-dimensional domain and are very computationally intensive,
as seen in VGG, ResNet, and Inception-v3. On the other hand, RNN-LSTM has also
demonstrated good performance, but the method focuses heavily on the temporal domain,
which can lead to overfitting and poorer results on test data. In this work, we aim to
improve the accuracy of ECG signal classification by developing a novel 1DCNN method
that incorporates evolving normalization–activation (EVO), squeeze-and-excitation (SE),
and gradient clipping (GC) components. Our approach outperforms existing techniques,
achieving a significant improvement in classification accuracy for several datasets. By
optimizing these components, we were able to effectively address the limitations of the
previous 2DCNN and RNN-LSTM methods and achieve state-of-the-art results for ECG
signal classification tasks.

3. Materials and Methods
3.1. Dataset

It is worth noting that the PhysioNet MIT-BIH Arrhythmia dataset [49] and the PTB
Diagnostic ECG dataset [50] are widely used in the field of ECG signal analysis and have
been used in many previous studies for algorithm development, testing, and comparison.
These datasets are publicly available and free to download, making them an accessible
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resource for researchers and developers. Additionally, the annotations provided with these
datasets are considered to be reliable and accurate, as they were determined by multiple
experts in the field. However, it is important to note that the datasets have their limitations,
including the small size of the MIT-BIH dataset and the limited scope of diagnoses in the
PTB dataset. As such, caution should be taken when generalizing findings from these
datasets to larger and more diverse populations.

The MIT-BIH Arrhythmia dataset is a set of ECG recordings obtained from 47 par-
ticipants, comprising 48 two-channel, half-hour ambulatory recordings. The data were
recorded at 360 samples per second per channel, using an 11 bit resolution and a 10 mV
range. The dataset also includes reference annotations for each beat, which were deter-
mined by two or more cardiologists and any discrepancies were resolved. The dataset
includes approximately 110,000 annotations in total, with the corresponding beat labels in
the accompanying Table 1.

The PTB Diagnostics dataset is composed of ECG signals obtained from 290 individu-
als, including 148 diagnosed with myocardial infarction (MI) and 52 healthy controls, as
well as individuals diagnosed with various other conditions. Each record includes ECG
measurements taken from 12 different leads, all sampled at a frequency of 1000 Hz. In this
particular study, only the ECG Lead II was utilized, and the focus was classification of the
MI and healthy control groups.

Table 1. Mappings between beat annotations and AAMI EC57 [51] categories.

Category Annotations

N

Normal
Left/Right bundle branch block

Atrial escape
Nodal escape

S

Atrial premature
Aberrant atrial premature

Nodal premature
Supra-ventricular premature

V Premature ventricular contraction
Ventricular escape

F Fusion of ventricular and normal

Q
Paced

Fusion of paced and normal
Unclassifiable

For our study, we utilized ECG data from the PhysioNet Challenge 2017 dataset [25].
This dataset contains a total of 8528 ECG recordings sampled by the AliveCor device at
300 Hz, with durations ranging from 9 s to over 60 s. Of these recordings, 738 were from
patients with AF, while the remaining 7790 were from non-AF candidates. The number of
recordings for each group is summarized in Table 2. We chose this dataset because of its
large size and the availability of annotated labels, which were determined by experts and
verified by a second reader.

Table 2. Number of recordings for AF patients and non-AF candidates.

Type Training Validation Testing

AF 564 70 124

Non-AF 5832 782 1156
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Pre-Processing Data

The authors in [51] detailed the pre-processing steps. In this study, we follow their
steps to extract beats from an ECG signal. The pre-processing steps are described in
Figure 2.

Figure 2. The pre-processing steps.

Figures 3–5 show the specifics of each class. The variations in amplitude at different
times represent the unique characteristics of each class.

Figure 3. The description of class N (left) and class F (right).

Figure 4. The description of class S (left) and class V (right).
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Figure 5. The description of class Q.

The training and testing sets of the PhysioNet MIT-BIH Arrhythmia data contain
different numbers of images for each class, as shown in Figures 6 and 7. The training data
have a large number of images belonging to class N, with over 70,000 images, while the
number of training images for classes S, V, and F is less than 10,000. The Q class has the least
number of training images. Similarly, the testing data also have an imbalanced distribution
of images across the different classes. Overall, the training and testing sets of the PhysioNet
MIT-BIH Arrhythmia data exhibit an imbalance in the number of images per class.

Figure 6. The number of images of each class in training PhysioNet MIT-BIH Arrhythmia data.
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Figure 7. The number of images of each class in testing PhysioNet MIT-BIH Arrhythmia data.

