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Abstract: This research article is aimed at improving the efficiency of a computer vision system
that uses image processing for detecting cracks. Images are prone to noise when captured using
drones or under various lighting conditions. To analyze this, the images were gathered under various
conditions. To address the noise issue and to classify the cracks based on the severity level, a novel
technique is proposed using a pixel-intensity resemblance measurement (PIRM) rule. Using PIRM,
the noisy images and noiseless images were classified. Then, the noise was filtered using a median
filter. The cracks were detected using VGG-16, ResNet-50 and InceptionResNet-V2 models. Once the
crack was detected, the images were then segregated using a crack risk-analysis algorithm. Based on
the severity level of the crack, an alert can be given to the authorized person to take the necessary
action to avoid major accidents. The proposed technique achieved a 6% improvement without PIRM
and a 10% improvement with the PIRM rule for the VGG-16 model. Similarly, it showed 3 and 10%
for ResNet-50, 2 and 3% for Inception ResNet and a 9 and 10% increment for the Xception model.
When the images were corrupted from a single noise alone, 95.6% accuracy was achieved using the
ResNet-50 model for Gaussian noise, 99.65% accuracy was achieved through Inception ResNet-v2 for
Poisson noise, and 99.95% accuracy was achieved by the Xception model for speckle noise.

Keywords: cracks; deep learning; detection; images; noise; integrity; safety

1. Introduction

The identification of cracks on different types of structures has always been tedious
and time consuming work. Regular checks have to be made in order to prevent any serious
damage to infrastructure. Traditional inspections would require the use of specialized
personnel to manually check for any cracks. This process is greatly complicated when it has
to be done in areas such as roads, bridges and highways. It can cause disturbance to regular
work or create traffic due to the need to employ additional platforms or machinery for
aiding in the inspection process. Furthermore, after the examination, the reports are usually
checked manually to identify the underlying issues. This procedure is time consuming and
costly to implement. In order to reduce the cost, time and labor involved in such scenarios,
the use of unmanned aerial vehicles (UAV) and transfer learning methods can be used to
identify cracks. Once a crack is identified, it can be separated, based on the severity level.
This tedious process would be simplified by automation. The main goal of this research
article is to improve this nondestructive method of investigation which can be employed
at a considerably lower cost, while maintaining good accuracy. The convolutional neural
network (CNN) method is one of the most efficient network methods which can be used
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for image-based crack detection. CNNs have demonstrated much higher accuracy than
many image-enhancement algorithms, such as the morphological approach, edge detectors,
wavelet analysis, etc. [1].

Over the years, machine learning and convolutional networks have been displaying
strong capability for feature extraction and target detection and many researchers have
developed and studied various applications for improving the accuracy. Research carried
out by Cuong Nguyen Kim et al. [1] concentrated on pre-processing. To improve the
accuracy, Aravinda S Rao et al. [2] took a different approach in pre-processing where they
divided the image into multiple patches before the images were fed into the CNN-based
algorithms. Vishal Mandal et al. [3] focused on detecting the cracks. Similar methods have
been implemented in various research, such as in Rupinder Pal Singh et al.’s [4] work,
where they used a bilateral filter to remove noise as it helped to preserve edges while
reducing noise. Another work carried out by Mukund N Naragund et al. [5] showcased a
methodology using wavelet transform along with a bilateral filter to denoise and preserve
detail to a high degree.

The main contributions of this research are summarized as follows:

1. A deep learning model for crack detection using image processing for computer vision
is proposed;

2. In order to detect whether the image has been affected by noise, a unique technique
which uses pixel-intensity resemblance is implemented;

3. A binarization-skeletonization-edge detection (BSE) algorithm is proposed for estimat-
ing the width of cracks. Based on the width, the images are segregated into high-risk,
medium-risk and low-risk cracks using preset thresholds.

Section 2 elaborates the available literature on crack detection. Section 3 explains the
proposed work. Sections 4 and 5 discuss the results and conclusions.