The number of normal and abnormal images of the PTB Diagnostics dataset are
summarized in Figure 8. The number of normal images is greater than 10,000, whereas the
number of abnormal images is less than 4000.

Figure 8. The number of normal and abnormal images of the PTB Diagnostics dataset.

We used the finite impulse response bandpass filter (FIR) [52], a time-frequency
transform plane, to transform a single-channel ECG signal into a four-channel ECG signal.
Then, for each channel, we used sliding window segmentation on a sequence of segments
of equal length to divide x(i)εRn, as shown in Table 3.
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Table 3. Number of segments for AF patients and non-AF candidates

Type Training Validation Testing

AF-segments 76,585 8069 17,044

Non-AF-segments 79,080 11,039 15,631

3.2. Proposed Method

The proposed model’s architecture is detailed in Figure 9, which highlights several
critical components, including the use of Convolution 1D (Conv1D) to expand the number
of channels in the input image, evolving normalization–activation layers (Evo_norm) to
normalize the output from the Conv1D block, and residual blocks to analyze the input
features comprehensively. The model starts by resizing the input image to 187 × 1 and
feeding it into the Conv1D block to expand the number of channels. The output from the
Conv1D block is then passed through an Evo_norm block, followed by four residual blocks.
The output from these blocks is then processed using the flatten and dense tools, which
ultimately produce the final output.

Evo_norm has potential benefits, such as non-centered normalization, mixed variances,
and tensor-to-tensor processing. It is a collection of normalization–activation layers combined
into a single computation graph. Evo_norm is divided into two series: B (batch-dependent)
and S (individual samples). These are explained in detail in a paper by Liu et al. [53].

Figure 9. Model structure.

To clarify the explanation, the residual block used in the proposed model consists
of two pathways: the first pathway involves the max pooling and Conv1D layers to
extract features from the input, while the second pathway further refines these features
using Evo_norm, Dropout, Conv1D, and SE_Block, as shown in Figure 10. The SE_Block
is a squeeze-and-excitation block that adaptively recalibrates the channel-wise feature
responses. The outputs from the two pathways are then multiplied element-wise to produce
the final output of the residual block. By using this approach, the residual block is able to
effectively capture and refine the important features in the input signal.



Sensors 2023, 23, 2993 10 of 18

Figure 10. Residual block.

The squeeze-and-excitation for Conv1D blocks (SE) [54] is one of the modules used to
improve the model’s performance. The intricacies of the squeeze-and-excitation mechanism
are shown in Figure 11. The main idea is that the squeeze operation is used to obtain a single
value for each channel of input features, while the excitation operation on the output of the
squeeze operation is used to obtain per-channel weights. In addition, this study proposes
gradient clipping and a normalized gradient to enable faster convergence compared to
traditional gradient descent with a fixed stepsize [55]. The experimental results for two
popular ECG datasets demonstrate the benefits of the proposed model, which achieves an
improved performance in distinguishing between different classes of ECG signals.

Figure 11. SE block.
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3.3. Evaluation Metrics

Following AAMI’s suggestion, we used accuracy, precision, and recall to evaluate the
model’s efficiency.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

True positive (TP) refers to an accurate identification of the positive outcome.
True negative (TN) refers to an accurate identification of the negative outcome.
False positive (FP) is a mistaken identification of the positive outcome.
False negative (FN) is a mistaken identification of the negative outcome.

3.4. Loss Function

For the PhysioNet MIT-BIH dataset, we applied the traditional loss, namely the
categorical cross-entropy loss. For the PhysioNet PTB dataset, we used the binary focal
loss. The categorical cross-entropy can be found through:

CE = −log(
esp

∑C
j esj

) (4)

where sp is the positive class; sj is the score of the positive class; and C is the class.
The binary focal loss can be calculated as follows:

FL(pt) = − ∝t (1 − pt)
∝log(pt) (5)

where the class’s probability estimate from the model is given by p, and ∝ is a weighting
factor.

3.5. Experiment Setup
3.5.1. The PhysioNet MIT-BIH Dataset

For the PhysioNet MIT-BIH dataset, we perform training with five-fold cross-validation.
We set up the experiment with the same details as for training one fold at a time. The
chosen optimization technique is Adam. The initial value of the learning rate of 1 × 10−3

would be multiplied by 0.1 at the 20th and 40th epochs. The training runs for 50 cycles (or
epochs).

3.5.2. The PhysioNet PTB Dataset

We utilized 10-fold cross-validation for training on the PhysioNet PTB dataset. In each
fold, we set up the experiment with the same details. The optimizer is the Adam method.
The initial value of the learning rate of 1 × 10−3 would be multiplied by 0.1 at the 40th and
120th epochs. The number of epochs is 150.

3.5.3. The PhysioNet Challenge 2017 Dataset

This dataset was divided into three sets: a training set (75%), a validation set (10%),
and a test set (15%), which were used to train and evaluate the model. To address the class
imbalance, we converted each ECG recording into sliding frames of the length 3000, using
50 and 500 steps for recordings from AF and non-AF ECGs, respectively. The model was
trained for 25 epochs with a batch size of 64 and a learning rate of 0.001, with an early
stopping decay of 0.9. We used ADAM optimization and binary cross-entropy as the loss
function. To evaluate the model, we tested it five times and report the mean values with
one standard deviation.
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3.5.4. Hyperparameters

The model’s hyperparameters were chosen based on the suggestions from the reference
papers. The SE ratio was set to 0.25, and the hyperparameters ∝ = 2 and ∝t = 0.25 were
used for the focal loss. During training, we applied oversampling to both the training and
validation data to address the class imbalance. Additionally, we trimmed the gradient
based on its norm with a threshold of 0.001. For the test data, which were independent or
unseen, we analyzed the results and found them to be promising.

3.5.5. Independent Testing Set

Using a five-fold cross-validation technique on the training set means that the data
are divided into five equal parts or “folds”, and the model is trained and validated five
times, with a different fold being used for validation each time. This allows for a more
comprehensive evaluation of the model’s performance on the data, as each data point is
used for validation at least once. Similarly, employing a 10-fold cross-validation strategy on
the PhysioNet MIT-BIH dataset means that the data are divided into ten equal parts, and
the model is trained and validated ten times, with a different fold being used for validation
each time. This strategy can help to ensure that the model’s performance is not affected by
the particular set of data used for training and validation, as each data point is used for vali-
dation at least once across all folds. The use of the “sklearn.model selection.StratifiedKFold”
function ensures that the class distribution is preserved in each fold of the dataset, which is
important for ensuring a fair evaluation of the model’s performance. Figure 12 shows the
way to divide the data in the training, testing, and validation sets.

Figure 12. Divide the dataset into training, testing, and validation sets. The blue folds are the training
set, while the red fold is the validation set.

4. Results

The experimental results are examined on two ECG datasets, namely, the PhysioNet
MIT-BIH Arrhythmia and PhysioNet PTB Myocardial Infarction.

4.1. The Contribution of Evolving Normalization–Activation (EVO), Squeeze-and-Excitation (SE),
and Gradient Clipping (GC)

Table 4 shows the contribution of each component to the performance of the proposed
method. The results indicate that the Evo_norm block plays a significant role in enhancing
the classification accuracy of the three datasets. The addition of the SE block also improves
the performance on these three datasets. Finally, gradient clipping also shows a positive
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effect on the performance of the model. Overall, the combination of all three components
results in the best performance on the three datasets.

Table 4. Performance comparison on PhysioNet MIT-BIH with three components.

Proposed
Model without EVO without SE without GC

Average Accuracy 98.56% 95.50% 98.36% 98.42%

It can be seen that the proposed model with all three components achieved the highest
performance with an accuracy of 98.56%, followed by the model without GC with an
accuracy of 98.42%, the model without SE with an accuracy of 98.36%, and the model
without EVO with an accuracy of 95.50%. This indicates that each component has a
contribution to the performance of the model, with EVO having a higher impact than SE
and GC. The combination of all three components significantly improved the efficiency of
the model in this study.

4.2. The PhysioNet MIT-BIH Arrhythmia Classification
4.2.1. Comparative Results

In an effort to facilitate comparison, our study was benchmarked against the work
presented in [51]. The results of our study revealed an average accuracy of 98.5%, which is
significantly higher than the accuracy scores obtained in previous studies, such as [51,56,57],
as shown in Table 5. These results are strong evidence that our research has an advanced
benefit for arrhythmia classification.

Table 5. Comparative results in the PhysioNet MIT-BIH Arrhythmia classification.