2. Background

Cracks can be detected using basic machine learning algorithms. As opting for deep
learning is more fruitful in terms of accuracy and speed, many state-of-the-art techniques
have concentrated in these techniques. The research article by Raza Ali et al. [6] surveyed
different CNN-based algorithms and stated that Unet was the best performer when com-
pared to Pixelnet, Alexnet, Googlenet and a few other algorithms. V Mandal et al. [3] was
able to detect cracks in real time by mounting a camera on the dashboard of a moving car.
Y Zhang et al. [7] used the YOLO v3 algorithm as a base and was able to detect the cracks
efficiently by using MobileNet for transfer learning and the convolutional block attention
model. The authors of [8] carried out research on various CNN-based algorithms, and
found that MobileNet yielded the best accuracy for a masonry dataset. J. K. Chow et al. [9]
carried out crack detection on concrete images using a convolutional autoencoder and
decoders. Zhong qu et al. [10] and Cheng Wang et al. [11] discussed improving accuracy by
using only two convolutional layers and the Inception model. SY Wang et al. [12] compared
R-CNN-based ResNet, visual geometry group (VGG) and feature pyramid network (FPN).
It was concluded that VGG16 took less time and memory to detect cracks, but yielding
the lowest accuracy. ResNet-50 gave the highest accuracy but took more time and some
extra memory.

The addition of certain pre-processing steps can be of great value; they can make or
break an algorithm. A very good example would be the research of Thendral et al. [13],
where cracks on railway tracks were collected using a camera on a self-moving vehicle and
various pre-processing procedurees were carried out to classify the cracks appropriately.
Similarly the research by Zhong Qu et al. [10] proved that, using a simple technique
of dividing an image into smaller patches, considerable improvement can be achieved,
compared to most of the state-of-the-art deep learning models. CV Dung et al. [14] used a
fully convolutional network (FCN) and scanned the dataset for common features on crack
images and classified the images. Using the FSM module, UH Billah et al. [15] found the
weak features of the dataset and eliminated them. They concatenated the encoder-decoder
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modules and upscaled the remaining features. This method is particularly useful when a
dataset has different types of images. Although it improves the accuracy, this method is
highly sensitive to the input data.

The research of Zhang et al. [16] relies heavily on the concept of feature fusion. The
crack images are very susceptible to noise. It cannot be guaranteed that all the images can
be taken in well-lit conditions. In similar research, the researcher used a multiscale-fusion
generative adversarial network (GAN) to improve the quality of the output images while
preserving the features of the original images. However, they assumed the noise type to
be Gaussian and the variance to be between 0.05 and 0.2 [17,18]. Junmei Zhong et al. [19]
took a different approach for reducing the noise; by using orthogonal wavelet transform
(OWT), the higher scale levels are preserved, and noise in the lower level is filtered by
using minimum mean squared error. Although this noise reduction method was yield-
ing better results, they only reported it for images with Gaussian noise. Ehsan Akbari
Sekehravani et al. [20], utilized the Canny algorithm for edge detection. Traditionally
Canny is implemented with Gaussian filter, but to counteract any type of noise, the authors
utilized a filtering approach. Another unique method is denoising the images using the
Wiener filter and detecting cracks by the Otsu method [21]. Kittipat Sriwong et al. [22] and
discussed various CNN-based algorithms for efficient crack detection. Even though the
technique implemented in [23] was not able to carry out a proper categorization of the crack
image, it could detect cracks even on road markings using ResNet-v2 algorithm. By adding
feature fusion and network in network (NIN) modules, the edges were highlighted and
also prevented the loss of model features, in the meanwhile reducing the time complexity.
In [24], to inspect the severity of the crack, the authors used crack magnifier. The deep learn-
ing models such as VGG-16, ResNet50 and Inception ResNet-V2 are discussed in [25–27].
Paramanandham et al. [28] discussed about concrete crack detection using various deep
learnbing models. Qi Chen et al. [29] used the guided filter approach for the removal of
noise and analyzed the characterization of the crack structure using Hessian structures
followed by refinement process. The authors achieved around 90% in precision, recall
and F1 measurements through the implemented approach. Dawei Li et al. [30] developed
a defect detection system for metro tunnel surfaces. Junjie Chen and Donghai Liu [31]
proposed a model for detecting damage in the water channel based on super pixel segmen-
tation and classification and achieved an accuracy around 91%. Miguel Carrasco et al. [32]
discussed a methodology for measuring the width of cracks using smoothing, filtering,
segmentation and estimation. The authors of [33–41] proposed several techniques based on
CNN, pyramidal residual network for concrete crack detection, binocular vision system for
pipe crack and deformation detection and also analyzed the performance of the techniques.
From the literature, it can be identified that the existing techniques for detecting cracks
can be classified into two broad domains. One is based on the combination of several
networks or concentrating on segmentation of cracks. Hence, the proposed technique con-
centrated on overcoming the limitations in the detection of cracks even though the images
are corrupted or have dissimilar structures. Figure 1 shows the general block diagram for
crack detection. Once the images are acquired, the database is created. Before classifying
the images into crack and non-crack, pre-processing procedures such as removal of noise,
contrast enhancement, change in resolution, etc., can be performed to obtain enhanced
results. Once the crack has been detected, it can be assessed through evaluation parameters.
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Figure 1. General block diagram for crack detection.

3. Proposed Method

The cracks are detected for both noisy and noiseless environment images captured
from various surfaces. To accomplish this, the proposed technique consists of three pro-
cesses, namely, pixel-intensity resemblance measurement, crack detection using a deep
learning model and classification based on the width of the crack. As shown in Figure 2, in
the pre-processing stage, the filtering process and the following step (i.e.,) pixel-intensity
resemblance algorithm were used for measuring similar pixels. In this pixel-matching tech-
nique, the images to be tested are passed through a common filter. The filtered image pixels
are compared with the original image. The number of mismatched pixels is calculated
and, according to that calculation, the type of noise is determined. Once the type of noise
is identified, the proper denoising filters are used for the removal of noise. The filtered
images are then segregated properly on the basis of whether the images are inclusive
of noise or not. Once the separation filtering of possible noisy images is completed, the
images are then passed through a crack-detection model. The images in which cracks have
been detected are then passed through the last stage of the algorithm where the width of
the crack is determined; by doing so, it segregates the various cracked images into three
different categories based on the severity level, namely, high, medium and low so that the
appropriate actions can be taken without any delay.

To examine the efficiency of the implemented technique under several noise conditions,
images were generated with different noises with Gaussian, salt and pepper, and speckle
with various mean and variance levels. The Gaussian noise model [37] is expressed in
Equation (1).

P(g) =

√
1

2πσ2 e−
(g−µ)2

2σ2 (1)

where σ denotes the standard deviation, g indicates the gray value and µ represents the
mean value.

The binary noise is also called impulse noise and salt and pepper, as its value is either
0 or 255. Speckle noise is also termed as multiplicative noise [37]. It occurs in the same way
in an image as Gaussian noise. It is expressed in Equation (2).

F(x) =
xα−1e

−x
a

(α− 1)!aα
(2)

The proposed crack detection model was developed in view of the following parameters:

1. Cracks should be detected on any surfaces captured from any device under any environment;
2. Time complexity is considered;
3. Once a crack is identified, it should be categorized and an immediate alert will be

given to the authority in order to avoid major accidents.
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3.1. Filtering and Pixel-Intensity Resemblance Measurement for Noise Classification

The images of any structure or surface taken from a drone or some other device are
classified into noisy and noiseless (very little noise) images, based on the measurement of
pixel-intensity resemblance and a filter-based approach. To classify the images accurately,
the images are initially passed through a common filter. The filtered image pixels are
compared to the database images for finding similarities between the pixels. After extensive
study of filters and from Table 1, it was found that the median filter yielded better results
when compared to all other filters for the proposed technique. Hence, all the images
were passed through the median filter and the filtered image was then given to the next
stage. A median filter is a non-linear digital filtering technique that is often used in the
pre-processing of images as it helps remove the noise efficiently but preserves the edge
details. It is very useful for edge detection and other image-based detection methods.

Table 1. Noise estimation through filters with PIRM.