Work Average Accuracy (%)

Kachuee et al. [51] 93.4

Acharya et al. [56] 93.5

Martis et al. [57] 93.8

Li ei al. [58] 94.6

Ganguly et al. [47] 97.3

This paper 98.5

4.2.2. Confusion Matrix

In a prior study by Kachuee et al. [51], the authors presented the confusion matrix of
the resampled testing data. Our study, however, uses the actual testing set to evaluate the
performance of the model, and the results indicate an improvement in performance. As
shown in Figure 13, the confusion matrix of the MIT-BIH Arrhythmia classification for the
five heartbeat classes (N, S, V, F, and Q) is presented. Despite evaluating the performance
on the actual testing set, instead of just the resampled testing data as in previous studies,
our proposed model still demonstrates superior performance. The model demonstrates
an accuracy of 99% for the N and Q classes, 97% for the V class, 90% for the S class, and
88% for the F class. As mentioned above, the MIT-BIH Arrhythmia dataset exhibits a
class imbalance, yet our proposed model achieved high accuracy in both scenarios where
there were ample input images (i.e., class N) or limited input images (i.e., class Q). This
suggests that our proposed model is effective in classifying ECG signals from different
heartbeat classes.
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Figure 13. The confusion matrices for MIT-BH Arrhythmias classification.

4.3. The PhysioNet PTB Myocardial Infarction Classification
4.3.1. Comparative Result

In this study, we conducted an empirical comparison of our proposed model against
other previous studies, as presented in Table 6. The evaluation of the results was conducted
using three common performance metrics, namely accuracy, precision, and recall. The
results showed that our proposed model exhibited a superior classification performance,
achieving an accuracy of 98.28. Furthermore, our model performed exceptionally well in
terms of recall, with a score of 97.72, which was the highest among all the studies compared.
One of the most notable achievements of our model was its precision, which was measured
at 99.90, meaning that the model only made 0.01% of mistaken classifications, making it the
best-performing model among the previous studies.

Table 6. Comparative results in the PhysioNet PTB Myocardial Infarction classification.

Work Accuracy (%) Precision (%) Recall (%)

Kachuee et al. [51] 95.9 95.2 95.1

Acharya et al. [59] 93.5 92.8 93.7

Safdarian et al. [60] 94.7 - -

Kojuri et al. [61] 95.6 97.9 93.3

Sun et al. [62] - 82.4 92.6

Liu et al. [63] 94.4 - -

Sharma et al. [64] 96 99 93

This paper 98.28 99.90 97.72

4.3.2. Confusion Matrix

The results of our model’s classification performance on the PhysioNet PTB Myocardial
Infarction data are depicted in Figure 14. The figure represents the confusion matrix for
the two classes, normal and abnormal, that were evaluated. The results indicate that our
model achieved high accuracy in classifying the normal class, with 99.8% of the normal
images being correctly classified and only a small percentage, 0.2%, being misclassified.
Additionally, our model also showed good performance in recognizing the abnormal class,
with 97.7% of the images in that class being correctly classified. The remaining images in
the abnormal class were misclassified by the model during the prediction process.



Sensors 2023, 23, 2993 15 of 18

Figure 14. The confusion matrix for the PhysioNet PTB Myocardial Infarction classification.

4.4. Atrial Fibrillation (AF) Anomaly Detection in PhysioNet Challenge 2017 Dataset

Table 7 compares the performance of our proposed model with the existing models in
the literature. Our model achieved an F1-score of approximately 86.71%, outperforming
other models, such as MINA, CRNN, and EXpertRF, which achieved F1-scores of 83.42%,
82.62%, and 81.80%, respectively. These results demonstrate the superiority of our proposed
model over previous studies.

Table 7. Comparative results for atrial fibrillation (AF) anomaly detection.

Method F1-Score

ExpertRF [65] 81.80 ± 0.0

CRNN [65] 82.62 ± 0.0215

MINA [65] 83.42 ± 0.0229

Ours 86.71 ± 0.985

5. Conclusions

In this study, we present a novel approach for ECG heartbeat classification. Our
proposed model outperforms the existing state-of-the-art techniques, achieving superior
accuracy results on both the PhysioNet MIT-BIH and PTB datasets. The high performance
of our model is attributed to the combination of the Convolution 1D (Conv1D), evolving
normalization–activation layers (Evo_norm), and the residual block module, with accuracy
rates of 98.5% and 98.28%, respectively, on these datasets. Furthermore, we evaluated the
model’s efficiency on the PhysioNet Challenge 2017 dataset and achieved an F1-score of
approximately 86.71%, outperforming the existing models. Overall, our proposed model is
a valuable contribution to ECG heartbeat classification.

In future work, we aim to evaluate the effectiveness of our model on additional datasets
and explore optimizing the model’s architecture with fewer parameters. We believe that
our model has the potential to be useful not only for ECG heartbeat classification but also
for general classification tasks in wearable device applications.
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