Image Filters Classification Accuracy (%)

Mean Filter 87.3
Median Filter 91.5

Low Pass Filter 83.3
Gaussian Filter 88.1

The filtered images are passed through the pixel-matching algorithm where the pixels
of the original image and the filtered image are compared and the number of matched and
mismatched pixels are computed. The code works by extracting the intensity of pixels that
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have the same coordinates within the image. If the pixel intensity of both images matches,
then it is marked as a common pixel, otherwise it is denoted as a mismatched pixel. In
Figure 3, the yellow output is the mismatched pixels while the purple output is when the
pixels match.
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For each image, the mismatches are compared against certain thresholds and the
decision is made whether to use the original image or the filtered image. If the number
of mismatched pixels is between 15 and 100 then the original image is passed through to
the deep learning model, as the filtering of images with supposedly very little or no noise
ends in needless loss of the image. The images whose pixel mismatch range is over 100
are deemed to be noisy, the original image is first filtered and then passed through the
detection algorithm.

3.2. Noise Estimation

In order to decide the filter that should be used for denoising, the level of noise is
estimated and the flow for the estimation is explained using the Equations (3)–(8). Noise
is estimated for various types of noises with different mean and variance levels. Let us
consider an image I with the patch size p, row R and column C and dataset D that is
specified in Equations (3) and (4)

I ε ARXCX3, (3)

and
D = {di}s

i=1 (4)

where D contains s = (R − d + 1) (C − d + 1) patches with size q = 3p2

µ =
s

∑
i=1

xi, (5)

Covariance Matrix ∑ =
1
s

s

∑
i=1

(xi − µ)(xi − µ)t . (6)

Computing the Eigen values {λi}
q
j=1 of the covariance matrix Σ with q = p2 and order

λ1 ≥ λ2 ≥ . . . ≥ λr
For j = 1: q, median τ is calculated

τ =
1

q− t + 1

q

∑
k=1

λk , (7)



Sensors 2023, 23, 2954 7 of 19

If τ is the median of the set {λk}
q
k=1 then,

σ =
√
τ . (8)

where σ represents the estimated noise level.
If the estimated range is within ±5, it is lying under Gaussian noise and the Wiener

filter is chosen for denoising these types of images as it is more appropriate. Similarly, an
image with the estimated range 15 to 25 specifies speckle noise, the mean filter is used
for denoising and if it is greater than 30, it shows the image is corrupted due to salt and
pepper. If the images are corrupted by salt and pepper noise, the median filter is used for
the removal of noise. Figure 4 shows the noise estimation of the proposed technique.
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3.3. Deep Learning Models Used for Crack Detection
3.3.1. VGG-16 Architecture

The VGG-16 consists of 13 convolutional layers and three fully connected layers as
shown in Figure 5. A set of filters comprises a convolutional layer which is an essential
block in any convolutional neural network. VGG-16 [25] has 13 of them. The parameters of
the filters have to be learned. The size of the filter must be relatively less than the input.
The features of the training set are extracted only using convolutional layers. The next
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layer in VGG-16 is the pooling layer. Generally, pooling layers are added between two
convolutional layers. Pooling layers reduce the number of parameters between successive
layers. There are two pooling functions, namely average and max pooling. Max pooling is
generally preferred as it functions more efficiently. The flattened layer in VGG-16 converts
feature maps into 1D tensors. The last layer is the fully connected layer which gives the
output of the model.
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3.3.2. ResNet-50 Architecture

ResNet-50 is a variant of ResNet with 50 neural network layers [26] as shown in Figure 6,
redrawn from [39]. Over the years, the higher accuracy and efficiency of neural network
models have been achieved by deepening the neural network model, i.e., adding more layers
and blocks or changing the filter size. This, however, is not always the case. Adding more and
more layers can also cause performance degradation in deep learning. In order to overcome
this, residual networks which are made up of residual blocks have been invented. The concept
of skip connection is being introduced in residual models. While training a model, the skip
connections skip some of the layers in the model (layers that are skipped vary from model to
model). The output of one layer is fed as the input to another layer. This basically solves the
problem of vanishing gradients in deep neural networks. The skip connections also ensure
that the higher layers and lower layers of a model perform efficiently. The residual blocks in
the model help to increase efficiency as learning becomes much easier.
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3.3.3. Inception ResNet-V2

Inception ResNet-v2 basically uses the inception architecture combined with the
residual connections from the ResNet network. The major improvement from the traditional
model is the addition of a filter expansion layer to scale up the dimensionality of the filter
bank before the addition to match the depth of input. The network has a total of 164 layers,
as shown in Figure 7, redrawn from [39], and can classify the images in up to 1000 different
categories, in the same way as the VGG-16 and ResNet-50. The input size of this network is
299 × 299 and the output is a list of estimated class probabilities.
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3.3.4. Xception Model

The Xception model uses depth-wise separable convolutions and works as shown in
Figure 8a–c, redrawn from [27]. A general convolution step makes the spatial-wise and
channel-wise computation in one single step. However, on the other hand, the depth-wise
separable convolution divides the process of computation into two different steps. The
depth-wise convolution initially adds a single convolutional filter to each input channel.
It is then followed by point-wise convolution which creates a linear combination of the
output from the depth-wise convolution. This method improves the efficiency of the model.

The word “Xception” literally translates as “extreme inception”. It basically means
that the properties of the inception model are extremized to give better results. In the
traditional inception neural network model, the original input image was compressed
using a one-by-one convolution. After this, different types of filters were used on each
depth space. However, in the Xception model, this step is reversed. Here, the filter is
applied in the first step of the depth map and then the compression of the input takes
place. This technique is called depth-wise convolution. The Xception model also does not
introduce non-linearity which was the case in the inception model. This is also yet another
difference between the models.
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3.4. Crack Segregation Based on BSE Algorithm

The images that are identified with cracks are passed to the proposed crack risk
analysis algorithm (binarization-skeletonization-edge detection—BSE) where the width
of the crack is estimated. Based on the width, the images are segregated into high-risk,
medium-risk and low-risk cracks by the preset threshold.

Crack risk analysis using BSE algorithm:
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1. Image binarization: this is the operation of dividing the image into black/white pixels
in order to separate the cracks and non-cracks within the image;

2. Skeletonization: extracts the central skeleton of the crack which helps to identify the
progression of the crack. Hence, it is possible to find the crack width by drawing a
line perpendicular to the crack propagation direction at the pixel on the skeleton;

3. Edge detection: extracts the outline of the crack. From the skeleton, the line perpen-
dicular to the crack propagation direction and the crack outline are used together to
find the crack width.

4. Results and Discussion

Once the type of noise is estimated, the appropriate filters are applied. These images
are converted into gray scale images and the width is calculated. The crack estimation
accuracy is drastically increased when the images are denoised based on the proposed
technique. For calculating performance evaluation parameters, confusion matrix is used
and it is represented in Table 2. Tables 3 and 4 show the accuracy of various deep learning
models before and after denoising. From Tables 3 and 4, it is proved that the proposed
technique is efficient in denoising and detecting the cracks. Figure 9 shows the visual
representation of crack width prediction. Once the crack was identified, it was classified
into high risk, medium risk and low risk and these are shown in Figures 10–14. The
high-risk cracks would be immediately alerted to the authority to ensure avoidance of
major disasters or accidents and to prevent a calamity. The work was implemented using
Python software in Google Colab. The proposed system will be very helpful to many
industries and public transport authorities, including bridges on the pathway. To assess the
effectiveness of the proposed technique, it was compared with state-of-the-art techniques
such as Auto-CAE [9], ResNet-50 [26], Crack Hessian [29] and Seg + SVM [30] and the
results are tabulated in Table 5.

Table 2. Confusion matrix.

Predicted No Predicted Yes

Actual No TN FP
Actual Yes FN TP

Table 3. Accuracy with and without noise.

NOISE VGG-16 RESNET-50 INCEPTION RESNET-V2 XCEPTION

No noise 99.9% 98% 99.98% 99.95%
Salt and pepper 50% 50% 56.05% 50%

Gaussian 50% 89.05% 56.15% 50%
Poisson 99.1% 99.2% 98.75% 99.25%
Speckle 96.05% 91.9% 99.55% 99.7%

All noises 73.79% 82.54% 85.47% 74.74%
All noises + no noise 79.41% 85.63% 88.36% 79.79%

Table 4. Accuracy of various models using proposed technique.

NOISE VGG-16 RESNET-50 INCEPTION RESNET-V2 XCEPTION

Salt and pepper 81% 88.7% 96.3% 99.65%
Gaussian 50% 95.6% 90.95% 50%
Poisson 99.1% 99.2% 99.65% 99.25%
Speckle 99.2% 98.2% 99.85% 99.95%

All noises 82.25% 86.25% 87.89% 87.23%
All noises + no noise 85.79% 88.32% 90.3% 88.74%
All noises + no noise

(with PIRM) 89.56% 95.78% 90.9% 89.57%
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Table 5. Comparison with the state-of-the-art techniques.

Techniques Accuracy Specificity Recall Precision F1 Score

ResNet-50 [26] 88.36 89.06 87.16 89.46 88.11
Auto-CAE [9] 89.05 89.95 87.32 90.05 88.75

Crack Hessian [29] 91.2 91.9 90.03 91.72 90.9
Seg+ SVM [31] 91.7 91.05 90.27 91.35 91.23

Proposed- (PIRM + BSE) 95.78 96.48 94.38 96.18 95.58

By searching the skeleton of the image through breadth-first search (BFS), the direction
of the crack was estimated. Then the distance was calculated when the line of perpendicular
met the edge of the crack, as shown in Figure 9. This was repeated multiple times until
various widths were covered and the average of the distances obtained was used as the
estimated width value of the crack. Figure 10 shows some sample images collected from
industry. With multiple hand-selected images of various degrees of severity in the crack,
accurate thresholds for high, medium, and low risk were identified by the proposed
model. Figure 11a,b shows the sample of predicted output of the model “No Crack”, even
though the images have many irregularities, grainy surface and complicated structure.
Figure 12a,b shows the predicted output of the model “Low-Risk Crack”, Figure 13a,b
shows the classified output of “Medium-Risk Crack”. Once a high-risk crack is detected,
an immediate alert will be given to the authority and the necessary action will be taken
to avoid accidents. The high-risk-classified crack images are shown in Figure 14a,b. Even
though the images have different surface properties, the proposed model can effectively
classify according to category. A confusion matrix was generated for all the models to
assess the efficiency of the models and this is given in Table 2.
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This table indicates the predictions made by the model and how right/wrong those
predictions were. The parameters such as accuracy, precision, recall and F1 score were
calculated using Equations (9)–(12), respectively.

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1 Score : 2 X
Precision X Recall
Precision + Recall

, (11)

and
Accuracy :

TP + TN
TP + TN + FN + FP

. (12)

5. Discussion and Conclusions

The adverse effects of noise on image-based detection methodologies, especially in
the detection of cracks, are successfully identified in this article by exploring various deep
learning algorithms. The discussed deep learning models showed around 30–50% decrease
in accuracy when the test images were noisy. To counteract this, the noise was estimated
and the appropriate filters were used for denoising using the developed technique. From
the results, it was identified that the implemented technique had different effects on the
various models. When the dataset contained all the types of images excluding the images
corrupted from Gaussian noise, speckle noise, Poisson noise, salt and pepper noise, the
proposed technique achieved 6% improvement without PIRM and 10% improvement with
the PIRM rule for the VGG-16 model. Similarly, it showed a 3 and 10% improvement for
ResNet-50, a 2 and 3% improvement for Inception ResNet and a 9 and 10% improvement
for the Xception model. When the images were corrupted from single noise, 95.6% accuracy
was achieved using the ResNet-50 model for Gaussian noise, 99.65% accuracy was achieved
through Inception ResNet-v2 for Poisson noise, and 99.95% accuracy was achieved by the
Xception model for speckle noise.

From these results, it was concluded that the ResNet-50 model was the most suitable
both when the test images contained no noise, as well as for all types of noisy images,
achieving 95.78% with the proposed technique. To evaluate the performance of the devel-
oped technique, it was compared with state-of-the-art techniques and the obtained results
depicted that the proposed technique outperformed the existing techniques. Thus, it can be
concluded that the pixel-intensity resemblance measurement, noise estimation and crack
classification-based technique proposed here is most suitable for all types of real-time
images taken from any environment.

In future, the authors plan to work on the limitations of the proposed work, i.e., detecting
cracks and uneven surfaces occurring in various materials such as steel, iron, and compound
cylindrical structures due to strain or some other external environmental factors.
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